ON THE PRIME FACTORS OF $\binom{n}{k}$

P. ERDŐS
Hungarian Academy of Sciences, Budapest, Hungary
and
R. L. GRAHAM
Bell Laboratories, Murray Hill, New Jersey

A well known theorem of Sylvester and Schur (see [5]) states that for $n > 2k$, the binomial coefficient $\binom{n}{k}$ always has a prime factor exceeding k. This can be considered as a generalization of the theorem of Chebyshev: There is always a prime between m and $2m$. Set

$$\binom{n}{k} = u_n(k)\nu_n(k)$$

with

$$u_n(k) = \prod_{p < k} p^\alpha \quad \nu_n(k) = \prod_{\rho \geq k} \rho^\alpha.$$

In [4] it is proved that $\nu_n(k) > u_n(k)$ for all but a finite number of cases (which are tabulated there).

In this note, we continue the investigation of $u_n(k)$ and $\nu_n(k)$. We first consider $\nu_n(k)$, the product of the large prime divisors of $\binom{n}{k}$.

Theorem.

$$\max_{1 \leq k \leq n} \nu_n(k) = \frac{n}{2}(1 + o(1)).$$

Proof. For $k < \epsilon n$ the result is immediate since in this case $\binom{n}{k}$ itself is less than $e^{n/2}$. Also, it is clear that the maximum of $\nu_n(k)$ is not achieved for $k > n/2$. Hence, we may assume $\epsilon n < k < n/2$. Now, for any prime

$$p \in \left\{ \frac{n - k}{r}, \frac{n}{r} \right\}$$

with $p > k$ and $r > 1$, we have $p | \nu_n(k)$. Also, if $k^2 > n$ then $p^2 | \nu_n(k)$ so that in this case the contribution to $\nu_n(k)$ of the primes

$$p \in \left\{ \frac{n - k}{r}, \frac{n}{r} \right\}$$

is (by the Prime Number Theorem (PNT)) just $\frac{n}{r}(1 + o(1))$. Thus, letting $\frac{n}{r + 1} < k < \frac{n}{r}$, we obtain

$$\nu_n(k) = \exp \left[\left(\sum_{r=1}^{k} \frac{k}{r} + \left(\frac{n}{r} - k \right) \right) \left(1 + o(1) \right) \right] = \exp \left[\left(\frac{n}{r} \sum_{r=1}^{k-1} \frac{1}{r} \right) \left(1 + o(1) \right) \right]$$

$$\leq \frac{n}{2}(1 + o(1)).$$

and the theorem is proved.

It is interesting to note that since

$$\frac{n}{r} \sum_{r=1}^{k-1} \frac{1}{r} = \frac{1}{2}$$

348
for both $t = 2$ and $t = 3$ then
\[
\lim_{n \to \infty} \nu_n(k)^{1/n} = e^{1/2}
\]
for any $k \in \left(\frac{n}{3}, \frac{n}{2} \right)$.

In Table 1, we tabulate the least value $k^*(n)$ of k for which $\nu_n(k)$ achieves its maximum value for selected values of $n \leq 200$. It seems likely that infinitely often $k^*(n) = \frac{n}{2}$ but we are at present far from being able to prove this.

<table>
<thead>
<tr>
<th>n</th>
<th>$k^*(n)$</th>
<th>n</th>
<th>$k^*(n)$</th>
<th>n</th>
<th>$k^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>12</td>
<td>6</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>13</td>
<td>4</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>16</td>
<td>6</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>17</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that

$\nu_1(0) < \nu_1(1) < \nu_1(2) < \nu_1(3)$.

It is easy to see that for $n > 7$, the $\nu_n(k)$ cannot increase monotonically for $0 < k < \frac{n}{2}$.

Next, we mention several results concerning $u_n(k)$. To begin with, note that while $u_1(k) = 1$ for $0 < k < \frac{n}{2} = \frac{7}{2}$, this behavior is no longer possible for $n > 7$. In fact, we have the following more precise statement.

Theorem. For some $k < (2 + o(1)) \log n$, we have $u_n(k) > 1$.

Proof. Suppose $u_n(k) = 1$ for all $k < (2 + \varepsilon) \log n$. Choose a prime $p < (1 + \varepsilon) \log n$ which does not divide $n + 1$. Such a prime clearly exists (for large n) by the PNT. Since $p | n + 1$ then for some k with $p < k < 2p$,

\[
p^2 | n(n - 1) \cdots (n - k + 1), \quad p^2 \nmid k!
\]

Thus, $p \nmid u_n(k)$ and since

\[
k < 2p < (2 + 2\varepsilon) \log n,
\]

the theorem is proved.

In the other direction we have the following result.

Fact. There exist infinitely many n so that for all $k < (1/2 + o(1)) \log n$, $u_n(k) = 1$.

Proof. Choose $n + 1 = \text{l.c.m.} \left\{ 1, 2, \cdots, \left\lfloor \frac{n}{2} \right\rfloor \right\}$. By the PNT, $n = e^{(2 + o(1)) \frac{n}{2}}$. Clearly, if $m < t$ then $m! \left(\frac{n}{t} \right)$. Thus,

\[
u_n(k) = 1 \quad \text{for} \quad k < \left(\frac{1}{2} + o(1) \right) \log n
\]

as claimed.

In Table 2 we list the least value $n^*(k)$ of n such that $u_n(i) = 1$ for $1 < i < k$

<table>
<thead>
<tr>
<th>k</th>
<th>$n^*(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>71</td>
</tr>
</tbody>
</table>
Of course, for \(k \leq 2 \), \(v_n(k) = 1 \) is automatic. By a theorem of Mahler [11], it follows that

\[
u_n(k) < n^{1+\epsilon}
\]

for \(k \geq 3 \) and large \(n \). It is well known that if \(\rho \alpha \mid \binom{n}{k} \) then \(\rho \alpha < n \). Consequently,

\[
u_n(k) < n^{\pi(k)},
\]

where \(\pi(k) \) denotes the number of primes not exceeding \(k \). It seems likely that the following stronger estimate holds:

\[
(*) \quad u_n(k) < n^{(1+o(1))(1-\gamma)\pi(k)}, \quad k > 5,
\]

where \(\gamma \) denotes Euler's constant. It is easy to prove \((*)\) for certain ranges of \(k \). For example, suppose \(k \) is relatively large compared to \(n \), say, \(k = n/t \) for a large fixed \(t \). Of course, any prime \(p \in (n - n/t, n) \) divides \(v_n(k) \) and by the PNT

\[
\prod_{n(1-1/t) < p < n} p = e^{(1+o(1))n/t}.
\]

More generally, if \(n \in (n/t, n) \) with \(r < t \) then \(p > k \) and \(p \mid v_n(k) \) so that again by the PNT

\[
\prod_{n/r < p < n/r} p = e^{(1+o(1))n/rt}.
\]

Thus

\[
v_n(k) > \prod_{1 < r < t} \frac{n}{r} \left(\frac{1}{r} \right) < p < \frac{n}{r} \prod_{1 < r < t} \frac{p}{r} = e^{(1+o(1))\sum_{1 < r < t} \frac{r}{t}} \frac{n}{r} = e^{(1+o(1))(1-\gamma)n/\pi(k)}.
\]

But by Stirling's formula we have

\[
\binom{n}{n/t} = e^{\frac{n}{2} \log t + o(1)} \binom{n}{t}.
\]

Thus,

\[
u_n(k) = \binom{n}{k} / v_n(k) < e^{\frac{n}{2} \log t + o(1)} \binom{n}{t} = n^{(1+o(1))(1-\gamma)\pi(k)} = e^{(1+o(1))(1-\gamma)n/\pi(k)}.
\]

which is just \((*)\).

In contrast to the situation for \(v_n(k) \), the maximum value of \(u_n(k) \) clearly occurs for \(k > n/2 \). Specifically, we have the following result.

Theorem. The value \(k(n) \) of \(k \) for which \(u_n(k) \) assumes its maximum value satisfies

\[
k(n) = (1+o(1)) \left(\frac{e-1}{e+1} \right) n.
\]

Proof. Let \(k = (1 - cn) \). For \(c < \frac{1}{2} \),

\[
v_n(k) = \prod_{n-k < p < n} p = e^{(1+o(1))cn}.
\]

Since

\[
\binom{n}{k} = \binom{n}{cn} = e^{-c \log c^{1-c}(1-c)(1+c)(1+o(1))n}
\]

then

\[
u_n(k) = \binom{n}{k} / v_n(k) = e^{-(1+o(1))(c+1+c)(1-c)n}.
\]

A simple calculation shows that the exponent is maximized by taking \(c = \frac{1}{e+1} = 0.2689 \ldots \).
Concluding remarks. We mention here several related problems which were not able to settle or did not have time to investigate. One of the authors [8] previously conjectured that \(\binom{2n}{n} \) is never squarefree for \(n > 4 \) (at present this is still open). Of course, more generally, we expect that for all \(\alpha \), \(\binom{2n}{n} \) is always divisible by an \(\alpha \)th power of a prime > \(k \) if \(n > n_\alpha (\alpha, k) \). We can show the much weaker result that \(n = 23 \) is the largest value of \(n \) for which all \(\binom{n}{k} \) are squarefree for \(0 \leq k < n \). This follows from the observation that if \(p \) is prime and \(p^\alpha \mid \binom{n}{k} \) for any \(k < n \), then \(p^{\beta \mid n+1} \), where

\[
p^{\beta} \geq \frac{n+1}{p^{\alpha}-1}.
\]

Thus, \(2^\beta \mid \binom{n}{k} \) for any \(k \) implies \(2^{\beta \mid n+1} \) where \(2^{\beta} \geq \frac{n+1}{3} \). Also, \(3^\gamma \mid \binom{n}{k} \) for any \(k \) implies \(3^{\gamma \mid n+1} \) where \(3^{\gamma} \geq \frac{n+1}{8} \). Together they imply that \(d = 2^33^{\gamma \mid n+1} \) where \(d > (n+1)^3/24 \). Since \(d \) cannot exceed \(n+1 \) then \(n+1 < 24 \) is forced, and the desired result follows.

For given \(n \) let \(f(n) \) denote the largest integer such that for some \(k \), \(\binom{n}{k} \) is divisible by \(f(n)^{th} \) power of a prime. We can prove that \(f(n) \to \infty \) as \(n \to \infty \) (this is not hard) and very likely \(f(n) > c \log n \) but we are very far from being able to prove this. Similarly, if \(F(n) \) denotes the largest integer so that for all \(k \), \(1 < k < n \), \(\binom{n}{k} \) is divisible by the \(F(n)^{th} \) power of some prime, then it is quite likely that \(\lim F(n) = \infty \), but we have not proved this.

Let \(P(x) \) and \(p(x) \) denote the greatest and least prime factors of \(x \), respectively. Probably

\[
p\left(\binom{n}{k}\right) > \max \left(n-k, k^{1+\epsilon}\right)
\]

but this seems very deep (for related results see the papers of Ramachandra and others [11], [12]).

J. L. Selfridge and P. Erdős conjectured and Ecklund [1] proved that \(p\left(\binom{n}{k}\right) < \frac{n}{2} \) for \(k > 1 \), with the unique exception of \(p\left(\binom{2}{3}\right) = 5 \). Selfridge and Erdős [9] proved that

\[
p\left(\binom{n}{k}\right) < \frac{c_1n}{k^{\epsilon_2}}
\]

and they conjecture

\[
p\left(\binom{n}{k}\right) < \frac{n}{k} \text{ for } n > k^2.
\]

Finally, let \(d\left(\binom{n}{k}\right) \) denote the greatest divisor of \(\binom{n}{k} \) not exceeding \(n \). Erdős originally conjectured that \(d\left(\binom{n}{k}\right) > n - k \) but this was disproved by Schinzel and Erdős [13]. Perhaps it is true however, that \(d_n > cn \) for a suitable constant \(c \).

For problems and results of a similar nature the reader may consult [2], [3], [6], [7], [10] or [11].

REFERENCES
