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For a tree T on n vertices, let D(T) = (dij(T)) denote the distance matrix of 7, i.e.,
d,-/-(T) is just the length of the unique path between the ith vertex and the jth vertex of T.
Denote by A7{(x) the characteristic polynomial of D(T), so that Ar{x) = det(D(T) — xI).
In this paper, we investigate a number of properties of Ap{x). In particular, we find simple
expressions for the first few and last few coefficients of Ap(x).

1. Introduction

Let 9,1 denote the set of n vertex trees (i.e., connected acyclic graphs*)
and let I=U,., J,. Forafixed T€ 9,, let the vertices of T be labelled
(arbitrarily) vy, vy, ..., v, and define the distance d;; between two vertices
v; and v; to be the number of edges contained in the (unique) path be-
tween v; and v; in T. The distance matrix D(T) for T is the n by n matrix
which has d,-]- as its (4, j)th entry.

It was shown in [2] that for T &€ g, , the determinant of D(T) is equal
to (1Y " 1n - 1)2""2, independent of the structure of T. Motivated
by the observation that the determinant of D(T) is merely the constant
term in the characteristic polynomial Ay (x) of D(T), in this paper we
investigate the dependence of other coefficients of Ay (x) upon the struc-
ture of T

Recall that for the adjacency matrix** A(T) for T, if we write

n
det(A(T) — xI) = kZ)O ap(T)xk,

* See [3] for graph theoretic terminology.
** Which has ajj = 1 if edge {i j} belongs to 7, aj; = 0 otherwise.
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then it can be shown [4] that

(—DP+RI2 pt(n — k))  if k= n (mod 2),
(1) ap(7) =
0 otherwise,

where M(¢) denotes the number of ways that ¢ disjoint edges can be
selected from T. Writing

) Ar(x) = det(D(T) — xI) = kZ%) 8,(T) x*,

one might hope that similar expressions could be given which relate each
8, (T) directly to the number of occurrences of various subgraphs in 7.
The results of this investigation show that such a relation appears to
exist, although it is rather more complex than that for the a; (7).

2. Preliminary facts

Let ?; denote the set of k element subsets of {1, 2, ..., n}. For
S € P, let Dg denote the k by k principal submatrix of D consisting of
all elements with row and column indices belonging to S. Then from
elementary determinant theory we obtain

3) 8, p(T)=(-1Y""% 23 det(Dg), O<k<n.
Se?,

It follows from (3) that
(4a) 8,(T) = (-1)",
(4b) 8n — 1(T) = 05

o) 8, (D)= (1)1 Lid],
i<j

@d) 8, D =(-1y"' 2 2d;dydy-
i<j<k

This sequence can be continued, but it is not particularly illuminating
to do so.

As we remarked earlier, the value of 8y(7) depends only on the num-
ber 1 of vertices of 7.
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Theorem 2.1 (see [2]).
(5) 8o(T) = det(D(T)) = (=)' "' (n — 12"~ 2.

It was also shown in [2] that this theorem has the following result as
an immediate corollary.

Corollary 2.2. D(T) has one positive eigenvalue and n — 1 negative eigen-
values.

The preceding results can be used to determine the sign of 6,(T) for
all k.
Theorem 2.3.
-1 for k=0,
(6) sgn(6,_,(T)=4(0 fork=1,

"1 for2<k<n.

Proof. For k = 0 and 1 the theorem follows from (4). Let k satisfy
2 < k< n and let the eigenvalues of D be denoted by Aj, —X,, —As, ...,
—A,, where A{, A,, ..., N, > 0 (by Corollary 2.2). Then

(7) Ar(x) = (=1 (x — A (x + 2Ap) (x +A3) ... (x +A,)

n-—1

=1 =) 2 gex ok
k=0

n-J»

=(—-1)" [x" + kz=;1 (& — N gp_ X" F - >\1gn~1}
where g;. is an elementary symmetric function, the sum of all £-fold
products among A, A3, ..., A, (and g5 = 1). From (4b) and (7) we have
6p_1(T) =8, — 7 =0
so that
A =g

Then, since
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8r —818xk-1<0 fork=2,3 ..,n-1,
and

_'glgn—1< 0

the theorem follows.

3. The canonical form

We now describe a matrix M(T) which results from a sequence of
elementary row and column operations applied to D(T) — xI. We begin
by selecting a vertex v; of degree 1 from 7. Suppose v; is the vertex adja-
cent to v;. Then subtract the jth row and column from the ith row and
column, respectively, and delete the vertex v; from T. In the new tree,
now, let v; be a vertex of degree 1 adjacent to v;. Then subtract the /th
row and column from the Ath row and column respectively, and delete
the veriex vy . Repeat this procedure until we are left with a single vertex,
called the root of T, which we may assume is labeled v;. The matrix ob-
tained in this manner is denoted by M(T). It is easy to see that M(T)
depends only on the choice of the root v; and not on the order in which
the successive vertices of degree 1 were chosen.

Example.

Vo Vg
T: v:<v.ﬁ;<v
3 6
x 1 1 2 3 3]
1 —x 2 3 4 4
1 2 —x 22
D(T) - xI = ,
23 x 1 1
3 4 1 —x 2
3 4 2 1 2 x|

Ap(x)=x% — 84x* — 368x% — 580x% — 368x — 80,
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[ x I+x L+x 1 1 1]
l+x -2(1+x) —X 0 0 0
M(T) = 1+x —x  =2(1+x) X 0 0
1 0 x 20+x) X X
1 0 0 x  —2(1+Xx) —X
1 0 0 X —X —2(1+xL

By keeping track of the entries of D(T) — x[ as the preceding algo-
rithm is performed, the reader will have little difficulty in verifying the
next result.

Theorem 3.1. The entries of the matrix M(T) = (mij) are given by

—x ifi=j=1,
I+x  ifi=1lorj=1and v; and v; are adjacent in T,

1 ifi=1orj=1andv;and v; are not adjacent in T,

8) my=3-2(1+x) ifi=j+1,

x ifij# 1andv; and v; are adjacent in T,
—X  if there exists vy such thatdy; =dy; = 1 +dy,

0  otherwise.

It is the (potential) sparseness of M(T) which makes this matrix use-
ful in the study of Ap(x) = det(M(T)).

If 7 denotes an arbitrary element of d,,, the set of permutations on
{1, 2, ..., n}, let e(m) denote the number of cycles of even length in 7.
Further, let M(7) represent the product

n

9) M(m) = Hl M iy -
i<

Then we have

(10) Apx)= 20 (—1¥® p(m).

TE dy

M(m) is a polynomial in x; we let M; () denote the coefficient of x* in
M(m). Thus

(11) 8 (T)= 20 (1™ M, ().
TeE dn
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Theorem 3.2.
(12) 8(T)= 0 (mod2" %2y for0<ik<n-2.

Proof. By (11), it is sufficient to consider just those 7 for which

My (m) # 0. For each such 7, at most two non-zero factors in (9) lie in
the first row or column and at most & other factors can lie off the dia-
gonal of M(T). Hence, at least n — k — 2 factors in (9) are of the form
—2(1+x) by Theorem 3.1 and (12) follows.

4. The coefficients 6, (7)), k < 3

Define the root cycle of a permutation 7 € &, for T to be the cycle
of m containing 1 (this corresponds to the root v; of T). Putting k=0
in (11) we have

So(T)= 23 (—1Y™ My(x).
TE dp

For each w for which M(w) # 0, the factors of M(m) can include no term
tx or 0. Hence, M(w) must have exactly one factor my;,j# 1, one factor
m;y, i# 1, and n — 2 factors my;, i =7 > 1. This implies that the root
cycle of mis a 2-cycle and the remaining vertices of T occur in 1-cycles
of m. Based on this observation, Table 1 presents all the data needed to
compute 8,(7).

The labels on the edges of the cycle in Table 1 indicate the correspond-
ing entries in M(T). Thus, m; =m;; =x + 1 ormy; =m;; = 1. The nota-
tion #(w) denotes the number of permutations which have a root cycle
of the indicated form, with all remaining cycles being 1-cycles. Thus

(M =CDn -2 =(1y"1m--1)2"2.

which agrees with (5).

Table 1

ROOT CYCLE OF T ()¢ 4 Motm

i 4
x+1or1Ox+1or1 -1 n-1 (-2)"2
1
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Looking ahead and interpreting the factor n — 1 in the expression for

8y(T) as the number NS,(T) of subgraphs of T consisting of a single edge
S7, we have

(5) 8o(T) = (—1)""12" "2 Ny (T).

In the following we show that the coefficients 0, (1), 1< k < 3, may
be expressed in terms of the number of subtrees of various kinds in 7.
Table 2 defines the relevant subtree counting quantities. The degree of
vertex v; in T is denoted by d;.

Theorem 4.1.

(13)  8y(1)=(-1)""12"" 2 Q@nNs,(T) — 2Ng,(T) — 4).

Table 2
Subtree Subtree Being Expression for
count counted Subtree count
{ -
Ns, (T) — §Zd;-n-|
i
d.
N — (%)
i
Np (T) —_— > (di-nudjn

{i, i} et
Ns (T) /k > ()

Npy (T) oo i<jzd'~-2(di_”(dj-“
ij=
Ny el > di-n(%z") + (d;-n(%iz")
{ii}er

Ng, (T) + Z(d4i)




30 M. Edelberg et al. | On the distance matrix of a tree

Table 3
Root Cycle of 7 (-1)elm) # (m) # (m) My ()

Q H ! 1 - (-2)"!

“‘OXH -1 dy lot (M) (-2)"2
1
k
‘Oi -1 n-(dy+1) __‘"‘”n‘“'_Z) (M2) (=22
|
k
< 2(n-1)(n-2)
i 1 + 2[(“'1)-d1] n*n (_2)“‘3
x+1ori 1 n
) :X; 2 +1 dy(dy—1) + 2 n-3
x+ior1i x+fort LR sz(T) ~(-2)
2(n-2)(n-1)
' +> (di-1)(d;-2) —+
i#1

Proof. From (11) we have
ST = 20 (1™, ().

TTEcSk

For each m with M () # 0, the factors of M() include at most one en-
try m; ; with eitheri # j ori=1 orj = 1. This implies that any cycle of
m which is not the root cycle must be a 1-cycle and that the root cycle
has length at most 3. Based on these observations, Table 3 presents all

the data needed to compute &, (7).

In Table 3 (and Table 4 which appears later) the symbols i, j and k
appearing as vertex labels in root cycle graphs have the following special
meaning:

i - a generic vertex in T,

j — avertex in T such that dlj =1,

k — avertex in T such that d; ;> 2.
The quantity #(n) is defined by

a4 Fm=y T #m
root

choices
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and is introduced to remove the virtual (but not actual) dependence of
the result on the root choice. We then have

(15) 8§1(T) = 23 (—1 @ F(m) M, (),

where the summation extends over the 5 classes of permutations given
in Table 3. Inserting the data from Table 3 and simplifying, (15) be-
comes

5() = (—1y—ipn-3 (2nNs (T) — 2N (T) — 4)
and the theorem is proved.
Define a basic cycle of a permutation 7 to be either the root cycle of

w with respect to the tree T or any cycle of 7 having length greater than
1.

Theorem 4.2.

(16) 82(T) = (=1 12"~ *[2(n? - n — 4) N5 (T)

-~ (5n - T)Ng (T) + 6Ng (T) — 2Np (T)].

Proof. From (11) we have

5,(T)= 27 (1™ M (m).
nEdn

For each m such that M, () # 0, the factors of M(r) include at most two
my ; withi# jori=1 orj=1. This implies that the root cycle of 7 is of
length at most 4, and that any basic cycle of 7 other than the root cycle
must be a 2-cycle. Moreover, 7 can have at most 2 basic cycles. Table 4
enumerates the various possible basic cycle structures and includes all
data needed to compute 6,(7’). We then have

8(T) = 23 (— 1! @H(m) My (m),

where the summation extends over the 14 classes of permutations given
in Table 4. Inserting the data from Table 4 and simplifying, this becomes

8(T) = (=1)" 12"~ *[2(n* — n - 4) Ng (T)

—~ (51— 7)Ns2(T) + 6N (T) — 2NP3(T)].
This proves (16).
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Table 4
Basic Cycle of = (-n&m # (m) My ()
-X
Q + ' "1 2!
1
J
2(n-1) n n-2
x+10x+| —1 - (2)(—2)
1
k
{(n-1)(n-2) n-2 n-2
10i -1 — ( 2 )(-2)
{
I k
_ _ _ _nyN—-4
v+t or 1l Vst or 1 XOX o (n 1)(nn2)(n 3) (-2)

i
=X
X+ oriq 2 >is + % [2nNg,-2 (n-2)(n-1] (-2)n"¢
! X

=X
+1or1

I X, 0, + £ Ng, (T) —("-2"3
x+v‘+1

1

ki a——k3 - - :
W s BUyng mot-2] ="
1
k
X
341 +1 in Ns, (T) (”]2)(—2)“‘3
X+1
f
ka
X
k141 H o £ [n-2) (n-1)-2Ng, (T)] (”;3)(—2)"‘3
1
1
. _X -X N
| |
‘ @ P ot [MNg(M-n-tiNg, (T+n-N(n-2)] (-2
x+1 or i x+1 or 1
1

. -X

|

! V -t Z[nNp, (TI+2Ng, (M=(n-1)(n-2) ] -(-2)n-4
Xx+{ or 1

k
1
1
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Table 4 (continued)

Ky 2k,
N\ - 3U0-1) [y, (T)-(n-2)] ~-2)"-4
x+t or 1
1
Ky kp
XX 2 (n-1) - _pyn-4
N7 25 [ns, (M-n-21] (-2)
1
i3
X
2 n-4
NP -1 2 [(n-2)(n-1-2Ng,(T] -2)

1 x+iort

Theorem 4.3.
(17) 83(7) = (1" 12" [$(n? — 4) (n — 3) Ny (T)
—2(3n* - 11n+ 9)Ng,(T) + 2(Tn — 22) Ng (T)

— 4(n — 3)Np(T) — 2Np (T) — 24Ny (T)
+ 4Ny (T) + 2Ng (T)*].

The proof of Theorem 4.3 is similar to the proofs for Theorem 4.1
and 4.2, but involves considerably more complicated and lengthy cal-
culations and is omittea.

5. Linear combinations of subforests

It must be admitted that the expressions we have thus far derived for
84 (T) are not particularly illuminating. In fact, the appearance of the
nonlinear term NV SZ(T )2 in 83(T) is rather ominous. There is, however,
a different “coordinate system” in which these results may be expressed
which is somewhat more encouraging. What we shall do is write the
8 (T) as linear combinations of Ng(T) where F ranges over Fr41» the
set of foresis (i.e., acyclic subgraphs) with at most kK + 1 edges.

Table 5 presents in tabular form the appropriate coefficients for
Npg(T) associated with this representation.
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Table 5
Coefficients A for representation sz(7T) = (-~ 1)"‘1 2N k-2 Epegkﬂ ApNp(D).

F 80 |81 | 52 |33 | 84 F 84(?)
— | t |4 -4 o0f o ‘7k‘ 5
— /A 2| 8l-a| o] >< -7
- % 4 {16} ol o ——o—é 4
Y % 3 (12| -4 | et |15
——— m of 8] -4 | —e< 20
o M 7 (28| 4 | se————|-35
= / 12 | 48 | 16 X — 13

A

\
DO
N\
I Tix Ji

=l N " J«KEAPSEEE
%:///////{///,/432 == | e

/AR

g |

* &) has constant term of --4.

For example,
8,(T) = (1"~ 12"~ (4N (T) + 8Ng (T) + 16 N5, (T)

+3Ng (T) + TNy, . 5,(T)
+ 12N34,(T)).
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The corresponding expression for &,(7),
§(T) = (—1)y~1pn-3 (4Ng(T) + 2ZNg(T) + 4N, 5 (T) — 4),

seems to be unique in having a non-homogeneous term —4.
If we assume that §,4(7’) can be written in the form

§,(T) = (—1y""12"=6 23 A. N (T),
FE‘]S

which, a priori, is by no means clear, then by calculating* Ar(x) fora
sufficiently independent set of trees 7, we can solve the resulting system
of linear equations for the coefficients A,. The coefficients determined
in this manner for 6, are also included in Table 5.

6. Some questions

A number of questions have been left unresolved. We discuss several
of these now.

(1) Does Ap(x) determine T? No examples are currently known of
two nonisomorphic trees, 7| and T, for which ATl(x) = ATz(x). It is
conjectured that this cannot occur. This is in contrast to the situation
for A p(x), the adjacency matrix characteristic polynomial. The smallest
possible example of two nonisomorphic trees with the same Ar(x) was
given in [1] and is shown in Fig. 1.

K

T T,
AT, (X) = Ap, (x)= x8-7x8 + 9x?
Fig. 1.

In fact, Schwenk has recently shown [5] that almost any large tree T
has many cospectral mates 7" (i.e., such that Ap(x) = Ap(x)).

It is also the case that there exist nonisomorphic graphs G and G,
for which Ag (x)= Ag,(x). For example, Shrikhande [6] gives a pair of
nonisomorphic graphs on 16 vertices (one of which is L(Ky 4), the line
graph on the complete bipartite graph K4 4) for which

* In the appendix, Aq(x) is given for all trees on <8 vertices.
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Ag,(x) AGz(x) x—249)(x+4)°x".

However, for both of these graphs, all d;;, i # J, are either 1 or 2 so that
A(T) and D(T) are very closely related (it is also true that AGI(x) =
AGz(x)).

The authors admit that there is presently not much evidence on
which to base the conjecture of the uniqueness of Ar(x) (see appendix).

(2) Can 6,(T) always be expressed in the form

(18) §e(T) = (~1y" 12" k=2 23 A.Nu(T)

FEF 4y

Jor suitable integers Ap (with the mild exception occurring for k£ = 1)?

It may be the case that an alternative approach to the one we have taken
for expanding det(D(T) — xI) may lead to an immediate affirmative ans-
wer to this question.

(3) If 8, (T) can be written in the form (18), is this expansion unique?
One strongly suspects that the answer is yes, but this has not yet been
proved. It is sufficient to show that if

20 ApNp(T) = C  for all trees T,
Feg

then Ar = 0 for all /¥ € F, where ¥ is some fixed finite set of non-trivial
forests. If F is allowed to be infinite, then we can have a non-trivial linear
dependence, e.g., if F={S;:S; is a star with k edges, k = 1,2, ...}, then

el -
SkZe)g( NG (1) = 1.

Also, if F is allowed to contain the trivial forest ' consisting of a single
vertex, then

NFO(T) - NSI(T) =1.

(4) If the answer to (3) is in the affirmative, then what do the coeffi-
cients A,F signify? It is possible that a different “coordinate system” for
the 6, (7") may yield expressions of still greater simplicity from which
further properties of the §;(7") can be deduced.
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Appendix
Tabulated below are distance matrix characteristic polynomial coef-
ficients §;(¢;) for all trees on 8 or fewer vertices. The subscripts on the

t; refer to the order given in Table 6.

D e/ 2" R n#k

k
t 0 1 2 3 4 5 6 7 8
n=1 ty 0 -1
n=2 t 1 0 1
n=3 t 2 6 0 -1
n=4 t 3 16 20 0 -1
1 3 14 15 0 -1
n=5 t 4 30 70 50 0 —1
t; 4 28 58 38 0 —1
t3 4 24 44 28 0 -1
n=6 H 5 48 162 224 105 0 -1
t, 5 46 145 184 84 0 -1
t3 5 46 143 178 77 0 -1
ta 5 4 126 148 65 0 -1
ts 5 42 117 136 60 0 -1
te 5 36 90 100 45 0 -1
n=17 t 6 70 308 630 588 196 0 -1
th, 6 68 286 552 488 164 0 —-1
t3 6 68 284 540 464 148 0 -1
t4 6 68 282 528 438 132 0 -1
ts 6 64 248 438 366 122 0 -1
te 6 64 244 442 340 108 0 -1
t7 6 58 200 324 208 86 0 -1
tg 6 50 156 240 190 66 0 -1
to 6 66 264 476 402 134 0 -1
tip 6 66 260 460 376 120 0 -1
ty 6 50 156 240 190 66 0 -1
n=8 t 7 96 520 1408 1980 1344 336 0 -1
t; 7 94 493 1280 1721 1134 291 VR |
t3 7 94 491 1264 1672 1068 264 0 -1
ta 7 94 489 1246 1611 984 228 0 -1
ts 7 94 491 1262 1662 1056 255 0 -1
te 7 90 445 1080 1365 875 227 0 -1
ty 7 90 441 1052 1293 790 195 0 -1
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k
t 0 1 2 3 4 5 6 7 8
tg 7 90 437 1026 1227 720 172 0 -1
tg 7 84 426 852 1011 624 164 0 -1
tio 7 84 376 822 984 564 143 0 -1
t1y 7 76 310 636 715 432 116 0 -1
tip 17 66 245 476 525 322 91 0 -1
tis 7 92 466 1156 1483 952 248 0 -1
tia 1 92 464 1138 1432 892 223 0 -1
tis 7 92 460 1110 1356 808 191 0o -1
te 7 92 460 1112 1368 824 200 0 -1
ty7 7 92 462 1128 1411 872 216 0 -1
tig 7 88 418 960 1159 720 188 0 -1
tig 7 88 410 920 1075 640 160 0 -1
tho 7 88 412 930 1096 660 167 0 -1
1y 7 82 349 732 829 498 131 0 -1
tyy 7 84 362 764 867 520 136 0 -1
tyy 7 90 433 996 1185 714 179 0 -1
Table 6

Unlabeled trees on n vertices, n < 8.

azg =
JRSUUUUURED JED D G SRR SHRL N

B s B s e
ek Kk >
< vt M-SR Sk A A
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