CHAPTER FIVE

BOUNDS ON THE PERFORMANCE
OF SCHEDULING ALGORITHMS

R. L. GRAHAM
BELL LABORATORIES, MURRAY HILL, NEW JERSEY

In this chapter we investigate the worst-case behavior of a number of
scheduling algorithms for the general multiprocessor-with-resources
model, as well as numerous important special cases. The model and
notation are defined in Chapter 1. We begin in Section 5.1 by studying,
under the framework of list scheduling, the rather unpredictable depen-
dence of the schedule length @ on the various parameters of the problem,
even for the case of no additional resource constraints. In Sections 5.2
and 5.3 the performance of critical path scheduling is examined, and in
Section 5.4 bounds for the extended model including additional resource
constraints are derived. In Section 5.5 heuristics are covered for the
(bin-packing) problem of minimizing the number of processors to meet a
given deadline. Finally, in Section 5.6, bounds for a number of related
problems are presented. The complexity of the various problems studied
in this chapter has been analyzed in the preceding chapter.

5.1 MULTIPROCESSOR SCHEDULING ANOMALIES

We begin with an example that illustrates, using a single-task system, the
anomalies that can arise in varying any one of the parameters, including
the priority list.

Example 1 The graph G(<, 7) of a task system appears in Fig. 5.1a.
Holding the parameters fixed, we see in Figs. 5.2 through 5.5, the effects
of changing the priority list, increasing the number of processors,
reducing execution times, and weakening the precedence constraints,
respectively. The basis for comparison is the optimal schedule in Fig.
S.1b.

Note that in Figs. 5.3, 5.4, and 5.5, although we would intuitively expect
that the changes made would cause w to decrease, in fact, an increase in
o occurred.

165

166 Bounds on the Performance of Scheduling Algorithms

T,/3 T,/2 7372 T,/2
O O

G<, 1)

/9 T;/4 Tg/4 T,/4 T/4
(a)

T, Ty
D: T, T, Ts T,
77 _—
w =12
b)

Figure5.1 A task system and optimal schedule. (a) m =3, L = (T,, T, Ts, Ts, Ts, Ts, T5, Ts,
Ts). Figures 5.2 through 5.5 indicate effects of changes in L, m, 7, and <.

The next example shows that such an increase in @ is not necessarily
caused by a poor choice of the list L but in fact is inherent in the model
itself.

Example 2 Figure 5.6a shows a task system for which we assume m = 2
and the list as shown. An optimal schedule appears in Fig. 5.6b. Now
consider the same task system except for execution times given by the
new function ' = 7 — 1. We find that no matter what list is assumed for

\\

T T Ty

.

7
T, Ty T3 / /¢’2

w' =14

NN

Figure 5.2 Priority list changed: L becomes L’ = (T, T>, Ta, Ts, Te, Ts, To, T, To).

5.1 Multiprocessor Scheduling Anomalies 167

A /%///
| - T

Figure 5.3 Number of processors increased: m is changed to m' =4.

\\

the new system, we cannot obtain a schedule whose length is less than
that in Fig. 5.7.

We now derive a general bound on the relative effects on schedule
length of changes in one or more problem parameters. Suppose we are
given a set I of tasks, which we execute twice. The first time we use an
execution time function 7, a partial order <, a priority list L, and a system
composed of m identical processors. The second time we use a time
function 7’/ =, a partial order <’ C <, a priority list L’ and a system
composed of m’ identical processors. As usual, » and »' denote the
corresponding finishing times.

Theorem 5.1 [G1] Under the assumptions already stated, we have

w_’<l+m—1

Proof Consider the timing diagram D’ obtained by executing the tasks
T: of I using the primed parameters. Define a partition of [0, w') into two

o'Em =

w =13

Figure 5.4 Execution times reduced: = is changed to »' =7 — 1.

T,/3 T,/2 T,/2 T,/2

O O

T,/9 T4 T4 T4 T, /4
(a)

N

ST T ///ﬂ /////
i - 4@

w =16
(b)

\\\\\

Figure 5.5 Precedence constraints weakened: < is changed to <' = < —{(T., Ts), (Ts, To)}
(a) m =3, L =(T,, T,, T, Ts, Ts, Te, T7, T, T,).

T,/4 T,/2
G, 1) T, /2
Ty /5 7,/5 Tg/10
T,/10
(a)
7
T, T, T,
D:
T, | Ty T 1 7
w =19
(b)

Figure 5.6 A task systemand optimal schedule. (a)m =2, L =(T,, T;, Ts, Ts, T, Te, T5).
168

5.1 Multiprocessor Scheduling Anomalies 169

T, T /T, T,/T,

e = 78/

w =20

Figure 5.7 An optimal schedule assuming 7/ =7+ 1.

subsets A and B as follows:

A={t €[0, »")| all processors are busy at time t}
B=[0,0')— A

Note that A and B are both the unions of disjoint half-open intervals. Let
T;, denote a task that finishes in D’ at time w’ (i.e., such that f, =).
There are two possibilities.

1. If s;, the starting time of T, is an interior point of B, then by the
definition of B there is some processor P; which for some £ >0 is idle
during the time interval [s; —e&,s;). The only way this can happen,
however, is if for some task T, we have T,<'T; and f, = s,.

2. On the other hand, suppose s; is not an interior point of B.
Furthermore, suppose s;, # 0. Let x, = Lub.{x|x <s; and x € B}, or 0 if
the set is empty. By the construction of A and B, we see that x; € A, and
for some & >0, P; is idle during the time interval [x, — &, x,). But again,
this can occur only because of some task T, <’ T, which is being executed
during this time interval.

Thus we have seen that either there exists a task T, <' T;, so that
y € [fs., 5i,) implies y € A or we have x < s; implies either x € A or x <0.

We can repeat this procedure inductively, forming T}, T,,, . . . , until we
reach a task T;, for which x <s; implies either x € A or x < 0. Hence we
have shown the existence of a chain of tasks

T.<T, < - <T,<T, ey

such that in D’ at every time t € B, some T, is being executed. This
implies that

> @) =(m'—1) gl 7l)

@eED’

where the sum of the left-hand side is taken over all empty tasks @ in D’.
But by (1) and the hypothesis <’ C < we have

nr<Tir~1<"'<nz<nl (3)

170 Bounds on the Performance of Scheduling Algorithms

Therefore,
0= 2 Tix = T{ik (4)

Consequently, by (2) and (4), we have

o’ =%{2 i+ 3 @)

< +(m’' -
=7 (mow +(m’' — Do) &)
From this we obtain
o’ m—1
DI)]

and the theorem is proved. [

The following examples show not only that the bound of Theorem 5.1 is
best possible, but in fact it can be achieved (asymptotically) by varying
any one of the parameters.

Example 3 In this example L varies, < is empty, and m is arbitrary. The
task/execution times are given by

T1/1, Tz/l, ey Tm_lll, T,,,/m b 1, Tm+1/m - 1, ey szfz/m — 1, Tz,,,‘,/m

Figure 5.8 presents the first list to be used and the resulting schedule. The
second list and the resulting longer schedule are given in Fig. 5.9. As can
be seen,

Nnmne

m—1 T2m~2

T2m~1

W =m

Figure 5.8 An optimal schedule: L =(T\, T, ..., Tu_., To, Toirs ooy Tomos).

5.1 Multiprocessor Scheduling Anomalies

171
T T2m—1
7,77 %%
TS L2,
D'
/.
T2m72 ?/
T1IT21 s]1;n—1/ 9’
W' =2m—1
Figure 5.9 A bad schedule: L' = (T, Toery.. ., Tomezy Tiy Ts, ..., Ty, Tomos).

Example 4 In this example 7 decreases. Here, as in the remainder of the
chapter, ¢ denotes a suitably small positive number. A task system and
corresponding optimal schedule are illustrated in Fig. 5.10. Figure 5.11
shows the effect of the following change in execution times

, {1-.-—.9 for I1=si=m-1
T = .
T otherwise

T, ./ 2¢

Tn/28 Typp/m —1T,,, .2 /m —1 Ty, /m—1

Topsy/m — 1
T1 Tm+1 T2m+1 —%
T, | T Tom+2 7
Z
D: : . : % w=m+ 2¢
TZm—1 T3m—1
Tm sz T3m

Figure 5.10 An optimal schedule.

172 Bounds on the Performance of Scheduling Algorithms

T1 T2m+2 T2m . T2m +1 /
T, Tomss g g
V/ " A Vi
D
7
Tnot b Tsn g 0877
T, I T i1 LI l T 1 W / g// / /
w =2m—-1-¢

Figure 5.11 A bad schedule.

Inspecting the figures, we find

O _2m-lte o 1o
w m +2¢ m

Example 5 We weaken the precedence constraint < in this example.
Compare the task system and an optimal schedule (Fig. 5.12) with the
results when all the precedence constraints are removed (Fig. 5.13). From
the figures, we have

© :2m—1_)2__1_ as ¢£—0
m

w m+e

Example 6 Finally, we consider increases in the number of processors.
Suppose we are given the task system represented in Fig. 5.14a whose
optimal schedule on m processors appears in Fig. 5.14b. Now let m’ > m.
We obtain the longer schedule given in Fig. 5.14c. Forming the ratio of
schedule lengths, we obtain
m'+m—1+¢ m—1

w/
—= -1+
w m'+2¢ m'

as € -0

For the case m’ < m, a similar example exists, but we do not give it here.

The following example, due to M. Kaufman [K 1], shows that (6) can be
achieved by varying L, even if < is a forest and all 7. = 1.

Example 7 Consider the graph shown in Fig. 5.15a and suppose we have
unit execution times for all tasks. The optimal schedule and correspond-
ing list is shown in Fig. 5.15b. If we change the list to that given in Fig.

T /e Ta2_ oy oim
T, T2 _ g /1
(a)

Tm2 —2m+3 \

T1] T2 l Tm+l l i’
Tm2_m+2 Eﬂ T2 _omn

wW=m+ &

— Tm2—m +1

)

Figure 5.12 An optimal schedule. (a) L = (T, Ta ..., Tmr_mi2).

T2 _,,,7
T\ T | | 7
: Wﬂ 70,
Tm -1 /// ﬁ
T ik //AW//////////////////

W =

2m — 1

Figure 5.13 A bad schedule.

173

T, /€ T,/ T, /€ T, /e

G(<, 1)
Tnm —m' «mso/m Tonan/1 T, .31 Tom —m +mer /1

£ & 1 i Tnm: —m* +3

Tm+ | T, m+{ Tim+2 | L)
T, Tmm: —m* +2
L }f Tn+3 o e e <1 Tmm ~m+a

D: |.]. . .

Tn TZm hd . o —Tmm'~m'+ m+i

P 1 1 X_Tmm'—Zm'+m+2
\

Ty Tnsa ¢ .] Tmm’—m'+m+2
T? Tm+3 S e

v_"Tmm"2m'+2m+2

e I,

_Tm+m'+1 Q—‘—Tmm'—m'+m+1

X R U

W=m+m—1+¢&

Figure 5.14 Task system (a) for whose optimal schedule m varies (L) and (c).
174

OTn

G(<, 1)

5
S,
&sm

OTm— 1.1
OTu OTm—L?
OTm—L m
Ty m

(a)
Ty, Ty, - E
D

T 11 Tm—1,2 ot T, i m
S, S, o o e '
w=m

b)

Figure 5.15 A task system and optimal schedule. (a) L = (T, ..., Tm-10, S0, Ty o oo, Ty,
S, Tas ey Sm).

m—1, 1 s1 ¢t Sm

D' e e g
T m lTZ,m I ¢t w1 m
w =2m -1
Figure 5.16 A very bad schedule. L'=(Ty,, Ti,..., Tim .-
Sieeos Sw)

o Tocrnsenvs Toims

175

176 Bounds on the Performance of Scheduling Algorithms

5.16 we obtain the longer schedule shown. Evidently,

w’zz_i

w m

Finally, we give an example that again achieves the bound of 2 — 1/m
by varying L, this time with < empty and

max {7} -
min {'Ti} -

Whether the constant 4 is best possible here is not known. In any case, we
see that the occurrence of the worst possible behavior does not depend on
having tasks with widely disparate execution times.

Example 8 Let < be empty and suppose the maximum ratio of execution
times is no greater than 4. We consider three cases depending on
m(mod 4). For m =2r, let 7 =(14,..., Tam+1) be given by

(rrr+l,r+1,...,2r=2,2r-2,2r—1,2r—1,
3r—2,3r—2,3r—3,3r—3,...,2r—1,2r—1,4r)

Then, by using the corresponding list L = (T, ... » Tam+1), we obtain the
schedule shown in Fig. 5.17a. Since the optimal schedule is as shown in
Fig. 5.17b, when wo is m, we have,

L 1 1

wo Z 2t Tm

For m =4r + 1, let 7 be given by

Qr+1, 2r+1, 2r+1, 2r +1, 2r +3, 2r+3, 2r+3, 2r+3,...,4r—1,
4r—1, 4r—1, 4r—1, 4r, 6r—1, 6r—1, 6r—1, 6r—1, 6r —3, 6r —3,
6r—3,6r—3,...,4r+1, 4r+1, 4r +1, 4r, 8r+2)

In this case by using the list L = (T, ..., T2m+1) we obtain the schedule of
Fig. 5.18a whereas the optimal schedule is as shown in Fig. 5.18b. Again
we obtain

Wr_, 1 _, 1
wWo 4r+1 m

Finally, let m =4r +3 and let + be given by

(r+1,r+1,r+1,r+1,r+2,r+2,r+2,r+2,...,2r+1,2r+1,2r+],
3r+1,3r+1,3r+1,3r+],3r,3r,3r,3r,...,
2r+2,2r+2,2r+2,2r+2,2r+1,2r+1,2r+1,4r+3)

5.1 Multiprocessor Scheduling Anomalies

r 3r -2 4r
r 3r—2
r+1 3r -3
r+1 3r -3
D . ¢
2r — 2 2r
2r — 2 2r
2r — 1 2r — 1
2r — 1 2r — 1 &
w, =8r—2
r r+1 2r — 1
r r+1 2r — 1
2r 2r
2r — 1 2r + 1
2r — 1 2r + 1
D,
r +2 3r - 2
r+2 3r—2
4r
Wy = 4r

Figure 5.17 An extremal example for m =2r.

177

The schedule in Fig. 5.194a is produced with these parameters using the
list L =(T,,..., T2m+1). The optimal schedule is given in Fig. 5.19b and

shows that

178

Bounds on the Performance of Scheduling Algorithms

2 + 1 6r—1 7 8r + 2 7
2r + 1 6r—1 A, ZZ
2r + 1 6r—1
2 + 1 6r—1 Z
Z
7
. 2
D : g 7
7 Z
2
% 2
v
7
-1] 4 + 1
4r] 4r 77
(a)
2r + 1 2r + 1 4r
5 7
r + 1 2r + 1 4y
2r+ 3 6r — 1
2r + 3 6r — 1
2r + 3 6 — 1 %
2r+ 3 6r — 1 7
7
Dy . ,
‘ 2
L
4 — 1 I 4r + 3 7
4r+ 1 4r + 1 7
4r + 1 4r + 1
8r+2

N\

wo = 8r+ 2

(b)

5.2 BOUNDS FOR INDEPENDENT TASKS
AND NO ADDITIONAL RESOURCES

Figure 5.18 An extremal example for m =4r + 1.

In this section we examine the special case in which the partial order < is
empty and, as before, s =0 (i.e., there are no resource constraints). As
shown in Example 3, a poor choice of the list L can still result in the worst

5.2 Bounds for Independent Tasks and no Additional Resources 179
T+ 3r+1 4r + 3 4
y + 1 3+] . 77777777 7777777 7Y,
r+1 3+ 1 7
r+1 3r+ 1 7

r+2] 3r v 7
Dy 7 [/}
2 2
%
v
7
v
7
7
2r + 1 2r+ 1 %
1 1 VHI//I/II/ 777777777 7/
(a)
v+ 1 r+ 2r + 1 N
r+1 r+1 2r + 1 N
r+2 3r+1 N
r+ 2 3r+ 1
r+2 3r+1 N
r+2 3r +1 N
Dy r+3 | 3r N
\
N
N
2r + 1 2r+2 t
2r +1 2r+2 W
4 + 3 N

Figure 5.19 An extremal example for m = 4r +3.

Wy =4r+3

b)

possible finishing time w, that is, @ = (2 — 1/m)wo.. However, if a little care

is taken to prepare L, the bounds on @ can be improved considerably.

The first algorithm we consider for scheduling 9 is an example of a
critical path algorithm (see Chapter 1). In this case, we simply form L by
arranging the T; in order of decreasing 7. Denote the corresponding
finishing time by wce.’

180 Bounds on the Performance of Scheduling Algorithms

Theorem 5.2 [G2] If < is empty, then

wer _4 1

= —— 7
Furthermore, examples exist which achieve this bound.
Proof Assume J ={T,,..., T.} is a set of tasks with times = which

contradicts (7). Furthermore, we can assume that the T; have been labeled
so that 71 = 7, =+ - - = 7,.. The theorem clearly holds for m = 1. Hence we
can assume that m =2 and n is minimal.

We first observe that by the definition of wcp, the order in which the
tasks are executed corresponds precisely to using the list L =

(T, Ty, ..., T.). Suppose in the corresponding timing diagram D, there is
a task T, with r<n and f, = wce. If we consider the subset J' =
{Ti,..., T.} with the list L' = (T, ...,T.), we see that the execution time

o' for I’ using L’ is just wcp. On the other hand, the optimal value w} for
J’ certainly satisfies w4 = wo. Hence we have

’
w' _ wcr 4 1

wo wo 3 3m

so that J' forms a smaller counterexample to the theorem. However, this
contradicts the minimality of n. Thus we can assume that f, < wce for
k <n.

It is clear that

> ®)

13
m
Also, it follows that
n—1
T = MS, WL =Sy + Tu 9
i=1

where s, denotes the starting time of T,, since no processor is idle before
T. starts being executed. Therefore, we can write

9_,:__s,.+1',, _:._ 2
Wo Wo = Wo Wo i=
m -1, = m— D,
_(m =, | z BUES)
Mmawo Mwo i Mwo

Since (7) does not hold for J by hypothesis, we have

5.2 Bounds for Independent Tasks and no Additional Resources

14m - o 4 1
Mwo wo 3 3m
(m—l)'r..>1_ 1 m-1

Mmwo 3 3m 3m

Wo
Tn > =

3

181

(10)

Hence if (7) is false, in an optimal solution (with timing diagram D), no

processor can execute more than two tasks.

Suppose the configuration shown in Fig. 5.20 occurs in Do, where
T > 7, T > 79, If we interchange 7. and 7; to form the configuration
shown in Fig. 5.21, the (possibly) new finishing time o’ in D} certainly
satisfies @’ = wo. Also, if the configuration in Fig. 5.22 occurs, where
7 > 7, moving T from the processor executing T; to the processor
executing T; cannot increase the finishing time. Let us call either of the

two preceding operations a type I operation.

% 7

i 774
Figure 5.20 A portion of D,,.
| v V777

5 M7

Figure 5.21 D, is modified.

182 Bounds on the Performance of Scheduling Algorithms

W 7/

7/,

Figure 5.22 Another portion of D,.

By a type II operation on D, we mean changing any occurrence of an
“inversion” as illustrated in Fig. 5.23 to the “‘normalized” form in Fig.
5.24. Clearly, this operation does not affect w.

For any timing diagram D we define a function $(D) as follows: if =%
denotes the least time t such that for every time t’ = ¢, the processor P; is
idle in D, then

(D)= E 7% — 1%
I=i<j=m
It is not difficult to check:

1. If D’ is obtained from D by a type I operation, $(D') < ¥ (D).
2. If D' is obtained from D by a type Il operation, $(D') = F(D).

Now we start from D, and apply all possible type 1 and type II
operations until the resulting timing diagram D * has no internal configura-
tions to which either type of operation can be applied. That such a D*

. n Tz

Figure 5.23 An inversion in D, with 7, <7,

5.2 Bounds for Independent Tasks and no Additional Resources 183

D : T

o

V22227

Figure 5.24 Normalized form.

exists follows because (a) there are only a finite number of possible
arrangements of the n tasks on the m processors, (b) between any two
type 1 operations only a finite number of type II operations can be
performed, and (c) only a finite number of type 1 operations can be
performed because of condition 1. Hence in D* it follows that for any
configuration of the form shown in Fig. 5.25, we have

> implies 7 =7, n <7, and 7, > 7 an

Thus by a suitable rearrangement of the processors of D*, we can bring
D* into the form of Fig. 5.26, where

TkIZTkZE.) 'ZT‘(;

Ty = T = " =T,
and, by (11),

TH=ETy=-" =Ty

n | v YWz

D*: v 1 6 V77

" iz

Figure 5.25 After operations are performed.

184 Bounds on the Performance of Scheduling Algorithms

777
77
: 7/

=
N

)

I

T 27777
CEMNNN7 /%
w | 77z

% K % 7

Figure 5.26 Further normalization of D*.

But (11) also implies 7., =7, and 7, = 7;,. Hence combining these in-
equalities, we obtain

T Z BT, TR, 2T = =Ty (12)

Since none of the operations applied to D, causes an increase in wo, by the
optimality of w, the finishing time of D must also be wo. But D now looks
very much like the timing diagram D, obtained by using the decreasing-
length list L = (T, ..., T.) (up to relabeling the tasks of equal length). In
fact, the only way in which D, could differ from D is in the assignment of
the second-layer tasks Ti,. Specifically, a difference could occur only if
for some pair T,,, T, we have the situation represented in Fig. 5.27, where

B i 77/

Figure 5.27 D, differs from D,.

5.2 Bounds for Independent Tasks and no Additional Resources 185

Figure 5.28 An unstable D.

Ti t T =<, for r <k. In this case, in D, T;, with length 7, might be
assigned to P; instead of P.. However, if this situation were possible, we
would have in D the situation illustrated in Fig. 5.28. Hence it would be
possible to move T;; from P; to P, Also, since the finishing time is not
increased, it is still wo. But this is a contradiction, since we have an
optimal solution in which a processor has three tasks assigned to it. Hence
we conclude that D, and D are isomorphic (in the obvious sense) and
wo = wce. But this contradicts the hypothesis that wce/wo>4/3 —1/(3m);
hence (7) is proved.

To see that (7) is best possible, consider the following set of task
lengths:

(..., m)=Cm—-1,2m—-1,2m =-22m—-2,....m+1,m+1,m, m, m)
where n =2m + 1. That is,

k+1

'rk=2m—l >

J, 1=k =2m,and o1 =m

The corresponding timing diagrams for wce and wo appear in Fig. 5.29. As
can be seen, we have

o._4_ 1
wWo 3 3m
as asserted. @
The following result verifies one’s intuition in the following respect: as

the proportion of the total execution time required by any one task tends
to zero, the ratio w/wo tends to 1.

186 Bounds on the Performance of Scheduling Algorithms

7 Tam I T2m+s
Ty T2am—1 /////
T3 Tam -2 ////%

Tm— 1 Tm +2 /////////,
Tm Tm +1 ///////
wcp= 4m — 1
7 Tom—2 :///////
72 T2m-3 %
T2m:"1— l Tam] - Tam +1
wy = 3m

Figure 5.29 An extremal example.

Theorem 5.3 Suppose < is empty. Then we have

L1+ m -1 DT (13)
Wo T

Proof Let v* denote max; . Because of the rules under which the

system operates, no processor is idle before time @ — 7*. Since at least

one processor is busy for o units of time, we see that
2n=w+(m—1)e—1%

Thus we have

wozml(w +(m - 1w —1%)

5.2 Bounds for Independent Tasks and no Additional Resources 187

that is, .
Q1+ =D m -
Wo m Wo

max 7;

Ti
i

and the theorem is proved. @

The next result helps quantify the tradeoff between the cost of
computing “‘partially”” optimal schedules and the corresponding decreases
in the ratio w/wo.

Theorem 5.4 [G2] Assume < is empty and L, is a list of the k tasks T;
having largest 7, 1 =i =< k, which is optimal for this set of k tasks. Form a
list L (k) by adjoining the remaining tasks arbitrarily and let w(k) denote
the finishing time using L (k). Then we have

_1
w(k)sl+

~ T
m

This is best possible if k =0(mod m).

(14)

Proof If w(k)= wk, the finishing time using L (k), then w(k) = wo and
the theorem holds. Therefore, we can assume w(k)> w:. Also, we can
assume n > k. Let 7* denote maxi+i=j=-{7}. As in the proof of the
preceding theorem, when using the list L (k) no processor can be idle
before time w(k)— v*. Hence

2 zm(wk)—7¥)+1*
and
m-—1

=w(k)— (——) T*

m

There are at least k + 1 tasks having length =7*. Thus some processor
must execute at least 1+ |k/m| of these “long” tasks. This implies

(1) -
m
Combining the preceding inequalities, we obtain

1__
m

1+—[%—J

)T*Swo 1+

and (14) is proved.

188 Bounds on the Performance of Scheduling Algorithms

To see that (14) is best possible when k =0(mod m), consider the
following example.

Example 9 Define = for l=i<=k+1+m(m—1) by

_(m for l=i=k+1
T“{l for k+2=<i=sk+l+m@m-1

For this set of task lengths and the list
L(k) = (Tl, cees Tk, Tk+2, ceey Tk+]+m(m—l), Tk+|)
we have w(k)=k +2m —1. Since wo= k + m, then

o) _k+2m—1_ 1-1/m

since k =0(mod m)

and the bound in (14) is achieved. This proves Theorem 5.4. @

For k sufficiently large, we will thus have a better bound on w (k) than
we have in (7) on wce. However, finding an optimal list for the largest k
tasks may itself be a hard problem when k is large. One might instead try
to work from a near-optimal priority list for the largest k tasks.

If L% denotes a list formed from the k largest = such that for some
a =0 we have

-ai‘ =l+a

Wo
and L’'(k) is formed from L by adjoining the remaining tasks, the
preceding arguments can be used to prove the following generalization of

Theorem 5.4.

Theorem 5.4 For L defined as previously,

w'(k)

Wo

m-—1
=1 +,max (a, m) (15)

A more specific application of finding near optimal priority lists for the
largest 7: is given in [J3]. Here a guess w4 is made as to the value of wo,
and a partial schedule is constructed as follows: order the tasks by
nonincreasing values of 7. Assign the first (largest) task to be the first task
executed on the first processor. In general, assign the i™ task to be the
next task executed on the lowest indexed processor to which it can be
added without violating the deadline wi. If it cannot be added to any
processor without violating the deadline, halt. Let L, be the list of tasks
assigned when the above procedure halts and L, the remaining portion of

5.2 Bounds for Independent Tasks and no Additional Resources 189

the list. Let L} be a permutation of L, which as a priority list will generate
the same schedule as constructed above, and let L’ be the list obtained
from L1i by appending L., to it. The following result has been proved.

Theorem [J3] For L' and ws defined as above, wi= wo implies

wL _5
padodir gt
!
wo 4

This does not directly give us a bound on w.-/w.. However, the closer
our guess wq' is to we, the better the ratio w.-/w, will be. Moreover, one
can use repeated applications of the algorithm to obtain better guesses,
using binary search techniques. If L’(j) is the list obtained by the j©
iteration, we have the following resulit.

Theorem [J3]

Wr i) § 1
o S4(”2"“)

This bound will be better than that given in (7) for wce if m = 5and j = 8.

One might remark, however, that critical path scheduling for indepen-
dent tasks (i.e. < is empty) can itself obey bounds better than (7), if
different measures of performance are used. In particular, a natural
alternative that has been considered (see [CW)) is w *(L), which is defined
for a list L by

n

w*(L)=> w(L)
i=1
where w:i (L) denotes the time at which processor P; finishes using the list
L. This performance measure has arisen in a study of partitioning
information on secondary storage with the aim of minimizing access
times. The following result has been proved.

Theorem [CW]

wé 25
wé 24
On the other hand, examples exist {CW] for which
wee 37 1
o¥ 36 36m
The complexity of the proof prohibits us from including it here.

In another secondary storage problem, a similar performance measure
was considered; in particular, the function (m — 2)/2 + (m /2)w* was to be

190) Bounds on the Performance of Scheduling Algorithms

minimized. It has been shown that in this case [CC]

m—2)im +wt ~ T T6tm =1

which again illustrates the increased effectiveness of CP assignments
when the “second moment” measure is involved.

Finally, CP sequencing has also been specialized to the problem of
obtaining reasonably “‘short” schedules that guarantee minimum mean
flow time (see Chapter 3). In particular, suppose independent tasks are
assigned as follows. The m smallest (rank 1) tasks are assigned first, one
to a processor. The next m smallest (rank 2) tasks are then assigned, one
to a processor and largest-task-first to the finishing times of the rank-1
tasks. This process continues with subsequent ranks until all tasks are
assigned and each processor has a task from each rank (we assume that n
is a multiple of m). With the largest-first (CP) criterion, one can show
[CS] that

w_ép<5m—4
wo 4m -3

is an optimal bound, where the prime signifies the restriction to schedules
in the class of mean-flow-time-minimizing schedules.

5.3 REMARKS ON CRITICAL PATH SCHEDULING

As Example 7 shows, even if < is a tree and all 7. = 1, it is still possible to
have w./wo =2~ (1/m) for a suitably bad list L. If critical path scheduling
is used in this case, it is known (see Chapter 2) that wce = wo. The
following example, due to G. S. Graham [Gr], shows that if the = are
allowed to be arbitrary, even though < is a tree, the ratio wcp/wo can still
be very close to 2.

Example 9 Consider the tree and the critical path schedule illustrated in
Figs. 5.30a and b, respectively. An optimal list can produce the schedule
shown in Fig. 5.31. These diagrams show that

w= 2m+€
wo (Mm+D{1+¢€)

which approaches 2 —2/(m + 1) as ¢ - 0. Conceivably, this is the asymp-
totic worst-case behavior of wcr in the case that < is a tree.
M. Kaufman [K2] has shown that if < is a tree,
OL <+ (m —1) DT
Wo
Sn

5.3 Remarks on Critical Path Scheduling 191

T,/m T,/m Tpy/m T/l Tpa/l

Tymer /1

Tdm—2/8 T4m—| /1
Tam/€
(a)
Tomst ‘szm Tam-1 Tym
Tmle+21 ITZM | L\ R AR
7 -1
T, €687
Dcp g
Tm—1

We g~ 2m +¢€

(&)

Figure 5.30 (a) Tree. (b) Critical path schedule.

which is analogous to the bound of Theorem 5.3 for < empty and L
arbitrary.

However, for general partial orders < and arbitrary 7, critical path
scheduling can result in the worst possible schedules, as the following
example shows.

192 Bounds on the Performance of Scheduling Algorithms

(m+ 1)E
——
T TZm+1IT2m+3| vt IT-'M—‘””I /
Tm+2 T1
Tm +3 T2
Dy
TZm Tm—1

Wy =(m+ 1)1 +¢)

Figure 5.31 An optimal schedule.

Example 10 Suppose we have the graph shown in Fig. 5.32a. When
executed by the critical path algorithm, we obtain the schedule in Fig.
5.32b. An optimal list is given by

L :(81,...,8"., U[,..., Um,Tl,...,Tm)
with the corresponding schedule given in Fig. 5.33. Evidently,

&=——2m—1_28—>2—i as £—0
wWo m

which, as we have seen, is as bad as the poorest performance any list can
ever give. Note that this example also shows the algorithm that selects for
the next task to execute that available task T which has the greatest sum
2r<r; 7 also can have a finishing time & with @/w, arbitrarily close to
2-(1/m).

If we allow < to be arbitrary but now restrict all the = to be 1 then it is
known [CLi}] that the worst-case behavior of critical path scheduling is
given by

1
—=2- -mT m=3 (16)
Also examples can be given [CLi] which show that this bound is best

possible. We give such an example for m = 3.

Example 11 Let all 7, = | for the graph shown in Fig. 5.34a. One possible
list resulting from critical path scheduling (in which the worst possible
choices are made for breaking ties) is L =(T,, T, Ts,..., T::). The

5.3 Remarks on Critical Path Scheduling 193

& /e T,/m —1—¢ Tp/m — 1 — € £,/ EnlE

o - O O --- 0

Un/1

y/m —1— ¢

(a)

| U, I ... IU’"—1
il '
(m — 1)¢
Dep :
7
Tn Z

Wep= 2m—1 - 2¢

b)

Figure 5.32 A graph and critical path schedule.

corresponding schedule is shown in Fig. 5.34bh. An optimal schedule is
shown in Fig. 5.34¢ which corresponds to the list Lo = (T4, Ts, Ty, T2, Ts,
Ts, Ts, T+, Ts, Tio, Tu, T12). From the two schedules we find

a)cp_3

wWo 2

which is just the bound of (16) for m =3.

Finally, we give a surprising example indicating that even when all
7. = 1, there may be no list L that is optimal for executing J with both
m=2and m =3.

194 Bounds on the Performance of Scheduling Algorithms

&l U, T, V
T

én| Unm Tn z

Wy =m

Figure 5.33 An optimal schedule.

Example 12 Consider the graph of Fig. 5.35, in which we suppose all 7; to
be 1. In any optimal list for m =2, T, must precede some T, 1 <i <6. In
any optimal list for m =3, all T, 1 =i <6 must precede T!

5.4 SCHEDULING WITH MANY RESOURCES

We next examine the general case in which s, the number of resources, is
nonzero. We recall that &® ={R,, ..., R,} denotes the set of resources,
Ri(T;) denotes the amount of resource R; required by task T; at all times
during its execution, and for a fixed schedule, r:(¢) denotes the total usage
of resource R: at time t. As might be expected, by allowing s to be
nonzero, the ratio of w/wo can be much larger than before. We see this
most clearly in the following result and example.

Theorem 5.5 [GG1}] For s =1, L, <, 7, m arbitrary, we have

—=m a7n

Wo
Proof The proof of (17) is immediate. We need only observe that
w = 2 T = Mwo
i=1

since at no time before time w are all processors idle when using list L,
and the number of processors busy at any time never exceeds m. @

To see that (17) is best possible, consider the following example.

S,J% \$ Ty To Tnm

(a)
Ty S Ty %52 I Sm
Ty, Ty
Dcp : g : % g g
Tm1 V Tm2
Wep = 2m
(b)
s, T1,,,,T2'm_1 .o T 1
Ty | S | Thm st Tm, 2
T | Ta| S te T, 3

&m—! T2,m—2 Sm Tmm‘%

Figure 5.34 Conjectured worst case for CP scheduling.

195

196

A

/A\“}o

| SSvy @;
// 7 GN ¢
s

G(<,)

Figure 5.35 List scheduling example.

5.4 Scheduling with Many Resources 197
Example 13 Let § ={T,,..., T, Ti,..., Th}, and let
s=1, Rl(Ti)=%, R(TH=1,1=i=m

=1, ?i=e>0
Let < be defined by T: < T: for 1 =i < m. For the lists
L=(T,....,TwTi...,T})
L' =(Ty,...,TnT,...,Ta)
we have, respectively, Figs. 5.36 and 5.37. Thus from the figures we have

W _m+me
w' 1+ me

as ¢—0

A more interesting bound is given by the following theorem.

Theorem 5.6 [GG2] If < is empty, m =n, s, L, 7 arbitrary, then

2ss+1
wWo

Proof The proof requires several preliminary results.

Let G denote a graph with vertex set V= V(G) and edge set
E = E(G). By a valid labeling A of G, we mean a function A : V — [0, «)
satisfying

AMa)+Aa(b)=1 forall e ={a,b}€EE (18)
7
D T1 Tz’ Tm
T, T, Tn
) 1 € 1 & 1

w=m+ me¢

Figure 5.36 A bad schedule.

198 Bounds on the Performance of Scheduling Algorithms

T,

In

w =1+ me

Figure 5.37 An optimal schedule.
Define the score of G, denoted by 7*(G), by

T*G)=inf >, A(v)

A vEV
where the inf is taken over all valid labelings A of G.

Lemma 5.1 For any graph G, there exists a valid labeling A : V — {0,3, 1}
such that

T*G) = EV)\(U)
Proof For the case that G is a bipartite graph (i.e., G has no odd cycles),
a well-known theorem of Konig states that the number of edges in a
maximum matching equals the cardinality of the minimum set of vertices
of G incident to every edge of G. Thus for any bipartite graph G, there
exists a valid labeling A : V — {0, 1} such that

T*G) = ZV)\(v)

For an arbitrary graph G, we construct a bipartite graph Gz as follows:
for each vertex v € V(G) we form two vertices v, v, € V(Gs); for each
edge {u, v} € E(G) we form two edges {u,, v}, {u2, v.} € E(Gs). It is not
difficult to verify that +*(Gs)=27*G) and furthermore, if
As: V(Gs)— {0, 1} is a valid labeling of Gs, then A : V(G)— {0,1, 1} by
A(v) =2(A(v1) + A(v2)) is a valid labeling of G. ®

For positive integers k and s, let G(k, s) denote the graph with vertex
set {0,1,...,(s + Dk — 1} and edge set consisting of all pairs {a, b} for
which |a —b|=k.

5.4 Scheduling with Many Resources 199

Lemma 5.2 Suppose G(k, s) is partitioned into s spanning subgraphs H;,
1=i=s. Then we have

max {*(H)} =k (19)
I=i=gs
Proof Assume the lemma is false i.e., there exists a partition of G(k, s)
into H,, 1 =i =<, such that 7*(H,) <k for 1 <i{ = 5. Thus by Lemma 5.1,
for each i there exists a valid labeling A : V(H;) — {0,3, 1} such that
> nw)=THH)<k (20)
vEV(H;)
Let A={a,<- - <aqg,|h(g)=<3 for all i, 1=i=s} and let # denote
2:-1 T*(H.‘).
There are three cases.

1. p =k. In this case we have
Tzk(s+1)—p=k(s+1)—k =ks

which contradicts (20).
2. k<p <2k +1. For each edge {a;, a;«}, 1=j <p —k, there must
exist an i such that Ai(a;) + Ai(aj-) = 1. Thus

F=k(s+1)—p+(p—k)=ks

again contradicting (20).

3. p =2k + 1. We first note that for each vertex v € V(G (k, s)), there
exists an i such that \:(v) =3. For suppose A;(v) =0 for 1 =i < 5. There
must be some a; such that |a; —v|=k. But since \(a;)=3 for all i,
Ai(a)+ Ai(v) <3 for all i, which is a contradiction.

For each i, let n; denote the number of vertices v such that A;(v) = 1.
Then we have

Ko@) >0} <=2k —1—-n

since otherwise we would have

M@ =n o1+ @k —2n) 2=k

vEV(H;) 2

which contradicts (20). Therefore,
> Holh@)>0l =Rk —1Ds - n 03}
i=1 i=1

Let g denote the number of vertices v such that there is exactly one i for
which Ai(v)>0. Then we have

é:l\{‘v|/\i(v)>0}|22(k(s+1)—q)+q (22)

200 Bounds on the Performance of Scheduling Algorithms
Combining (21) and (22) we obtain
q=2k+s+2 n (23)
i=1

Of course we can assume without loss of generality that if A;(v) =1, then
Ai(v) =0 for all j# i. Hence by the definition of n;, there must be at least
2k + s vertices, say, b; <: -+ < ba.s, such that

> Mb) =1

i=1
that is, for each b; there is a unique A; such that A;(b;) =3 and A(b;) =0
for all I#i Thus if |b; — b=k, for some i, Ax:(b;) = A:(b,) =%. Since
Ib1 — baks| = k, there exists io such that A,(b1) = Ay(bz+s) =32. But by the
same reasoning we must also have Ay(bis;) = Ay(b1) =3 and Ay(Pawss) =
Ao(b;) =13 for 1 =j =<k +s. Therefore,

T*(H;,) = Z Ao(v)=(2k +5) -%2 k

v € ViHy)
which is a contradiction. This completes the proof of Lemma 5.2. [

Recall that when J is executed using a fixed list L, s; denotes the time
at which T; starts to be executed. Because of the way the system is
defined, each s; is a sum of a subset of the 7;’s.

We can assume without loss of generality that w, = 1. Assume now that
o > s + 1. Furthermore, suppose that for some k, each 7. can be written as
7 = li/k, where I; is a positive integer. Thus ; <k, since = < wo = 1. Also,
for 1 =i =s, each ri(t) is constant on each interval [I/m, (I + 1)/m), this
value being r.(I/m). It is important to note that since < is empty and
m = n, then for t,, . €[0, w) with t,—t, =1, we must have

max {ri(tl) + ri(tZ)} >1
1=<i=gs
Otherwise, any task being executed at time ¢, should have been executed

at time t, or sooner. Thus for each i, 1 =i < s, we can define a graph H, as
follows:

V(H)=1{0,1,...,(s + 1Dk -1}

{a, b} is an edge of H, iff

n (f) +r (%) >1 4)

Note that if ja — b| =k, then {a, b} is an edge of at least one H;. Hence it is

5.4 Scheduling with Many Resources 201
not difficult to see that

Gk,s)C U H;
I=i=s
Note that by (24), the mapping A;: V(H:) — [0, =) defined by A(a)=
ri(a/k) is a valid labeling of H.. Since G C G’ implies 7*(G) < t*(G') and
the condition on the r: in (24) is a strict inequality, it follows by Lemma
5.2 that

) B R S

But we must have

1(s+1)k—l l w
E z) ri(E>SJ;] rt)dt=1, l=si=<s

that is,

(s+1)k—-1 l
> r.-(—)sk, l<i=<s
=0 k
Since this is a contradiction, Theorem 5.6 is proved in the case that
7 = I /k for positive integers k and l. Of course it follows immediately
that Theorem 5.6 holds when all the 7 are rational. The proof of the
theorem can be completed by establishing the following lemma.

Lemma 5.3 Lett =(7,...,7.) be a sequence of positive real numbers.
Then for any e >0, there exists 7' = (71,..., T4 such that:
L |ri—-ml<e for 1=i=<n

2. Forall A,BC{l,...,n},
D=2 T iff D Tus= Th
aEA bEB acA bEB

3. All 7} are positive rational numbers.

Remark The importance of condition 2 is that it guarantees that the
order of execution of the T; using the list L is the same for 7 and 7. Thus
if L is used to execute J, once using execution times 7; and once using
execution times 7', the corresponding finishing times w and o’ satisfy

lw —@'|=ne

Hence if there were an example J with w/we>s + 1 and some of the =
irrational, we could construct another example J* by slightly changing

202 Bounds on the Performance of Scheduling Algorithms

the 7. to rational 7!, permitting the corresponding new finishing w* and
w* to satisfy

lo —w*=ne, |o'—o*|<ne

and, therefore, if ¢ is sufficiently small, we still have o*/w* >s + 1.
However, this would contradict what has already been proved.

Lemma 5.3 is implied by the following slightly more general result. The
proof here is due to V. Chvatal [C].

Lemma 5.3 Let & denote a finite system of inequalities of the form
2 axXi=a, Oof > aXi >do
i=1 i=1
where the a. are rational. If & has a real solution (x1,..., xn), then for
any ¢ >0, & has a rational solution (x, ..., x1) with |x: — x| < e forall i.

Proof We proceed by induction on n. For n = 1 the result is immediate.
Now, let ¥ be a system of inequalities in n >1 variables, which is
solvable in real numbers. & splits naturally into two classes: %, the
subset of inequalities involving x., and &, the remaining inequalities of &.
Each inequality in ¥, can be written in one of the following four ways:

n—1

a. oo+ z iXi = Xp

i=1

n—1

b. Qo+ 2 axi < X,
i=1
n—1

¢ Bot Z Bixi = xn
i=1

n—i
d. Bo+ Z Bix; > x.,
i=1

For each pair of inequalities, one of type a and one of type ¢, we consider
the inequality

n—1 n—1
€. aot 2 X = Bo+ Z Bixi
i=1 i=1

Similarly, the pairs of types {a, d}, {b, ¢}, and {b, d} give rise to ine-
qualities

f. ao+ NZ_ ax; < fBo+ ';S;l Bixi

Let #* be the set of all inequalities of types e and f we obtain from .
Since by hypothesis, ¥ = %, U %, has a real solution (X1,-..,X,), then

54 Scheduling with Many Resources 203

FoU F* has the real solution (x4, ..., x.—;). But ¥, U $* involves only
n —1 variables, so that by the induction hypothesis, $otU ¥* has a
rational solution (x1,..., x 1) with |x; — x| < &’ for all i and any preas-
signed ¢’ > 0. Substituting the x} into a, b, ¢, and d, we obtain a set of
inequalities

g ' =Xn b'<xp, ' =x, d>x.

where a’, b’, ¢’, and d’ are rational. Since the x; satisfy inequalities e and
f,wehave a’'=c', b’ <c’, a’'<d’, b’'<d’'. Thus for any £ >0, if £’ is
chosen to be suitably small, there is a rational x| satisfying g and with
|xa — x 1| < &, completing the proof of Lemma 5.3'. This proves Lemma 5.3
and Theorem 5.6. @]

The following example shows that the bound in the preceding theorem
cannot be improved.

Example 14 Let 7 ={T\, T, ..., Tot,, T3, T3, ..., T'~},
m = s(N + 1)+ 1=n, and suppose < is empty. Define

1

=1, I=si=s+1, T’.~=ﬁ,

1=i=sN

1

R(TH)=1-+, R(T)) = j# i, I=i=<s

1
Sn’
Ri(T,-)=%, 1=j=5sN, Il<i=<s
L=(T,Ty,..., TN, T oy Theryo..,Tin, Ts, ...,
Tk+1, TLN+1, T;(N+2, ey T(’k+1)N, Tk+2, s e ey T’SN; Ts+1)
L'=(T},T..., T, T, T2, ..., To1)

It is easily checked that for this example

w=s+l, o'=lty

Thus @ /w’ and consequently w/w, are both arbitrarily close to s + 1 for N
sufficiently large.

The last result in this section shows exactly the effect a processor
constraint can have on the ratio o/wo (i.e., we do not assume m =n).

Theorem 5.7 [GG2] For < empty, m =2, s, L, 7 arbitrary, we have

{mz-i-l, s+2_2s+1}

w .
— =< min
Wo

(25)

204 Bounds on the Performance of Scheduling Algorithms

Proof The proof consists of two main lemmas, each of which gives a
bound on w/wo. that is best possible for certain values of s and m. If X isa
finite union of disjoint intervals in [0, w), we let u.(X) denote the sum of
the lengths of these intervals.

Lemma 5.4 If < is empty and s, L, 7, m arbitrary, we have

o _m+1

wo | 2
Proof Let I ={t ||f(t)|=1}, where we recall that f(t) is defined to be

that subset of tasks T; which are being executed at time t (where we have
a fixed list L under consideration). We first show

w() = wo (26)
Consider the set T of tasks defined by

T=Uf@®)

For any pair of tasks T, T;, belonging to T, there must exist some k,
1=k =s, such that

R(T)+Ru(T))>1

since otherwise, one of those tasks should have been started earlier (unless
m =1, in which case the lemma is trivial). But this implies that in the
optimal schedule no two members of T can be executed simultaneously.
Therefore we have
wo= > 7 =p(l)
T,ET
which proves (26).
To complete the proof of Lemma 5.4, observe that at least two
processors must be active at all times t € I = [0, w) — . Thus,
mwOZZ Ti ZZM(T)+#(I)
i=1
=20 —p()
=2w — wo
and so
m+Dwe=20 @&

Lemma 5.5 If < is empty, m =3 and s, L, 7 arbitrary, then

w
—=gs5+2
wo

_25+1

27

5.4 Scheduling with Many Resources 205

Proof Suppose we have a counterexample to the lemma. By Lemma 5.3
we can assume all the 7, are rational; that is, there exists a positive integer
k such that for each i, 1 =i < n, there exists an integer I satisfying
7 = l;/k. Without loss of generality we can also assume that wo = 1. Thus
w>85+2—2s+1)/m and each |, satisfies 1 =1, =k.

Consider the operation of the system using the list L. As before, let
I={t€0,w)||fMO|=1}, I'={t€l0,w)]||f(t))=n} and let =
{0, w)— 1 By the proof of Lemma 5.4, u(I)=<1. Since at least two
processors are active at each time t € I,

mz2nzmeupd)+pd)+2o —pd)-pd))
=(m—-DuI)+22w—1

or
w_m+1—-2w
pd)= m_2 (28)
Since w > 5 +2—2s + 1)/m, we have

pd)=w—-pnd)

_m+1—-2w
- m-—2
m+1—2(s +2—M>
2s +1 m
>§+2- -
m m-—2
=s+1 29)

Now, observe that for any t,,t. € I satisfying t,—t, =1, there must
exist an i, 1 <i = s, such that

ri(t)+ri(tz)>1 (30

Otherwise, some task being executed at time t, should have been started
at time t, or sooner. Recalling that I is a collection of intervals, each
having the form [l/k, (I + 1)/k) for some integer L, let ap< a:<--- < a, be

integers such that
- (2 0=+

Notice that (29) implies that p =(s +1)k. For each i, 1=<i=<s, we
construct a graph H; as follows:

VH)=1{0,1,2,...,(s + Dk —1}

206 Bounds on the Performance of Scheduling Algorithms

{u, v} is an edge of H; iff

a. {a,
(%) (%)>1
Note that [u —v|=k implies |a. — a,| =k, which, by (30), implies that
{u, v} is an edge of at least one H, 1 =i =gs. Hence it is not difficult to see

that G(k, s) C U, H.. The same reasoning used in the proof of Theorem 5.6
can now serve to show that for some i, 1 =i <3,

f r(t)dt >1

o

which contradicts the assumption that wo = 1. This completes the proof of
Lemma 5.5. Theorem 5.7 follows by combining Lemmas 5.4and 5.5. ®

We now give examples to show that the bound given in the preceding
theorem is best possible. These examples are slightly more complicated
than those previously presented. We leave the verification of the asserted
values of w and w' to the reader.

Example 15 We consider three cases.

(i) 2=m=s5+1, where 7 ={T,, T\, Ts,..., Tot, T, Th, ..., Thol,

< is empty, s arbitrary, and

To=1, =T == I=sj=m-1

Ri(To)=ﬁ, l<i=s

R.~(T:)=Ri(T'z)=%, lsi=m-1

R()=R(T)=5, i%j, l=iss, l=j=m-1

L = (Tl, ;a TZ’ Té, LECECIEY Tm—ly Tr’n—l, TO)

L'=(To, T, Ts,...,Tet, T\, Ty ..., Tihd)
Then

w=w' =1

(i) s+1<m=2s +1. For a suitably small £ >0 and an arbitrary
positive integer k, define & = e(m — 1), 1 =i < 2k.

?/'={T.,}U{1}_,-|lsism—l,lsjsk}U{T’.-,,-Ilsism—1,lsjsk}

5.4 Scheduling with Many Resources 207
Also, < is empty, s arbitrary, and

To=2k, 1y =1); =1, I=si=m-1,1=j=k

R(To)=e,1<i=gs

R(Ti)=1-(m - ey, 1=<iss 1sj=<k

R(T.;) = €34, I#i1l=sl=s,1=si=m-1,1=jsk
Ri(Tiwij) =1—(m — Dey, l=sism-s—-1,1<j=<k
R(Ti;) = €, I#i-s,1=sl=<s, 1<si=sm-1,1=sj=<k
L =(A, Ay, .., AL AL AS, ..., Ay, Ag)

where

Ai=(Bi,Bsi,...,Bsi), 1=i=sk
B..=(T,, Tj;), l1=i=kl=j=<s
Ai=(B1,Bsy...,Brii), 1=i=k-1

Bi =(Tio Tovjiv), 1=i=sk-1,1=j=m-1

Ao = (To, Ts+l,l, Ts+2.1, ceey Tm—l,ly T;+l,k, T’s+2,k, ceey Tr’n-l,k)
L, =(C0’ Cl, ;9 C2’ C’Z,--'9Ck, C‘()

where

Co=(To)

C.-=(T1,i, T2,i,---sTm—l,i)7 l=i=<k
Ci=(TiuThy....Thi), 1<isk

Then
o=k(m+1)—(m—-s—1)
"= wo=2k
and
_al_m+1__(m—s-—1)_>m+1 as k — oo
wo 2 2k 2

(iii) m >2s + 1. For a suitably small £ >0 and an arbitrary positive
integer k', let k =k'm and define i =e(m —1)'"*, l<i<k.

T ={TU{T.;:1=i=m—-1,1=j=<k}

< is empty, s arbitrary

208 Bounds on the Performance of Scheduling Algorithms

To =Kk, T =1, l=i=m-1,1=sj=<k

Ri(To) = ¢4, l=i=<s

Ri(T.;)=1—(m — Dg, Isi<s 1l=sj=k
R(T.)=¢, I#£il=sl=ssl=si=m-1,1=sj=<k
L=(A,A,...,An2-1,B,Bs...,B,,C)

where
Ai=(Tai1; Taswizy o v o5 Tosvin), l=si=m-2s—1
Bi=(Ty1, Tsviz, Ti2, Teviay o -« 5 Toie—1, Toui k), l<i<g
C=(To, Tsc1.t, Tssz1s- - » Tast, Tioky Tarty - ., Torkl)
L' =(To, D1, D,,...,D)
where

Di=(T.i, Taiy..., Tu-r,1), l=i=<k
Then we have
w=(s+2)k'm —Q2s+1Dk'—s
"=wo=k'm
and

£=s+2_2s+1_ ’s _)s+2_2s+1
o m k'm

as k'—> o @

5.5 BIN PACKING

In this sectiont we deal with the very important special case s = 1, < is
empty, all & =1, and m = n. This has become known as the “‘bin-packing”
problem in the literature for the obvious reason that the scheduling
problem in this case is equivalent to the problem of ‘“‘packing” the
sequence of “‘weights” (R.(T)), R(T:),...,R:«(T,)) into a minimum
number of “bins” (i.e., unit time slots) of unit capacity (i.e., maximum
resource usage is 1) so that no bin contains a total weight exceeding one.
As in Chapter 1 we note that the preceding is a complementary
statement of the problem of minimizing the number of processors
required to meet a given deadline @ common to all tasks. Without loss of
generality we can assume that the execution times are normalized so that
o =1. In the latter problem the processors now become a “free”
resource, and the processing time “‘resource” is bounded at w = 1. In the
following it is convenient to take the former point of view, in which the
problem is regarded as a special case of the model in the previous section.

t The contents and presentation of this section are based on portions of [JDUGG].

5.5 Bin Packing 209

This problem is also equivalent to the one-dimensional stock-cutting
problem (a variation of the knapsack problem), and efficient algorithms
for obtaining optimal or near-optimal packings (i.e., schedules) have
obvious practical applications—for example, in table formatting, file
allocation, coil slitting (the formation of varying widths of coils of
material formed from a single standard width), cable-length optimization
problems, and generally, whenever a number of ‘“‘pieces” of different
“lengths” must be obtained from pieces having a standard length.

We modify the notation slightly for this section (to conform with that in
standard use) as follows:

1. The “weight” R,(T:) is denoted a.. We can assume 0 < a; = 1.

2. The sequence of weights is denoted by L =(a,, a,..., a.).

3. The minimum number of bins into which the elements of L can be
packed is denoted by L*.

4. The ith bin, denoted by B, corresponds to the time interval [i — 1, i).

There are four bin-packing algorithms which will constitute our
primary concern. In each of the algorithms, a, is packed first and ax is
packed before a... is packed for all k = 1.

1. First-fit (or FF). Each a. is placed into the lowest indexed bin into
which it will fit.

2. Best-fit (or BF). Each a: is placed into a bin for which the resulting
unused capacity is minimal.

3. First-fit decreasing (or FFD). The L is arranged into a nonincreasing
list and FF is applied to the resulting list.

4. Best-fit decreasing (or BFD). The same as 3, with BF replacing FF.

The corresponding numbers of bins required by these algorithms when
used on a list L are denoted by FF(L), BF(L), FFD(L), and BFD(L),
respectively.

We begin with a simple example illustrating a type of list for which FF
and BF behave poorly.

Example 16 Let n be divisible by 18 and let & satisfy 0<§ < 1/84.
Define a list L =(ay, as, ..., a,) by

(%)—23 for 1sis§

a.-=«<%)+8 for §<isg3ﬁ
1 2n

L<§>+8 for ?<lsn

210 Bounds on the Performance of Scheduling Algorithms

Clearly, L* = n/3, since the elements can be packed perfectly by placing
one element of each type in each bin. However, it is easily checked that
both the first fit and the best fit algorithm applied to L will result in a
packing that consists of n/18 bins each containing six elements of size
(1/6) — 28, n /6 bins each containing two elements of size (1/3)+ 6,and n/3
bins each containing a single element of size (1/2) + 8. The two packings
are shown in Fig. 5.38. Thus we have

FE(L) BF(L)_n/18+n/6+n/3_5
L* = L* n/3 3

By slightly modifying the list L given in Example 16, we can force even
worse behavior, as shown by the following result.

1_25
3+s
L' =3
$+s
x%)
2222222222223

1

1-2

1

1-2

1-2

FF(L) = ¢ F+8

1

-2

1

-2

6 1
=~+§
3

1

1-28

X55) xg)

Figure 5.38 The 5/3 example.

5.5 Bin Packing 211

Theorem 5.8 For every k =1 there exists a list L with L* =k and

FF(L)=BF(L)>1—(7)L*—8

Proof As in the previous eéxample, the elements of L belong to three
regions, with sizes nearly equal t0 &, 3, and 3, respectively. The number of
elements belonging to each region is the'same. Those of the first region
precede those of the second region, which in turn precede those of the
third region in L.

Let n be a positive integer divisible by 17 and let § be chosen so that
0< 8 <18 "V, The first region consists of n/17 blocks of 10 numbers
each. We denote the 10 numbers in the ith block of the first region by

Qo.iy A1,y - -+ 5 Ao, These numbers are defined as follows, where & =
518" for 1<i=<n/17:
o= (1) +335,
0,i 6 i

N
N = N
S

Q6,i = A7,i = As,i = Ao,; = (l>_26i

6
Let the first 10n/17 elements in the list L be (ao.1, d1.1, . .., do.1, do.2,
A2 ..., Qo2 ...). Notice that ao,+a,;i+ -+ as; =E)+38 and

as;+as;+---+as; =@E)+ 8. Thus for all i, the first five elements of
block i will occupy bin 2i — 1, and the last five elements of block i will
occupy bin 2i when either the first-fit algorithm or the best-fit algorithm is
applied. To see this, we need only observe that a.,:, the smallest element
in block i, will not fit into any of the preceding bins because the least filled
of these, bin 2i —2, has contents totaling) + 86—, = ¢) + 185.. Also, the
smallest of as.:, s - . ., s, Which is () —28;, will not fit into bin 2i — 1,
which has contents totaling ¢)+ 38. Thus the n/17 blocks in the first
region must occupy 2n/17 bins.

We next turn to the second region. Here the elements are all about
equal to 3 and they are again divided into n /17 blocks of 10 elements each,
the elements of the ith block being denoted by boi, b1, ..., bsi In L,

212 Bounds on the Performance of Scheduling Algorithms

these elements all follow the a;; and occur in the order (bo.1, b11, . . ., b1,
bo, bia, ..., bsz, ...). The values of the b;; are defined as follows:
bo.i = <1> + 465,
0,i — 3 (]
1
b= <§> 345,
1
b2,i = b3,i = (“) +645;
3
bei= <1> + 125,
4,i — 3 (]

bs,i = <%> - 108.

bei=bq:=1bsi=bo; = (%)'*‘ &
The elements of block i occupy bins (2n/17)+ 5i — 4 through 2n/17) +
5i. These contain bo; and b,,;, b, and bs,;, and so on. To see this, we
observe that the contents of the five bins occupied by block i sum to,

respectively,
2 2 2
<§) + 128, (3) +125, (3) +28,
2 2
<§> + 28.’, and (5) + 28.

Thus bs; = () — 108, cannot fall into either of the first two bins and
bi.: = (5) —346; cannot fall into any of the bins of previous blocks, since
these are all filled to at least level ¢) + 26—, = () +365. Thus the n/17
blocks in the second region occupy Sn/17 bins.

The third region consists of 10n /17 numbers, each equal to () + 8. They
clearly occupy one bin each. This completes the list L. The total number
of bins required by applying either the first-fit algorithm or the best-fit
algorithm is exactly n.

However, the elements of the list L can be packed into (10n/17)+ 1
bins as follows. All but two of these bins contain one of the numbers
(3 + 8. The remaining space in each of these bins is filled with one of the
following combinations:

1. a;: + by, for some i,j with2=j=<9, 1l<i=<n/17
2. Qo+ by for some i, 1=i=n/17
3. aii +boin for some i,1=i=n/17

This leaves bo.1, @1.mn7 and one number (3)+ 8, which can easily be

5.5 Bin Packing 213

packed into the two remaining bins. We have therefore shown that
L*=1+10n/17 so that

FR(L), 17n _17_2
L* “10n+17-10 L*

and similarly,

BR(L) 17 2
L* 10 L*

To obtain values of L* not congruent to 1 modulo 10, we can form the
list L' by adjoining to L, k elements each with size 1, where k is a fixed
integer =9. The preceding arguments then show

FF(L")=FF(L)+k and L'*=L*+k
so that
FR(L)_17_ 8

L'* 10 L'*

with the same bound also holding for BF(L')/L’*. This proves Theorem
5.8. @

We now show that the examples constructed in the preceding proof are
essentially the worst possible, that is, 17/10 is the asymptotic least upper
bound of the ratios FF(L)/L* and BF(L)/L* for large L.

1r— r

N~
|

W(x)

[N Rl g
-

| |

0 1 1
3 3

«

Figure 5.39 The function W.

214 Bounds on the Performance of Scheduling Algorithms

Theorem 5.9 [U2], [GGU] For every list L, we have

FF(L)S%L*+2 and BF(L)s%%L*+2

Proof We use only the two following properties of the FF and BF
algorithms:

1. No element is placed in an empty bin unless it will not fit into any
nonempty bin.

2. If there is a unique nonempty bin with lowest level, no element will
be placed there unless it will not fit in any lower indexed bin. (The level of
a bin refers simply to the sum of the weights it contains.)

Define the mapping W :[0, 1] — [0, 1] as follows (see Fig. 5.39):

(ga for Osasé

9 1 1 1

ga—ﬁ for g<aS§

W@ =16 1 1
ga +‘1—6 for §<aS§

k 1 for %<aS1

Claim 1 Let some bin be filled with b,, b, ..., b.. Then

. 17
Proof If b =<3, then W(b)/b =3. The extreme ratio is reached only when
b =3 and is less otherwise. Thus the claim is immediate unless one b; is
greater than 7. We can take this one to be b,, and we must now show that
if

£ 1 . 7
> b<z, then > W(b)=<-=
i=2 2 i=2 10

It should be noted that since the slope of W(b) is the same in the
regions [0, 5] and [3, 3], any b: that is in the second region can be replaced
without loss of generality by the two numbers 3 and b; —3. We therefore
assume that b; =3 for 2 =i < k. Moreover, if b; and b; are both =g, they
can be combined into one, and =: W(b;) will not decrease; in fact it may
increase. Thus we can assume that at most one of the b:’s, i =2, is in the

range (0,5] and the rest are in (,31].

5.5 Bin Packing 215

We have consequently reduced the proof to the consideration of four
cases:

1. k=2, b,=<3

2. k=3, §<by=bh,=1i

3. k=3, b,=s<b,;=<}

4. k =4, b=t<bi=b,=}

Case 1 is immediate because b, S% implies W(b,) =%. In case 2,
W(b2)+ W(bs)=G)(b,+ by)—1=< (?)(2) ,o, since b.+ bs<3. For case

3 W(bz) + W(bg) = (6)b2+ (5)b3 10 =3 + 5_1_ = 10 And ﬁnally, 1n case 4,
Wi(b.) + W(ba) + W(by) < Db+ (5)(b3 +by)—5=(@)b2+bs+by)—(3b,—
Ss_—%— 10s Slnce b2+b3+b4 E

Let us define the coarseness of a bin to be the largest a such that some
bin with smaller index is filled to level 1 — a. The coarseness of the first
bin is 0.

Claim 2 Suppose bins are filled according to either the FF or the BF
algorithm, and some bin B has coarseness a. Then every member of B
that was placed there before B was more than half full exceeds a.

Proof Until the bin has been filled to a level greater than &, it must be
either empty, or the unique nonempty bin of lowest level (by property 1 of
the placement algorithm), so by constraints 1 and 2 any element placed in
the bin must not fit in any bin with lower index, hence must exceed a.

Claim 3 Let a bin of coarseness a <3 be filled with numbers b, = b, =
-= by in the completed FF-packing (BF-packing). If =f_, b, =1—q,
then =i, W(b,) = 1.

Proof 1If b,>3, the result is immediate, since W(b,) = 1. We therefore
assume that b, =<3. If k =2, the second element placed in the bin was
placed before the bin was more than half full; thus by claim 2 at least two
of the elements exceed a. In particular, we must have b, = b, > a. We
consider several cases, depending on the range of a.
Case 1 a =i Then i, bi=1—a =3 Since W(B)/B =% in the range
0 = 8 =3, we immediately have 3}, W(b y=%-i=1.
Case 2 = o =3. We consider subcases, depending on the value of k.
k =1: Here, since b, =3, we must have 1—a <% or a =31, which
contradicts our assumption that o <3
k = 2: If both b, and b, are =3, then W(b)+ W)= -1+ %)2=1.1If
both are <3, then b, + b, <3< 1 — &, which contradicts our hypothesis. If
b: =3, and b, <3, then since both must be greater than a, @ < b, <i=<b, =<

216 Bounds on the Performance of Scheduling Algorithms

7. Hence W(b))+ W(by)= 3)b,— 15+ @br+15= (b, + b2)+3b.. Since
bi+b:=1-a and b, >a, we have W(b)+W(b)=E1-a)
+Ra=1+¢-@a)=1, since a <1

k =3: As in the previous case, if two of the b; are =3, the result is
immediate. If b, =3> b,= ¢, then

W(b:) + W(b2) + 3, W(bi)

577107 +
R

fi>b,=b,>a, then

k
=Sp+ 142, - 22
-

W

(el

W (b:) + W(bz)+2 L Wb =)(bl“’ -3+ §2b

() l—a)+<)(2@—%
- (5) ((55)“21

Case 3 i<a <3 If k=1, we have b, =1—a >}, so W(b,) = 1.
If k =2, then b;=b,>} and the result is immediate.

v

Wi IO

Claim 4 If a bin of coarseness «a <3 is filled with b,=: - - = b,, and
S W(b) =1- B, where B >0, then either

1. k=1 and b,<3} or
2.3 bh=1-a-03)B

Proof 1If k=1 and b, >3, it is impossible that B >0. Therefore, if
condition 1 does not hold, we can assume that k =2, hence b, = b, = q, by
the reasoning of the previous claim. Let ¢_; b; = 1 — « — . Then we can
construct a bin filled with bs, b, . . ., bx and two other numbers 8, and .,
selected so that 8, + 8, = b, + b2+ ¥, 8: = b, 8: = b, and neither §; nor 8,
exceeds z. By the proof of claim 3 and because both &, and &, exceed a,
we know that

k
> W)+ W)+ W) =1
i=3
But since the slope W in range {0,:] does not exceed 2, it follows that

W(81) + W(82) = W(b,) + W(b,) + 3)v. Therefore, y = ()8, and condition
2 holds. @

We are now prepared to complete the proof of Theorem 5.9. Let
L =(ai, az,...,a.) and W ==, W(a). By claim 1, (17/10)L*= W.

5.5 Bin Packing 217

Suppose that in the FF (BF) algorithm, bins B}, B},. .., B} are all the
bins that receive at least one element and for which 3, W(a;) = 1 — B: with
Bi >0, where j ranges over all elements in bin B:. We assume that
1 =i <j=k implies that B’ had a smaller index than B/ in the original
indexing of all bins. Let y: be the coarseness of B’. Since B’ contains no
element exceeding 3, we must have each vy <3. By claim 4 and the
definition of coarseness,

Yi = Yi-1 + (g) B,'_l for 1< i<k
Thus
i 9< 9 9 1
'Z:l B ngz(% —%'—1)=§('Yk —71)S§'§< i
Since B« cannot exceed 1, we have
k
> Bi=2
i=1
Applying claim 3, we obtain
FF(L)=W +2=<(1.7)L*+2
and
BF(L)=sW+2=(1.7)L*+2
completing the proof of the theorem. [®
If the list L = (a,..., a.) is such that for some a <3, all a; are less

than or equal to a, the worst-case behavior of the two placement
algorithms is not as extreme. In particular, the following result holds.

Theorem 5.10 [GGU] For any positive a <3, let k = [a™'|. Then, we
have:

1. For each | = 1, there exists a list L = (a4, ..., a,) with all a;: € (0, «]
and L* =1 such that
k+1y ., 1
FF(L)Z(X)L X
2. For any list L =(a.,..., a.) with all a: €(0,],

FF(L)=< (5%—1)L*+2

Both 1 and 2 hold with FF replaced by BF.

218 Bounds on the Performance of Scheduling Algorithms

Proof We first describe how to construct lists L, with no element
exceeding a, for which

FR(L) _BF(L) _k+1 1
L* L* = &k kL *

Let | be any positive integer. The list L is composed of elements that
are all very close to 1/(k + 1). The elements are of two types, described as
follows:

_ 1 _p2i+ . _
b=~ kT8 i=12... 01

Aj = Q25 = =" - =0y = + k8, i=L2,...,1

Tm+1
where 8 >0 is chosen suitably small. The list L has the a-type elements
occurring in nonincreasing order and the b-type elements occurring in
strictly increasing order, interspersed so that each successive pair b; and
b;-, of b-type elements has precisely k a-type elements occurring in
between. The list L is then completely specified by the property that b,_,
occurs as the second element. We leave it for the reader to verify that

l(k+1)—1]

FF(L)=BF(L)= [X

It is easy to see that the elements of L can be packed optimally by

placing b;, a,;, az, ..., ay in a single bin for each j=1,...,l -1 and
placing dis, @, . . ., ax in one additional bin. This gives L* =[. We then
have

FF(L) _BF(L)_Ik+D—1_k+1 1
= kI k KkL*

L* L*

The upper bound is also easily proved. Suppose that the list L contains
no element exceeding 1/k, k an integer.

Consider an FF-packing of L. Every bin, except possibly the last bin,
contains at least k elements. Disregarding the last bin, suppose two bins
B: and B,, i <j, each contain elements totaling less than k/(k +1). Then
since B; contains k elements, B; must contain an element with size less
than 1/(k + 1). But this element would have fit in B; and thus could not
have been placed in B; by FF, a contradiction. Thus all but at most two
bins must contain elements totaling at least k/(k + 1). Thus, letting w(L)
denote the sum of all elements in L, we have

k
k+1

L*=w(L)= (FF(L)—2)

5.5 Bin Packing 219

so that

FF(L)=<

*
(k +k1)L s

A similar but slightly more complicated argument can be used to prove
this for BF. This proves the theorem. [

It follows at once from Theorem 5.10 that if @ <3 and L =(ay, ..., a.)
with all a; €(0, a] then for all £ >0
—Fi(f') =l+|a'] '+

provided L * is sufficiently large. The same bound also holds for BF.

The deepest results currently known concerning bin packing involve
the first-fit decreasing (FFD) and best-fit decreasing (BFD) algorithms. To
describe these results, we let Rerp(a) denote limy «_.. FFD(L)/L * where
L ranges over all lists for which all elements a; of L satisfy a: € (0, a].
For example, the preceding results imply

17

1o for a€G,1]

Rer(a) = {1 + | _IJ_I for a € o, %]

Theorem 5.11 [J1]

(11 1

5 for a € (2, 1]
71 1
@ for « E(E
RFFD(Ot)z‘

7
3 for aE(

9
L% for a€E (g, Z]
The only known proof of Theorem 5.11, due to D. S. Johnson [J1],
[JDUGG], is highly ingenious and rather complicated, exceeding 100
pages in length. Needless to say, space limitations prevent us from
including it here. The difficult part of the proof—namely, establishing an
upper bound on Rem(a)—is based on essentially the same strategy
used in obtaining the upper bounds for FF and BF. That is, a ‘‘weighting
function” is defined which assigns real numbers or “weights” to the
elements of L, depending on their size, in such a way that

1. The total “weight” of all the elements in the list L differs from the
total number of bins used in the particular packing under consideration
(e.g., FF or FFD) by no more than some absolute constant c.

220 Bounds on the Performance of Scheduling Algorithms

2. The total weight of any legally packed bin must be less than some
fixed constant c¢’.

For FF we had ¢’ = 17/10 and ¢ = 2; for FFD one can choose ¢’ = 11/9
and ¢ =4.

As in the case of FF and BF, the bounds of Theorem 5.11 for FFD also
apply to BFD. However, there is a lack of symmetry between the FFD
algorithm and the BFD algorithm, as indicated by the following result
(which is also required in the proof that Rprp(1) =14).

Theorem 5.12 [GGU], [JDUGG] Foralllists L = (a,, ..., a.), we have

1. BFD(L)<FFD(L) if all a; €[1]
2. BFD(L)=FFD(L) if all a €[1]

Even the proof of Theorem 5.12 runs about 15 pages and is not given here.
Possibly, the complete form of Theorem 5.11 is given by the following
conjecture [J2].

1
T —2¢ +—2¢
T*¢ 1-2¢
L*=9n
1
3+2¢
%+e
1
712¢e
(X 3n)
s
. 1
%/% ‘3‘% 7 2
1
zt¢ %—28
FFD(L)}_
= 1n
BFD(L)
T+e 1-2¢
1+e
1
Z+E %—28
(X 6n) (X 2n) (X 3n)

Figure 540 An 11/9 example.

5.5 Bin Packing 221

Conjecture .
11 1
3 for a€<§,l]
71 8 1
R)_<@ for aE(E’E]
SR A c(t 3]
6 O *=\@ 29
k-2 1 o
L1+k(k—1) for a=g, =la™’]

These values of Rerp(a) for o =i are known to be upper bounds by
straightforward extensions of the examples given in Figs. 5.42 and 5.43.

% €
5
> ¢
5
% — ¢
5 _ ¢ Optimal packing, L* = 60n
29
LR
2
8
w5t e
(X 60n)
é s
5 . 577 - t+5¢&
5—3& 2 4c 29
5
6 Il
8 — + &
2 tE 2
5
=€
LA .
29 FFD packing FFD (L) = 71n
8 2_¢
E+£ 29
6
5+6 i_e
29
8
=+&
b3 6 5
= +E 2-¢
(X 20m) (X 15n) (x 36n)

Figure 5.41 A 71/60 example.

222

L*=12n:
FFD(L) = 14n
L* = 20n
FFD(L) = 23n

lie
—+E
(X 12n)
Y%
. : ;
2 1 -2¢
A 2
— + & 1— —l———zé’
lie T +-2¢
1 1 1 _
THE T 72
(X 8n) (X 3n) (X 3n)
Figure 542 A 7/6 example.
1_ 3¢
5
AN
1
THE
Lie
1
g+€
(X 20n)
: grrrrrrers)
5 ’;:—5
1 1
e * .;_—e
%+e % é'_e
1 1 1
5 +E B 5 ¢
(X 15n) (X 4n) (X 4n)

Figure 5.43 A 23/20 example.

5.5 Bin Packing 223

In Figs. 5.40 through 5.45 are presented self-explanatory examples
showing that the various ranges over which the a; are allowed to vary in
Theorems 5.11 and 5.12 are best possible.

One reason why the proofs of many of the bin-packing results are
surprisingly complicated is because of the existence of examples like the
following (due to Sylvia Halasz [Ha}). This example gives a list L and a
sublist L' C L with FFD(L")>FFD(L). Such behavior can be very
annoying when one is trying to construct inductive proofs. ®

=
|
s}
|-

EAIN)

BFD(L) = 10n:
3
F+2¢
2
5
(X bn) (X 6n)
€ 5¢
2 1 1 _¢
7 :
5
2
5
BFD(L) = 11n: +-¢
3 . i
—5-+ 2¢ 5~ &
2
5
1
5 ¢
(X 5m) (X 5u) (X n)

Figure 5.44 An example with L* large and BFD(L)/FFD(L) = 10/9.

224 Bounds on the Performance of Scheduling Algorithms

o=

@)=

FFD(L) = 9n 3te
2
3
;—+e
(X 3n) (X 6n)
2277722 ¢ % V72777 6€
LI r-¢
1 ¢
BFD(L) = 10n Tee °
;_—s
2
3
;_—-s
%+e
.;-—s
(X 3n) (X 6n) (X n)

Figure 5.45 An example with L* large and FFD(L)/BFD(L) = 11/10.

Example 17

L = (285, 188(x 6), 126(x 18), 115(x 3), 112(x 3), 75,
60, 51, 12(x 3), 10(x 6), 9(x 12))

L'=L—{75)

where a(xb) means b copies of a. The bins have capacity 396. The
FFD-packings of L and L’ are shown in Fig. 5.46.

For a rather complete discussion of numerous other bin-packing
algorithms as well as comparisons of their average (as opposed to
worst-case) behavior, the reader is referred to the doctoral dissertation of
D. S. Johnson [J1], [J2].

5.6 Bounds for Some Other Cases 225

FFD@) = 12:| 12

12 10 9 51 60

12 10 9 115 12

75 188 126 115 112

285 188 126 115 112
x 3) (X 6)

rzzzgm Pz

9 9

9 9

9

FFD(L) = 13: 9 9

10 9 9

51 12 126 115 112

60 188 126 115 112

285 188 126 115 112 5

{x 3} (X 8)

Figure 5.46 Example of L' C L with FFD(L') < FFD(L).

5.6 BOUNDS FOR SOME OTHER CASES

For the remainder of the chapter, we describe several recent results
dealing with bounds on w/w, for other values of the parameters s, L, <, 7,
and m.

Without the presence of a processor constraint, the scheduling problem
with the parameters s =1, all m =1, < empty, m, L arbitrary, is just
ordinary bin packing for which we have obtained the asymptotic bound
on w/we of 17/10. When we have just a fixed number m of processors
(possibly much smaller than the number n of tasks), this is equivalent to
requiring that each bin contain at most m elements. For this situation, the
following result of K. L. Krause applies.

Theorem ([Kr] For s =1, nn =1, < empty, m, L arbitrary, we have

w—2 < 27 24
wWo 10 10m ’
2. There exist examples for which

w 27 37

1.

Hence the presence of the processor constraint contributes about 1 to
the worst-case ratio bound.

226 Bounds on the Performance of Scheduling Algorithms

If the tasks in L are arranged in the order of decreasing resource
requirements, the resulting schedule is just that obtained by applying the
FFD algorithm in the corresponding bin-packing problem, again with the
additional restriction that no bin contains more than m weights. The
finishing time is denoted here by weep.

Theorem [Kr] For s =1, < empty, all 7 =1, m arbitrary, we have

@erp— 1 =2 2 for m=2
wo m
We next turn to several interesting results concerning the many-
resource case (i.e., s is allowed to be arbitrary). Perhaps the most striking
is the following.

Theorem 5.13 [GGJY] For < empty, all = =1, m =n, s, L arbitrary,
we have

ws<s —+—1—70>w0+§ G1)

Furthermore, the coefficient of w, is best possible.

Of course for s =1 this is essentially just Theorem 5.9 (with a slightly
weaker constant term). In fact, the inductive proof of Theorem 5.13 relies
on Theorem 5.9 to begin the induction.

Comparing this result to that of Theorem 5.6, we see that the restriction
that all . = 1 allowed the bound on w/wo to be strengthened from s + 1 to
s + 1. It had been previously shown by A. Yao [Y1] that asymptotically
w/we could not exceed s + 3.

As might be suspected from Theorem 5.5, the restriction that all 7, = 1
for general < is not sufficient to prevent the ratio w/wo from blowing up
rather badly. The strongest results currently known here are the
following.

Theorem 5.14 [GGJY] Ifall . =1, m =n, s, <, L arbitrary,

1. gslswo+ls+l

Wo 2 2
2. There exist examples for which
w 1 1 2s
:()Zisa)o'f'zs +1"w0

If the schedule is formed by a critical path algorithm then the
worst-case bound on w/wo, improves considerably. In particular, the
following result can be proved [GGJY].

5.6 Bounds for Some Other Cases 227

Theorem 5.15 If all » =1, m =n, s, < arbitrary, we have

wcp - 17

1. <—s+1;
Wo 10
2. For any ¢ >0, there exist examples for which
wcp 17
>_ —_—
e~ 10 s+1—¢

Recall that in the special case s =0, even with a processor constraint
(i.e., allowing m < n), T. C. Hu has shown that wcs = wo (see Chapter 2).

There are several natural generalizations of the resource model we
have been considering for which research work is just beginning. These
include allowing processors with different speeds (see Chapter 2), pro-
hibiting certain processors from executing certain tasks, and bin packing
with bins of different capacities. Space considerations do not permit us to
go into these topics here, however.

