On Multicolor Ramsey Numbers for Complete Bipartite Graphs

FAN R. K. CHUNG

University of Pennsylvania, Philadelphia, Pennsylvania 19104

AND

R. L. GRAHAM

Bell Laboratories, Murray Hill, New Jersey 07974

Communicated by W. T. Tutte

Received June 6, 1974

INTRODUCTION

It follows from a well-known theorem of Ramsey [7] that for any finite graph G and any positive integer k, there exists a least integer r(G; k) which has the following property.

Any k-coloring of the edges of the complete graph K_r on r edges always has a monochromatic subgraph isomorphic to G, provided only that $r \ge r(G; k)$.

Most work up to now has dealt with the case k=2. The reader is invited to read Burr [2] for an excellent survey of the current state of affairs on this subject. In this paper, we examine the case in which G is the complete bipartite graph $K_{s,t}$ and k is arbitrary.

Without loss of generality we may assume $s \le t$. For s = 1, the numbers $r(K_{1,t})$ are known exactly. They are given [3] by

$$r(K_{1,t}; k) = \begin{cases} k(t-1) + 1 & \text{if } k \equiv t \equiv 0 \pmod{2}, \\ k(t-1) + 2 & \text{otherwise.} \end{cases}$$

SOME UPPER BOUNDS

THEOREM 1.

$$r(K_{s,t};k) \leq (t-1)(k+k^{1/s})^s$$
 for $k>1$, $t \geq s \geq 2$.

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. *Proof.* We first obtain an upper bound on the number of edges e a graph G on n vertices may have if G contains no subgraph isomorphic to $K_{s,t}$. Let $M = (m_{ij})$ denote the adjacency matrix of G. Since $K_{s,t} \nsubseteq G$ then

$$\sum_{i=1}^{n} m_{i_1,j} \cdot m_{i_2,j} \cdots m_{i_s,j} \leqslant t - 1 \tag{1}$$

where $1 \le i_1 < \cdots < i_s \le n$. If c_j denotes $\sum_{i=1}^n m_{ij}$ then summing (1) over all choices of $i_1, ..., i_s$, we obtain

$$\sum_{j=1}^{n} c_j(c_j-1) \cdots (c_j-s+1) \leqslant (t-1) \, n(n-1) \cdots (n-s+1). \tag{2}$$

Since $f(x) = x(x-1) \cdots (x-s+1)$ is convex for x > s-1, then (2) implies

$$nf\left(\frac{1}{n}\sum_{i=1}^{n}c_{i}\right)\leqslant\left(t-1\right)f(n),$$

provided the argument of f exceeds s-1. Since $e=\frac{1}{2}\sum_{j=1}^{n}c_{j}$, we have in this case

$$n((2e/n) - (s-1))^s \le (t-1) n^s.$$
 (3)

Now, for an arbitrary fixed $n \ge (t-1)(k+k^{1/s})^s$, let the edges of K_n be k-colored. Thus, some color occurs on at least $(1/k)\binom{n}{2}$ edges. Let G denote the subgraph which has these edges. Since

$$k^{1/s}(k+k^{1/s})^{s-1} \geqslant k+1$$

then

$$(t-1)(k+k^{1/s})^{s}(1-k/(k+k^{1/s})) > k(s-1)+1$$

for $t \ge s \ge 2$. But because of the assumption on n, we have

$$n(1 - k((t-1)/n)^{1/s}) > k(s-1) + 1$$

i.e.,

$$n-1 > k(s-1 + n((t-1)/n)^{1/s}).$$

Thus, G has more than

$$\frac{1}{k} \binom{n}{2} > \frac{n}{2} \left(s - 1 + n \left(\frac{t - 1}{n} \right)^{1/s} \right)$$

edges. However, (3) can be rewritten as

$$e \leq (n/2)(s-1+n((t-1)/n)^{1/s})$$
 (3')

and this is also clearly valid in the case that

$$\frac{1}{4}\sum_{j=1}^n c_j \leqslant s-1.$$

Thus, by (3), G must contain a monochromatic copy of $K_{s,t}$. This proves the theorem.

A more careful argument can be used to prove the following somewhat stronger theorem.

THEOREM 1'.

$$r(K_{s,t};k) \le (t-1) k^{s}(1+e(k))^{s}$$
 for $k \ge 1, t \ge s \ge 2$

where
$$e(k) = k^{1-s}(s-1+k^{-1})(t-1)^{-1}$$
.

For the special case s = 2, a closer analysis along the same lines can be used to establish the following result.

THEOREM 2.

$$r(K_{2,t};k) \leq (t-1)k^2 + k + 2.$$

By a refinement of this argument for the case t = 2, one may obtain the following.

COROLLARY 1.

$$r(K_{2,2}; k) \leq k^2 + k + 1$$
 for $k > 1$.

As we shall see, this upper bound for the 4-cycle $K_{2,2}$ is fairly close to the known lower bound. The upper bound

$$r(K_{2,2}; k) < ck^2$$

for a suitable c > 0 had been previously obtained by Hajnal and Szemerédi (unpublished).

For the case s = t, Chvátal [6] has obtained the bound

$$r(K_{t,t};k) \leqslant 2tk^t$$

which differs asymptotically from our bound for this case by a factor of 2.

SOME LOWER BOUNDS

We begin with a bound on $r(K_{2,2}; k)$.

Theorem 3. For k-1 a prime power,

$$r(K_{2,2};k) > k^2 - k + 1.$$

Proof. Since k-1 is a prime power, then it is well known that there exists a simple difference set $D = \{d_1, ..., d_k\}$ modulo $(k^2 - k + 1)$. For each t, $1 \le t \le k$, form a cyclic (symmetric) matrix $B_t = (b_t(i, j))$ as follows:

$$b_t(i,j) = \begin{cases} 1 & \text{if } i+j+d_t \equiv d_s \pmod{k^2-k+1} & \text{for some } d_s \in D, \\ 0 & \text{otherwise.} \end{cases}$$
 (4)

Since D is a difference set, then it follows that for $i, j \in \mathbb{Z}_{k^2-k+1}$ (the integers modulo (k^2-k+1)), there exists a t such that $b_t(i,j)=1$. Furthermore, for each t, no two rows of B_t have a common pair of 1's.

We now form a k-colored K_{k^2-k+1} as follows. The vertices of K_{k^2-k+1} will be the elements of \mathbb{Z}_{k^2-k+1} . The color of the edge $\{i,j\}$ for $i,j\in\mathbb{Z}_{k^2-k+1}$ is defined to be the least integer t such that $b_t(i,j)=1$. By the preceding remark, no two rows of any B_t have a common pair of 1's and so, no monochromatic 4-cycle $K_{2,2}$ occurs in K_{k^2-k+1} . This shows that $r(K_{2,2};k)>k^2-k+1$ and the theorem is proved.

A somewhat similar technique, based on *n*-dimensional projective geometries over finite fields, can be used to prove the following result:

$$r(K_{2,k}n;k) = k^{n+2} + o(k^{n+2}).$$
 (5)

The details of the proof of (5) are a bit complicated and will not be given here (cf. [5]).

We remark that for two colors, it has been shown [4], [5] that

$$r(K_{2,t}; 2) \geqslant 4t - 2$$
, $4t - 3$ a prime power.

The best lower bound we know for the general case is given by a simple counting argument.

THEOREM 4.

$$r(K_{s,t};k) > (2\pi \sqrt{st})^{1/(s+t)}((s+t)/e^2) k^{(st-1)/(s+t)}.$$

Proof. Call a k-coloring of K_n bad if it contains a monochromatic $K_{s,t}$. It is easy to see that there are at most

$$\binom{n}{s+t}\binom{s+t}{s}k\cdot k^{\binom{n}{2}-st}$$

bad colorings. Hence, if this expression is less than the total number of k-colorings $k^{\binom{n}{2}}$ then we can deduce the inequality

$$r(K_{s,t};k) > n.$$

Elementary calculations now show that if

$$n \leq (2\pi \sqrt{st})^{1/(s+t)}((s+t)/e^2) k^{(st-1)/(s+t)}$$

where e denotes the base for natural logarithms, then

$$\binom{n}{s+t}\binom{s+t}{s}k^{\binom{n}{2}-st+1} < k^{\binom{n}{2}}$$

as required. This proves the theorem.

Note that for t >> s, (6) becomes essentially

$$r(K_{s,t};k) > (t/e^2) k^s$$
 (6')

which is fairly close to the upper bound in Theorem 1.

CONCLUDING REMARKS

For a given graph G and integer $n \ge |G|$, define T(G; n) to be the least integer m such that if H is any graph on n vertices with m edges then H must contain a subgraph isomorphic to G. These numbers are known as the $Tur\acute{a}n$ numbers for G. Clearly, if R(G;n) denotes the minimum number of colors necessary to color K_n without forming a monochromatic G, then

$$R(G; n) > \binom{n}{2} / T(G; n). \tag{7}$$

Since

$$r(G; R(G; n) - 1) \le n < r(G; R(G; n))$$
 (8)

then knowledge of T(G; n) can be used to deduce bounds on r(G; k). It was pointed out by Spencer [8] that in certain cases a simple probabilistic argument can be given which establishes *upper* bounds on R(G; n). In particular, if $T(G; n) = o(n^2)$, then we have

$$R(G; n) = O((n^2 \log n)/T(G; n)). \tag{9}$$

For example, since it has been shown by Brown [1] that $T(K_{3,3}; n) = (n^{5/3}/2)(1 + o(1))$, then we can conclude

$$r(K_{3,3};k) > ck^3/\log^3 k$$
 (10)

for some c > 0. Unfortunately, no very good bounds are currently known for $T(K_{r,s}; n)$.

It can also be shown using results from the theory of cyclotomy that

$$\lim_{t\to\infty} (1/t) \, r(K_{2,t}; k) = k^2.$$

The details may be found in [5].

It does not seem unreasonable to conjecture that in general, for $t \ge s \ge 2$,

$$r(K_{s,t};k) \sim (t-1) k^s + o(k^s).$$
 (11)

The authors take pleasure in acknowledging the valuable suggestions of H. S. Wilf.

REFERENCES

- W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966), 281-285.
- S. A. Burr, Generalized Ramsey theory for graphs—A survey, in "Graphs and Combinatorics" (R. Bari and F. Harary, Eds.), Springer-Verlag, Berlin, 1974.
- 3. S. A. Burr and J. A. Roberts, On Ramsey numbers for stars, *Utilitas Math.*, to appear.
- 4. S. A. Burr, personal communication.
- F. CHUNG, "Ramsey Numbers in Multi-Colors," Dissertation, University of Pennsylvania, 1974.
- V. CHVÁTAL AND F. HARARY, Generalized Ramsey theory for graphs. I. Diagonal numbers, Per. Math. Hungary 3 (1973), 115–124.
- F. P. RAMSEY, On a problem in formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
- 8. J. H. Spencer, personal communication.