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It follows from a well-known theorem of Ramsey [7] that for any 
finite graph G and any positive integer k, there exists a least integer 
r(G; k) which has the following property. 

Any k-coloring of the edges of the complete graph KV on Y edges 
always has a monochromatic subgraph isomorphic to G, provided 
only that Y > r(G; k). 

Most work up to now has dealt with the case k = 2. The reader is 
invited to read Burr [2] for an excellent survey of the current state of 
affairs on this subject. In this paper, we examine the case in which G is 
the complete bipartite graph K,,, and k is arbitrary. 

Without loss of generality we may assume s < t. For s = 1, the numbers 
P’(K~,~) are known exactly. They are given [3] by 

+% ; k, = I 
k(t - 1) + 1 if k = t E 0 (mod 2), 
k(t _ 1) + 2 otherwise. 

SOME UPPER BOUNDS 

THEOREM 1. 

r(K,,, ; k) < (t - l)(k + kl/“)” for k>l, t>s>2. 
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Proof. We first obtain an upper bound on the number of edges e a 
graph G on n vertices may have if G contains no subgraph isomorphic to 
&t . Let M = (mif) denote the adjacency matrix of 
then 

where 1 < il < ... < i, < ~1. If cj denotes Cy=, mij then summing (1) 
over all choices of il ,..., i, , we obtain 

i Cj(Cj - a> **. (Cj - s + 1) < (t - 1) n(n - 1) ..a (n - s + 1) (2) 

Since f(x) = x(x - 1) *a* (x - s + 1) is convex for x > s -- I, then 
(2) implies 

provided the argument off exceeds s - 1. Since e = 4 Cyzl cj , we have 
in this case 

n((2e/n) - (s - 1))” < (1. - 1) PP. (31 

Now, for an arbitrary fixed y2 >, (t - l)(k + klls)sg let the edges of 
K, be k-colored. Thus, some color occurs on at least (I/k)(:) edges. Let 
G denote the subgraph which has these edges. Since 

then 
kll”(k + kl/s)s-l > k + 1 

(t - l)(k + k11”)8(l - k/(k $ kli”)) > k(s - 1) + 1 

for t > s > 2. But because of the assumption on IZ, we have 

i.e., 
n(l - k((t - ~)/Fz)“/“) > k(s - I) + 1 

n - 1 > k(s - 1 + n((t - I)/@/“)~ 

Thus, G has more than 

edges. However, (3) can be rewritten as 

e < (n/2)(s - 1 + n((t - 1)/n)“‘“) (3’) 
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and this is also clearly valid in the case that 

t&&-l. 

Thus, by (3), G must contain a monochromatic copy of K,,, . This proves 
the theorem. 1 

A more careful argument can be used to prove the following somewhat 
stronger theorem. 

THEOREM 1'. 

Q& ; k> < 0 - 1) kV + e(W)s for k>l,t>s>2 

where e(k) = kl-+(s - 1 + k-l)(t - 1)-l. 
For the special case s = 2, a closer analysis along the same lines can 

be used to establish the following result. 

THEOREM 2. 
r(K,,, ; k) < (t - 1) k2 + k + 2. 

By a refinement of this argument for the case t = 2, one may obtain 
the following. 

COROLLARY 1. 

r(K2,2 ; k) < k2 + k + 1 for k>l. 

As we shall see, this upper bound for the 4-cycle K2,2 is fairly close to the 
known lower bound. The upper bound 

r(K2,2 ; k) -=c ck2 

for a suitable c > 0 had been previously obtained by Hajnal and Szemeredi 
(unpublished). 

For the case s = t, Chvatal [6] has obtained the bo,und 

r(K,,, ; k) < 2tkt 

which differs asymptotically from our bound for this case by a factor of 2. 

SOME LOWER BOUNDS 

We begin with a bound on r(K,,, ; k). 

THEOREM 3. For k - 1 a prime power, 

r(K2,2 ; k) > k2 - k + 1. 
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FrooJ Since k - 1 is a prime power, then it is weli known that there 
exists a simple difference set D = (4 ,..., dJ module 
each t, 1 < t < k, form a cyclic (symmetric) matrix 
follows: 

1 if i + j + dt = d, (mod k2 - k + 1) for some d, E 
“(” ‘) = 10 otherwise. 

Since D is a difference set, then it follows that for i, j E Zlca-~,I (the integers 
modulo (k2 - k + l)), there exists a t such that b,(i, j) = 1. Furthermore, 
for each t, no two rows of Bt have a common pair of 1’s. 

We now form a k-colored Kp-k+l as follows. The vertices of K+.k.+l 
will be the elements of Z+k+l . The color of the edge (i, j) for i, j E Zk~-k.+k 
is defined to be the least integer t such that &(i, j) = 1. l3y the 
remark, no two rows of any Bt have a common pair of l’s and so, no 
monochromatic Q-cycle K,,2 occurs in &&B-~+~ . is shows that 
Y(K~,~ ; k) > ke - k + 1 and the theorem is proved. 

A somewhat similar technique, based on n-dimensional projective 
geometries over finite fields, can be used to prove the following result: 

r(K,,,n; k) = kn+2 + o(knf2). (9 

The details of the proof of (5) are a bit complicated and will not be given 
here (cf. [5]). 

We remark that for two colors, it has been shown [4], [5] t 

r(K2.t ; 4 >, 4t - 2, 4t - 3 a prime power. 

The best lower bound we know for the general case is given by a simple 
counting argument. 

P(K~,~ ; k) > (27r &)l/(s+t)((.s + t)/e2) k(s+l)l(s+t). 

Proof. Call a k-coloring of K, bad if it contains a monochromatic 
K s,t * It is easy to see that there are at most 

bad colorings. Hence, if this expression is less than the total number of 

k-colorings kc) then we can deduce the inequality 

r&t ; k) > n. 
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Elementary calculations now show that if 

n < (25T ~~)li(~+“‘((s + t)/e”) lp-l)/(s+t) 

where e denotes the base for natural logarithms, then 

(, 5 J(” ; “) k(;)-s’+l < ,a 

as required. This proves the theorem. 1 

Note that for t >> s, (6) becomes essentially 

r(h ; k) > (t/e”) k” (6’) 

which is fairly close to the upper bound in Theorem 1. 

CONCLUDING REMARKS 

For a given graph G and integer n > ( G 1, define T(G; n) to be the least 
integer m such that if H is any graph on II vertices with m edges then H 
must contain a subgraph isomorphic to G. These numbers are known as 
the Turdn numbers for G. Clearly, if R(G;n) denotes the minimum number 
of colors necessary to color K, without forming a monochromatic G, 
then 

R(G; 4 > (;)/W; 4. (7) 
Since 

r(G; R(G; n) - 1) < n < r(G; R(G; n)) (8) 

then knowledge of T(G; n) can be used to deduce bounds on r(G; k). It 
was pointed out by Spencer [S] that in certain cases a simple probabilistic 
argument can be given which establishes upper bounds on R(G; n). In 
particular, if T(G; n) = o(n2), then we have 

R(G; n) = U((n2 log n)/T(G; n)). (9) 

For example, since it has been shown by Brown [l] that T(K3,3 ; n) = 
(n513/2)(1 + o(l)), then we can conclude 

r(K,,, ; k) > ck3/10g3 k (10) 

for some c > 0. Unfortunately, no very good bounds are currently known 
for T(K,,, ; n). 
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It can also be shown using results from the theory of cyclotomy that 

The details may be found in [5]. 
It does not seem unreasonable to conjecture that in general, for 

t>s>2, 
r(K,,, ; k) N (t - 1) k” $ o(k”). (19 

The authors take pleasure in acknowledging the valuable suggestions 
S. Wilf. 
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