ON THE SET OF DISTANCES DETERMINED BY THE UNION OF
ARITHMETIC PROGRESSIONS

F. R. K. Chung and R. L. Graham

1. Introduction.
Suppose the set of points {nf}, 0 € n <N, is placed on a circle

of unit circumference, forming the increasing set

where {x}, as usual, denotes the fractional part of x, i.e.,x - [x].

Consider the set D of distances between consecutive 810 i.e.,

D={ s, : 0 £k <t}.

frl T Sk

In 1958, S. Swierczkowski [9] established the interesting result that

D never has more than three elements, thereby confirming an assertion

of H. Steinhaus (see [8]). (This result was also proved independently

around the same time by P. Erdds and V.T. Sés [5], [6] and by P. Sziisz

(unpublished)). Motivated by related work [2] on the distribution of

{na}, one of the authors conjectured [1], [3] in 1969, that this result

should be a special case of the following more genmeral situation.
Suppose the k sets of points {nie + ai}, 0 < n, <Ni,

1 <1 <k, are all placed on a circle of unit circumference, forming the

increasing set

{sl <52 <eue <st*=s1+1}

Then the set D* of distances between consecutive sk satisfies
€] |D*| < 3k

where |D*l denotes the cardinality of D*.
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In this paper, we prove (1). As a necessary preliminary . result
we also establish the interesting analog of (L) for the real line (as

opposed to the circle), namely, that in this case we have

a"n ID*] < 3k - 3 for k > 1.

2. The Linear Case

As mentioned in the introduction,before proving (1) it will be
necessary to prove the analogous (and somewhat simpler) result (1').
We begin by making several definitions. For a fixed positive integer
k, we assume we are given k real numbers Gy gy vees o and k non-

negative integers nl, n .y I Let Ai denote the set

93+ K
{ai +x;x=0,1, ..., ni} for 1 £ i < k and let Pk be the ordered
set formed from the union of the Ai’ i.e.,

v
(2) Pk = &1 Ai = {wl < T, <.l < nn}.

-7m,: 1 <i <n} denote the set of distances

% =
Let D (Pk) {“i+l 1

between consecutive points of P Our goal in this section will be to

k"
establish the following result.
THEOREM 1.

(3) ID*(Pk)| < 3k - 3 for k 2 2.

0f course, it is obvious that ID*(P])I < 1. The plan will actually be
to prove a stronger pair of inequalities (see (5)), also depending on
k, by induction on k.

Before doing this, we first '"mormalize" Pk a bit.

(a) We may assume Ai N Aj =@ for 1 # j. For if Ai N Aj $#¢,
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then Ai V) Aj forms an arithmetic progression and consequently Pk
is a union of at most k - 1 arithmetic progressions to which the

induction hypothesis will apply. The same argument shows that we may

also assume the following.

. . _ 1.
(b) If pieAi, pjeAj with i # j then |pi pjl #

(c) We may assume that ﬂleAl, ﬂzeAl. For we can always extend the
first term of the first progression one more step to the left and
relabel as Al if necessary. Similarly, it will also be convenient to
assume that “n—lEAx R ﬂneAX for some x.

We next require several definitions. For "lEPk’ define

E:Pk + {1,2,...,k} by F(ﬂz) = i where “leAi' This is well-defined by

(a). For WQ’“1+1€Pk’ define
) (Mo Tgyg) = (Mg ~TgoFT) s Fmy))e

This we call the P-length of the interval ("l’ﬂ2+1)' Thus, the P-length
is a triple which indicates, in addition to the actual distance between
Tg and Mo 4. the corresponding Ai's to which they belong as well. We
shall say that the intervals (ﬂl’ﬂ£+1) and (“2',“£'+1) have equivalent

P-length provided that either

(1) Moy T T T g T g = L
or
(ii) Torl = Tg = Tgrer T Ty # 1 and
F(nl) = F(ﬂl,), F(ﬁ£+1) = F(ﬂl,+l).
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Note that by (b), (1) implies F(r) = F(r),), F(r,,) = F(r,,.).

Let

S={pe P :p- 1§ Pk}’

"
T={pe P :p+1f P}

S is called the set of starting points and T is called the set of
terminal points. The elements of SUT are called eritical points; the
elements of P\(S\U T) are called regular points. Finally, define

f(Pk) to be the number of equivalence classes of the d s

NEPLI

1 < ¢ <n, and define f*(Pk) to be the number of equivalence classes of
the dp(nl’ﬂl+1) with T+~ Ty # 1. Equation (3) will follow from the

following stronger inequalities:

(5) f(Pk) < 3k - 3, f*(Pk) <3k - 4 for k = 2.

A brief calculation shows that (5) holds for k = 2. We shall assume

k is a fixed integer greater than 2 and that (5) holds for all unions

of fewer than k arithmetic progressions Ai'

L = = i,
Fact 1. Let m,, m . cP with F(r)) =4, F(r, ) = j ¢ Suppose for

241

some integer t > 1, m,  + t =1 +t=

L}
. orr Torn but that T, te and

Tor1

Tosl + t' are not adjacent for any t', 0 < t' < t. Then

f(Pk) < 3k - 4.

Proof. Let X = {m s, + t'< @ < + t' for some t', 0 <t' < t}

I3 m g +1

and let X' = P\X. Thus, X = Pk—k' and X' = P, for some k', 2 < k' < k-1.

k'
. . . '
Consider an interval (nu, “u+1) in Pk. If L and T4 8Te both in X
1
then the P-length dp(nu, “u+1) also occurs in X'. If L and T4 are
both in X then in fact dp(nu, “u+1) occurs in XU Ai' If nue Ai and

ﬂh+l€X then dp(zh, ﬁh+l) also occurs in X\U A Each P-length

i
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d_(

p "’ Tutl utl utl

corresponds to a unique P-length dp(nu, ﬁv) where tveAi(ﬂv is the

) with 1|~u€XL.)A,i and 7 .eX' must have = eAj,and so

element in XLJAi which follows wu). Furthermore, dr(ru,nv} does mot
occur in Pk. Finally, we note that since the P-length (1,1,1) occurs in
Pk then it also occurs in X'. Thus, both X\J Ai and X' are the unions
of at least 2 and at most k-1 arithmetic progressions so that the

induction hypotheses applies, yielding

f(Pk) < f* (XU Ai) + £(X")

IA

3(k-k"+1) - 4 + 3k" - 3 =3k - 4
and the fact is proved. [

The following result is immediate.

IA

Fact 2. Let t denote the number of n,, 1 <i <k, for which n, = 0.

Then for t = 1 we have

(1) f(Pk) <3k -3-t for k > 1;
(i) f(Pk) =k~-1 Z2f t=k > 1.
Fact 3. Suppose there exist p < TS Tear S p' in Pk so that
T4l " T 7 1 and
F(p) # F(m)), F(p') # F(m ).
Then

f(Pk) < 3k - 6.

Proof. By hypotheses, we have the situation illustrated in Fig. 1.
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That is, P, can be decomposed into two sets P' , and P" ,, with

k k
k' 22, k" 2 2 and k" + k" = k. Thus, by induction

k."

£(B) S EX(R'L,) + £ + 1
<Bk'-34+3%K"-3-1)+1=3k-6

where the +1 term comes from the P-length dp(ﬂk,ﬂ )y 0O

2+l

. ] v .
Fact 4. Suppose there exist p < My <Teag <P in Pk so that

- ]
F(p) # F(r)) = F(r ) # F(p").
Then
f(Pk) < 3k ~ 4.
Proof. Let F(ﬂl) = i and let P'k, denote the set of all points
meP with m < 7 together with all points of Ai' Similarly, let

k 2

P"k" denote the set of all points ﬂePk with 7 2 T4l together with all

points of Ai' Then P'k, and P"k" are unions of arithmetic progressions

and k' 22, k" 2 2 and k' + k" = k + 1. Thus, by induction

il

£(R) = £@R') + FA@,) + 1

<3k' - 34+ 3k" -4 =3k -4

where the +1 term accounts for the P-length dp(ﬂl’ ﬂz+1) which by
hypotheses is equivalent to (1,1,1). [
Fact 5. Suppose there exist Ty < Toal < Tgg <P in P, 80 that
Togl € T and

Fry,) # F(n) = F(r ) # Fp)-
Then

f(Pk) < 3k - 3.
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Proof. As before, let F(ng) = i and let P' denote

kl

denote {meP, :w = 7

. "
{meP, :m < n£+l}Lj Ai’ and let P" K 42

k

Thus, we have the situation shown in Fig. 2, where k' = 2, k" = 2 and

18] Ai.

k' +k" =k + 1.

%, "o+ Moo, -

P’ Pll

Fig. 2.

Therefore, by induction,

f(Pk) f(P'k,) + f*(P"k") +1

<3k'-3+4+3%"-4+1=23k~-3

where the +1 term comes from dp(w ). By reflecting the above

w1’ a2

picture, a similar argument proves the following result.

Fact 6. Suppose there exist p < Lr SWopl < Moap U Pk with ﬂ£+1€S
and
F(p) # F(m)) = F(m) o) # F("£+1)'
Then
< -
f(Pk) < 3k - 3.
Fact 7. Suppose there exist ) A
PP st m, < L ST S Toayy in Pk with

T =T, + 1 and so that both To4l and Moy are regular points. Then
Totel = ﬂ£+l + 1.
Proof. i = .

00f Since ﬂ2+1 is regular then W2+l + 1 “%"epk' Since
Ton > WR +1-= ﬂl, then Ton > n2,+1. But n£,+1 is not a starting

point (by hypothesis) so that =« - 1 is a point of P, which satisfies

L'+l k
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T -l <7 -1 < ﬂzn—l =T .

e - Ty 2141 241

However, this forces l=m 1 a8 asserted. ]

2+ 2+

In the same way the following fact is proved.

Fact 8. Suppose there exist = <t <®W , <wW in P, with

2 2+l L' L'+l k
Torgl = Toqq t 1 and so that both ", and T,1 are regular points. Then

=7 +1,

Mo 3

We next show that by a suitable modification of P > we may form
another set 134 satisfying:
(i) P§ i8 the union of k arithmetic progressions A;;
(i1) f(Pi) 2 f(Pk);
(ii1) If a and b are distinct critical points of P¥ then |a-b| > 10;
(iv) If a is a starting point of Pﬁ and b is a terminal point of P:
then a <b.

To achieve this, we make a sequence of minor transformations. To

begin with, suppose aeA

i? k

with a <b. (We can call this a T-T pair). For each m such that

and bsA.j are both terminal points of P

a +n , the largest element of A , satisfies
m m m
a +n_ > a,
m m
replace A by A' ={a_+ x: 0 < x <n_+ 1}. Otherwise, let A' = A .
m m m m T T
Then in Pé = {j Aé, no pairs of critical points are closer than the
t=1
corresponding pairs in Pk were, and the distance between terminal
points of Ai and A; is strictly greater than that between a and b. By

continuing this process, we can transform Pk to P, in which all pairs

k
of terminal points differ by at least 10.
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Exactly the same techniques can be applied to pairs of starting
points (S-S pairs) as well as to all pairs {a,b} where a is a starting
point, b is a terminal point and a < b (i.e., S-T pairs). Thus, we may
assume that we now have a set ﬁk in which the only pairs of critical
points {a,b} with [a-bl < 10 are of the form: a is a terminal point,

b is a starting point and a <b. Let us consider such a pair {a,b}
with b-a minimal. By Fact 2, we may assume that b-a # 0, i.e., no
- Let aeKi and

bEK}' By hypothesis, there is some largest e1ement‘wef£ with T < a.

starting points of ik are also terminal points of P

By Fact 4, we may assume F(m) # F(a), i.e., 2 - 7 <1. There are two
possibilities:
(a) There exists ﬂ'e?? with a < 7' < b, We may assume without loss

of generality that 7' dis the least such point. By hypothesis, ¢ .and

n' are regular points. Furthermore, all the translates m + x and

' + x which fall in between a and b + 10 are regular points of fk.
Hence, if we extend Ki to Ki by letting Z; = {ai + x:0 < x < Hi + ¢}
where b <a + ¢ < b + 1, keeping all other Kt the same, then the

1]

k

a terminal point being smaller than a starting point. Now, we apply

resulting set P! has f(ﬁi) > f(?#) and also has one less occurrence of
the previous transformations to separate all the S-S, S~T and T-T pairs
to have mutual distances at least 10 again.

(b) 2 and b are adjacent points of P Thus,b - a < 1. 1In this

k
case, we extend Ki by one more term, i.e., Ki = {ai + x:0 < x < Ei + 1}.
But w + 2 and b + 2 are adjacent points of ﬁk (by Fact 1). Hence, the

only P-length a + 1 might have destroyed, namely dp(w +1, b +1), is in

fact equivalent to dp(ﬂ + 2, b+ 2). Thus, as in {(a), the new ?ﬂ has
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f(?i) > f(?k) and one less occurrence of a terminal point preceding
a starting point. Again, the previous transformations may be applied
to separate all the S-S, S-T and T-T pairs which are too close
together.

It now follows by repeated application of the preceding process,

we can reach the desired set

k
* = * =
Pk Ai {n, <=

i=1
satisfying (1) - (iv). O

In addition, by the preceding remarks we may also assume Pi satisfies

the following conditions:

() If 1 # j and pyeA,, PjcA; then |pi - pjl #0,1.

(vi) 1f 7%, w* _€P* apnd w is not adjacent to T 1
241 7k

* t 3
g1 et

then w* + t is not i *
2 t adjacent to w2+1

x € n¥} have n* 2 1,
i i

+ t for any t = 1.

A

All A* = :
(vii) Ai {ai + x: 0

(viii) Ty = M ST Mg

(ix) If To#1 ~ ﬂz = 1 then either p > Tosl

F(p) # F(nz), or p <m, for all p with F(p) # F(WQ).

= 1.

for all p with

It remains to show
f(Pﬁ) < 3k - 3. (6)

Proof of (6). Suppose (6) does not hold (so that k = 3)

Let P, . = |J A*. By the induction hypothesis.
1T MM

£(p, ) < 3k - 6.
We may assume a # 7y in P¥ where Ax = {ak +x: 0<x< ni}

defines ak.
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A

Let Q, = Pl \J{ak +x: 0<x<1i} for i = 0,1,...,n§.
By Fact 2,
£(Qy) = 3k - 4.
Suppose a is the least integer so that f(Qa)'< f(Qa+1) = 3k - 2,

where 0 € a < nﬁ. let 7, =aq +a, n,=a +a+1in P*, We first

3 k L' k k
note that we may assume a = 1. For suppose f(Qo) < f(Ql). By (4ii),
since LI aksS then LEYRY and To4q 2TE regular points. If &' = 2 + 1
then by (viii), f(Qo) = f(Ql). If 2' > 2 + 1 then by (iii) no new
P-length is created and consequently f(QO) = f(Ql) which again is
impossible. 1In what follows, the reader may find it helpful to comstruct
linear diagrams representing the various cases under consideration.
There are several possibilities.
Case 1. L' =2+ 1. If p < T for all pePi with F(p) # F(“z) =k

f(Qa) which contradicts our assumption. On the other

then f(Qa+1)

hand if there exists pePﬁ with p > Mot and F(p) # k then (ix) is contra-

dicted.
Case 2. 2' > 2 + 1 and “l' > p for all peQa+1. Since every point

between L and Ty MUSE be a terminal point of Pi then by (iii) there can

be just one such point, which is w Thus, by (iii) ﬂ£¢S and so ™

(250
+1= Mol and f(Qa+1) = f(Qa) which

2~1

exists and T, .¢S. Hence, T

2~1 -1

contradicts our assumption.

L.
Case 3. L' = 2 + 2 and there exists peQa+1 with p > LPYR 1f LT

T and T .+3 are regular points then by Facts 7 and 8, F(n, .) =

21 +3 2-1

F(m ) = F(n2+3) and £(Q) = £(Q_,,). Hence, we may assume exactly ome

atl

of them is critical., If “2+1 is critical then at least one of
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Ty_12 Tgyq MuSt be critical, which is impossible by (iii). Thus, we

must have Tl regular.

(a) ”2-168’ In this case, we still must have F(ﬂl_l) = F(“R+l)

= F(ﬂ£+3) and so, f(Qa) = f(Qa+1) which is impossible.
(®) “E—IET' Let us consider dp(nl—l’“2+l) in Qa—l (where Q_1

denotes Pk_l). Suppose the P-length dp(ﬁl—l ) of Qa—l also occurs

2T+l

somewhere in Qa' By Fact 1 we then have
< -
f(Qa—l) < 3k - 4.

Since ﬁ2+1 - 1 is a regular point then f(Qa) = f(Qa_l). Finally,

. T .
since o+l is also regular,

f@Q__{) < f(Qa) +1<3k-3

at+l
which contradicts our assumption on f(Qa+1). Suppose the P-length

d_(

o “l—l’ﬂ2+1) does not occur in Q.. Then

£(Q) = £(q,_p -1

and

£(Q,,1) < £(Q) + 1= £(q_;) < 3k - 3.

Case 4. 2' > % 4+ 2 and there exists peQ 1 with p>n Thus,
a

AN

F(p) # k and Topr < Tgroqc BY (iii), at most one of To-1> Tga1s Terope

. s . . <
Moty 15 @ critical point. But since f(Qa) f(Qa+1) at least one of
them must be a critical point. In fact we must have exactly one of

€T, T €S or T , since otherwise f(Qa+1) < f(Qa)

T-15Ts Topg 2t-1 gr1415

follows at once.
(a) Suppose ﬂl—lsT' By Fact 7,
# F(ﬂz._l), F(“£+l) = F(m

i) =«

ﬂ2,+1 = ﬂ2+1 + 1. Thus, F(ﬂz_l)

2'+l)° There are three possibilities.

- T = 1. But this implies

2'+1 2'-1
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( D= - =l=m -

241 D

“£'+l - Tr2!_1 -

which is a contradiction.

(ii) The P-length dp(wl—l’ﬂ2+l) of Qa—l does not occur in Qa' Then

£Q,) < £(q,_) - 1< 3k - 4

and
f(Qa+l) < f(Qa) +1<3k -3
since ﬂl+l is regular.
(iii) The P-length dp<ﬂ£—l’ﬂ2+1) of Qa—l occurs in Qa' Then by
Fact 1

£(q,_,) < 3k - 4
and we also note that f(Qa) < f(Qa—l)’ so

£(Q,) < £(Q) + 1< £(Q ) +1<3k-3,

and w are critical follow in a

The cases in which “2+l’ “z'—l 2'+1

similar way and the arguments will be omitted. Hence in all cases

£(Q_,,) < 3k - 3 which contradicts our hypothesis on Qa+1' This

atl
completes the proof of (b) and Theorem 1 is proved. [

To see that (3) is best possible, we consider the following

partition P= {ﬂl <M, < el < ﬂN}, k 2 2, defined as follows:
Ao = {0,1,...,k},
A, = {x +~l7 tx = i,i+l,...,i+k}, 1 <1 <k,
i 51
k-1
P = A,.
k i i
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Then D*(Pk) consists exactly of the 3k - 3 distances

k-1 k-1 k=2

1 2 11
U s v U <« v U a+-—=-L,)
=0 3t is1 3t =1 gkl 4

which is just the bound of (3).
3. The Cirveular Case

It is perhaps not surprising that the arguments needed to prove (1)
are very similar to those used in the proof of Theorem 1. In addition,
the inequalities (5) are themselves also of considerable assistance
in the proof. Rather than give the step-by-step verification of the
corresponding Facts for the circular case, we shall just state the
required results with various additional comments from which the
interested reader should have little difficulty in reconstructing a
complete proof.

We first assume we are given a fixed 6 with 0 < 6 <1, real
numbers ai and nonnegative integers ni, 1 <43i<k. Since (1) is known
to hold for k = 1, we shall assume k > 1. We let Bi denote the set

{{ai + x6}: 0 s x < ni} for 1 £ i < k, where {y} denotes the fractional

part of y. We may assume without loss of generality that [Bi| =, +1
and a, = 0. We denote the union of the Bi by
k
Qk= iL__JlBi={O=1rl< Ty <o <1rn<1rn+1=l}.

As before, we may also assume that for pieBi, pjij, i # j, we have

Ip; - le #0,0 .

For Wler, define G:Qk - {1,2,...,k} and G':Qk + {0,»} by
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G(ﬂl) =1 where 7 eBi,

2
' = =
G (“2) m where L ai + mo.

For %e¢{1,2,...,n}, define

wp) = ol 2+l
We call this the §-length of the interval (vz,w

dQ(ﬂl,ﬂ Tl GT), G 1), GN(m) - 6 (1)),

).

Mo+l © 241

2+1

As before, we say that (ﬁz,ﬂl+l) and (ﬁl,,ﬁ ) have equivalent

2'+1
Q-lengths provided either

@ Toan = Tl = 1My =l =0
or
(ii) |F2+1 - nll = |n2,+1 - n2,| # 6, G(ﬂl) = G(ﬂl'),
= ' —_ QY = 0! _
G(n2+1) = G(n£,+1) and G (ﬂz) G (n2+1) G (NZ,) G(“£+1)'

The definitions of starting point, terminal point, critical point and
regular point are similar to those for the linear case. Finally, we
let g(Qk) denote the number of inequivalent Q-lengths dQ(ﬂZ’ﬂk+l)’

1 <2 <n, and we let g*(Qk) denote the number of inequivalent Q-lengths

d (

< < i
q “2’u£+l)’ 1<% <mn, for which |7

ol " n£| # 6. What we prove,
which implies (1), is
THEOREM 2.

g(q) < 3k for k = 1. 0]
We shall also give examples to show that the bound of 3k in (1) can be
achieved, so that (1) is best possible.

As before, the strategy will be to perform a sequence of

normalizations on Qk’ eventually obtaining another set Qﬁ for which
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g(Qk) < 8(Q}) and so that the interactions between the various arithmetic
progressions of Qﬁ have been "isolated". This will then allow

S(Qﬁ) < 3k to be proved rather quickly. We assume that (7) holds for

all values less than some fixed value of k > 1. (It is not

difficult to show that it holds for k=1).

Fact 1'. Let w

er with G(ﬂz) # G(m ..). Suppose for some

22 Mol 241

integer t > 1, m, tt = ﬂz', Tl + to = LIS

Tl + t'8 are not adjacent for any t', 0 < t' < t. Then

but that L + t'6 and

< -
g(Q) < 3k - 1.
The proof of this result is similar to that of Fact 1; one considers
the set {“m:"z +t'e < TS T b t'e, 0 <t' <t} corresponding to
the set X in the proof of Fact 1.

Fact 2'. Let t denote the number of o, 1 <1 <k, for which n, = 0.

Then
8(Q) <3k -t, k > 1.
Also,
g(Qk) =k for k=t.
1 % . -
Fact 3'. Suppose there exist LITLILN with Tl ~ Mg 9 -
Then
8(Q) < 3(k-1) + 1.
To prove this, one simply breaks the circle between L and‘ﬂ2+l, unfolds

it into a straight line and applies Theorem 1.

Fact 4'. Suppose there exist w_,

. “l+1€Qk with n£+ -7, = 8.

1 2
Then

g(Qk) < 3k.
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If there is only one such pair T with w - m, = 6, then an

0 "1 w1 T e
argument similar to that used in the proof of Fact 3' applies. If

there is more than one such pair then we apply induction using Fact 3.

In a similar way the following result can be established.

Fact 5'. Suppose there exist LITLIY ’"2+2€Qk with Toap ~ Ty = 0
and TS UT Then
g(Q) = 3k.
Fact 6'. Suppose there exist Mo Toags Tpts n2,+1er with T =T, + 8

and suppose both T4y and To141 are regular points. Then

Tora1” Mpar t O

The proof is similar to that of Fact 7.
A ; :
Fact 7'. Suppose there exist w,, To41s Tors Tory€Q with
Torgr = Toqp T8 and suppose T and m,r are regular points.
Then
ﬂg' = WZ + 6.

The following result will now be basic.

Fact 8'. For any given set Q, we may form another set

Qﬁ = {0 = ni < Le.< n§ < ﬂ§+1 = 1} satisfying

(1) Qﬁ ig the union of k arithmetic progressions B; on the

etrele,
: "
(11) g(Qf) = 8(Q),
(iii) If a and b are distinct critical points of Qk, then
|a-b| > 10 o,

; * * : -
(iv) If p eBY, ijBj, i#j then Ipi pjl #0, 0,

vy If Mo w£+1er and “2 + 0 18 not adjacent to T+l + 9
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then for any t 2 1, m_ + t0 & not adjacent to w + t6,

% 2+1

(vi)Each B; conststs of at legst two points,
(vii) For all %, wi+l - n; < 8,
This result follows from the preceding facts, much in the same way as
in the construction of Pﬁ, except that 6 must be replaced with a smaller
value 6%, To illustrate the type of reduction involved, suppose a and
b are distinct starting points with a < b < a + 108, To separate them

we simply increase the length of the circle by 108, by adjoining an

appropriate segment of arc A at the point a (as shown in Fig.3).

Fig. 3.
It is not difficult to see how to extend the various progressions Bi
so that all the old Q-lengths still occur in the new circle (e.g., each
time Bi hits (a,a+6) we must take 10 extra steps to account for A).
Then we scale the new circle down to a circle of circumference 1 by
replacing by-I;%6T€ . Iterating this procedure eventually results
in a partition which satisfies (iii).

Finally, the proof of (7) is now relatively straightforward,

following roughly the same lines as the proof of (6). a
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To see that (1) is best possible, we consider the following

partition Qk (where we may assume k > 3 since the construction for

k = 1 and 2 are immediate).

Define Ay = 1-1,0,1,... K},
Ay = {x +1—i ¢ x=i, i+1,...,i+k}, 1 < i < k-3,
Aj = {x + _E : ox=j, j+Hl,...,i+k+1}, § = k-2,k-1,
3

and assume that these progressions denote taking steps of arc length

1
1 on a circle of circumference 2k +';: - (This is just a slight
2

modification of the example for the linear case which is wrapii%>around
an appropriate circle). It is easily checked that for’ Q = !:é Ai’ in
addition to the 3k-3 distances generated as in the linear cas:: we get
3 new distances as well, so that

Ip*(q )| = 3k
as required, showing that (1) is tight.
Concluding Remarks.

It is not clear in which directions interesting generalizations of
Theorems 1 and 2 lie. If we allow two different step sizes in the
arithmetic progressions then it is possible to have an arbitrarily large
number of distances between consecutive points. One could look at
questions of this type in the plane or on a torus but these have not yet
been investigated. It seems likely that in order to achieve
|D(P§)| = 3k-3 (or ID(Q§)| = 3k on a circle), one must have a fairly
large total number of points. In our constructions, we used 0(k2) points.
Perhaps this is the correct order of magnitude for the minimum number

required.

-75-



REFERENCES

{1] V. Chvatfl, D.A. Klarner and E.D. Knuth, Selected combinatorial
research problems, Computer Science Department, Stanford
University, 1972.

[2] R.L. Graham and J.H. Van Lint, On the distribution of n& modulo
1, Canad. Jour. of Math. 20 (1968), 1020-1024.

[3] D.E. Knuth, The art of computer programming, v.3,p.543,
Addison-Wesley, N.Y. (1973).

[4] J.H. Halton, The distribution of the sequence {nt} (n = 0,1,2...),
Proc. Cambridge Philos. Soc. 61 (1965), 665-670.

[5] V.T. $6s, On the theory of diophantine approximations, I, Acta
Math. VIII (1957), 461-472.

[6] V.T. Sés, On the distribution Mod 1 of the sequence na, Ann.
University of Science, Budapest, E6tvos Sect. Math. 1(1958),
127-134.

[71 N.B. Slater, The distribution of the integers n for which
{én} < ¢, Proc. Cambridge Philos. Soc. 46 (1950), 525-537.

[8] N.B. Slater, Gaps and steps for the sequence n® mod 1, Proc.
Cambridge Philos. Soc. 63 (1967) 1115-1123.

[91 s. Swierczkowski, On successive settings of an arc on the
etreumference of a cirele, Fund. Math. 46 (1958), 187-189.

Murray Hill, New Jersey

Received March 22, 1976

-76-



