

Computation time is shown for various
time complexity functions and for
several valuves of size n for a problem
instance. See text on p. 180

RONALD L. GRAHAM iz Head,
Discrete Mathematics Department,
and MICHAEL R. GAREY is a Member
of the Technical Staff, Mathematics
Research Center, Bell Laboratories,
Murray Hill, New Jersey.

lllustrations by John Craig

Writers of science fiction are fond of imagining colossal, anthro-
pomorphic supercomputers, capable of solving almost instantly any
problem posed to them. These fantastic machines are in many ways
natural extrapolations of the digital computers of the 1970s, which
already have become the most sophisticated tools ever devised by man-
kind. As one views the rapid progress in computer technology and the
wide variety of tasks currently performed using computers, it seems
reasonable that supercomputers will someday become reality and that
there is in fact no limit to the complexity of problems that eventually
will be solvable by computers.

More than 40 years ago, however, British logician Alan Turing dem-
onstrated conclusively the existence of fundamental limitations on
what can be done using computers. His discoveries laid the ground-
work for what is known as the theory of computational complexity. This
theory seeks to quantify the amount of time and other resources re-
quired to solve problems on computers and has been the subject of
particularly intense research activity during the last ten years. Quite
recently a number of startling new results have been obtained.

Computer algorithms

The theory of computational complexity studies the properties of gen-
eral step-by-step problem-solving methods called algorithms. A great
many algorithms are familiar tools of computation, although that term
might not be used in referring to them. For instance, many people have
learned (and probably forgotten) an algorithm for determining the
square root of any given number. Also well known are algorithms for
computing baseball batting averages, for determining the area of any
given triangle, for finding the greatest common divisor of two given
numbers, and for summing arbitrary lists of arbitrarily large numbers.

These examples indicate the very general capabilities possessed by
algorithms. They are intended to solve not just one single occurrence
of a problem but every occurrence of that problem, even though each
occurrence may involve different values of the problem parameters.
For this reason it will be convenient to think of a problem as a rather
general entity, consisting of certain parameters whose values are left
unspecified and a prescription of what is to be constructed or com-
puted from those parameters once they have been specified. An in-
stance of a problem is obtained by assigning actual values to all the
parameters. For example, one such problem is that of arranging an
arbitrary list of English words into alphabetical order. The parameter
left unspecified is the list of words, so an instance of this problem
would be obtained by giving a specific list, such as the first 100 words
of this article.

An algorithm for a given problem must be capable of solving any
instance of that problem. In order that others may use it or that it be
executed on a computer, every step must be specified completely and
in sufficient detail that there never will be any ambiguity about what to
do next. Before going on, it may be instructive to consider how an

172

complexity

sizen

10 20 30 40 50 60
n? 0.0001 0.0004 0.0009 0.0016 0.0025 0.0038
second second second second second second
o 0.001 0.008 0.027 0.064 0.125 0.216
second second second second second second
e 0.1 3.2 243 1.7 5.2 13
second seconds seconds minutes minutes minutes
o 0.001 1 17.9 12.7 3s.7 366
second second minutes days years centuries
& 0.059 58 6.5 3,855 2 x 100 1.3 = 10"
second minutes years centurles | centuries | centuries

]

G
AL
i
A

Tl
.s?.l

algorithm for alphabetizing a list of words could be so specified. Most
natural languages have built-in ambiguities that make such specificity
difficult, although people with common backgrounds often will agree
on what is meant. The usual way of specifying an algorithm, in such
detail that it can be executed on a computer, is to express it as a
computer program written in a precise computer language. The input
to such a computer program is used to describe the particular instance
to be solved.

Instead of thinking in terms of any single existing computer, math-
ematicians have found it useful to introduce an abstract model of a
computer, called a Turing machine. This model is conceptually simple,
yet broad enough to reflect accurately the behavior of any existing or
planned computer. Thus the Turing machine provides a common
framework for mathematicians’ investigations into the properties of
algorithms. For the purposes of this article, however, it will not be
necessary to define a Turing machine in rigorous detail. It will suffice
simply to think in terms of any standard computer, and the following
discussions will not depend on any special capabilities possessed by
ong computer but not another.

An alphabetizing algorithm
One simple algorithm for alphabetizing an arbitrary list of words can be
described as follows. Assume that the positions in the list are num-
bered from 1 through m in order, in which m is the total number of
words on the list. The algorithm will scan repeatedly through the list,
interchanging adjacent words whenever they are not in alphabetical
order, until the whole list has been alphabetized. To do this, It uses two
auxiliary variables. The first, called poinTER, will always be the number
of the next position on the list to be examined. The second, called
CHANGE, will always be the number of interchanges made so far in the
current scan of the list.
step 1: Set POINTER to position 1 and set cHANGE to 0.
step 2: Compare the two words in list positions POINTER and POINTER
+ 1 to find the leitmost place in which they differ. If the word
in position POINTER =+ 1 has the alphabetically earlier letter in
this place (no letter or “blank' is considered earlier than “a"}),
then interchange the positions of the two words and add 1 to
CHANGE.
step 3: Increase POINTER by 1. If POINTER is less than m, return to step
2 to continue this scan of the list.
step 4: (Reaching this step implies that POINTER equals m, so the
algorithm is at the end of the list.) If chanGE is 0, the list is now
in alphabetical order. If cHANGE is larger than O, however,
return to step 7 to begin another scan of the list.

Undecidable problems

In 1936 Turing proved the existence of a class of problems, called
undecidable problems, which are so difficult that no algorithm for solv-
ing them can ever be devised. This astounding discovery, which ranks
among the most profound intellectual achievements of the 20th cen-
tury, is especially significant because computers seem to embody all
the logical and computational capabilities imaginable. Thus, whatever
instruments man may ever have at his disposal, the undecidable prob-
lems are destined to remain forever beyond his computational reach.

Turing showed specifically that one particular problem, called the
Halting Problem, is undecidable. The Halting Problem is that of decid-
ing, given an arbitrary computer program and an arbitrary input for that
program, whether or not the program will eventually stop when given
that input. An algorithm for this problem would have obvious uses, for
example, in “debugging” computer programs and in aveiding embar-
rassing computer-budget overruns.

The proof that such an algorithm can never be given proceeds by
assuming the existence of a program P* that actually can solve the
Halting Problem; ie., one that can determine for any given pesisims P <~ = SF—==""
and specified input | whether or not P will halt when applied to I.
Suppose one's attention is now restricted to those programs P that
themselves answer questions about programs, so that the inputs | to
which they are applied are actually descriptions of other programs. In
such situations P* can be used to decide whether or not a given pro-
gram P of this type will halt when applied to a description of P itself.
Suppose P* were so structured that, whenever it decides that P halts,
it prints "P halts" indefinitely, without stopping; otherwise, it simply
prints “P does not halt” and stops. Next consider what P* will do when
asked to decide about itself. It either will continue printing "P* halts"”
indefinitely, without ever halting, or will print "“P* does not halt” and
then halt. Hence, whatever the program decides about itself, it obvi-
ously will contradict that decision by the manner in which it prints its
answer. Because only one assumption was made—that a program for
solving the Halting Problem existed—and because that assumption
leads to a contradiction, it must be admitted that no such program can
exist. The Halting Problem is undecidable.

In the years since Turing's initial discovery, many other problems
from a variety of mathematical realms have been shown to be undecid-
able. One of the most picturesque is known as the Tiling Problem. In
the Tiling Problem, one is given a finite variety of equal-sized square
tiles. Each tile has each of its four edges colored with a specific color
and is given a fixed orientation, with its edges running horizontally and
vertically. It is assumed that one can obtain as many copies of each kind
of tile as are needed. These can be put together, like dominoes, to form
various configurations. In doing this, it is required that abutting edges
of adjacent tiles be of the same color and that no tile be rotated from
its initial orientation. The question to be decided is whether or not the
given tiles can be used to form increasingly large, completely filled-in,

175

In this variation of the Tiling Problem,
copies of 19 tiles are used to form
arbitrarily large, completely filled-in,
square configurations with the
requirement that the purple, white,
and blue tile be used at least once;
other conditions described in text also
hold. Depicted is a portion of a solid
tiling that appears indefinitely
extensible in all directions. Yet
proving this property seems beyond
the scope of present-day mathematics.

square configurations. If such tilings are possible, the given set of tile
varieties is said to be solvable.

Motice that there is an effective, though possibly lengthy, method for
demonstrating that a given set of tiles is nof solvable. For if it is not
solvable, then there must exist a square of some size, say 1,000 by 1,000
tiles, that cannot be formed. Thus, if one considers each size square in
turn, in order of increasing size, and examines all possible ways of
forming a square of that size with the given set of tiles, one will eventu-
ally discover some size that cannot possibly be formed. However, if the
set of tiles is solvable, this procedure will never demonstrate this fact
conclusively because it will never terminate.

How then could it ever be shown that a set is solvable? One approach
is as follows. Suppose one were able to form a particular square con-
figuration R, say of size r by r, in such a way that both horizontal
boundaries had the same pattern of colors and that both vertical boun-
daries had the same pattern of colors. Then it is easy to see that any
square could be formed with side length a multiple of r simply by
placing together copies of R. Of course, every other size square occurs
as a portion of one of these squares, so this method would show that
the given set of tiles is solvable.

If every solvable set of tiles could be used to form some such configu-
ration R, then one would have an algorithm for the Tiling Problem.
First, all possible 2-by-2 squares could be formed from the tiles, then
all the 3-by-3 squares, then all the 4-by-4 squares, and so on. Eventually
one of two things would happen. If the set of tiles is solvable, one
should eventually find a square. R, having the desired repeated color
patterns. If the set is not solvable, one should find some size square for
which no tiling is possible. In either case, the procedure will eventually
terminate. However, it turns out that there exist solvable sets of tiles
that cannot be used to form any square with such repeated color pat-
terns. The first such set, constructed by Robert Berger of Harvard Uni-
versity in 1964, contained more than 20,000 types of tiles. It played a
major role in his proof that the Tiling Problem is undecidable, complet-
ing a line of attack initiated some years earlier by the logician Hao
Wang. Very recently Raphael Robinson of the University of California
at Berkeley and Roger Penrose of the University of Oxford succeeded
in reducing the number of needed tile varieties to only 24.

Of course, the existence of these sets of tiles alone is not enough to
prove the undecidability of the Tiling Problem. They only show that the
approach proposed above cannot give an algorithm. The main portion
of Berger's proof shows that the computation of any computer program
can be simulated exactly by an appropriately chosen set of tiles. In
particular, to each computer program and each input to that program
there corresponds a set of tiles that is solvable if and only if the pro-
gram will eventually stop when given that input. This implies that any
algorithm for solving the Tiling Problem could also be used to solve the
Halting Problem. But because the Halting Problem has been proved
undecidable, it follows that the Tiling Problem also is undecidable.

176

An instance of the Traveling Salesman
Problem is shown for 22 US. stale
capitals. A salesman begins at his

home city, visits the other cities, and
returns home, traveling the least total
distance in the process. The route
traced in red has a total length of
8,119 miles. The shortast route,
however, has a total length of 8,117
miles. The reader is invited to find it.

Decidable problems that are hard

Undecidable problems like the Halting Problem and the Tiling Problem
are beyond the capabilities of any computer because no algorithm for
solving them can exist, even in principle. However, there is another
sense in which a problem can be too hard. This second sense applies
to those problems for which algorithms can be specified, the so-called
decidable problems. A decidable problem can be hard because, even
though algorithms exist for its solution, none of them can possibly
operate in a reasonable amount of time. This is somewhat akin to the
problem of automatic weather prediction; a computer program for pre-
dicting one day's weather from that of the preceding day would not be
very useful if it required more than 24 hours to do it. Similarly, an
algorithm for solving instances of a problem of current interest might
not be useful if it required many years of computer time. Thus, it is not
enough that an algorithm exists to solve a particular problem; it is
important that a suitably fast algorithm exists.

Consideration of what is meant by “suitably fast”" forms the main
thrust of the theory of computational complexity; namely, analyzing the
amount of time required by algorithms for solving particular problems.
Since there often are many different ways to solve a given problem,
such analyses are important for comparing different algorithms as well
as for determining beforehand whether an algorithm is fast enough to
be used in practice.

Of course there is not just a single length of time associated with an
algorithm, but rather a whole collection of execution times, one for
each instance of the problem. The time required by an algorithm is
really a mathematical function, one that gives for each problem
instance the amount of time needed by the algorithm to solve that
instance. This function is usually quite complicated and not particularly
amenable to mathematical analysis. For some purposes, it is more
convenient to express computation time as a function of the “size” of
an instance. The size of a problem instance is defined to be the number
of symbols needed to describe that instance. For example, the size of
a list of words to be alphabetized would be the sum of the letter counts
of all the words on the list. The function that gives for each size the
largest amount of time required by the algorithm to solve any problem
instance of that size is called the time complexity function for the
algarithm. It is usually possible to determine this function, or a close
approximation to it, by a mathematical analysis of the algorithm.

An important distinction between algorithms can be based on the
rate at which the values of their time complexity functions grow with
problem instances of increasing size. This distinction essentially parti-
tions algorithms into two classes, although all algorithms are not
necessarily one type or the other. The first class includes those for
which the time complexity function grows only at a moderate rate,
whereas the second includes those for which this function grows ex-
plosively. In defining these classes precisely the variable n can be used
to denote the size of a problem instance. The first class, called

178

S
o fl
E
= -
e]

In one example of the Bin Packing
Probilem, four trucks, each with a
capacity of 10,000 pounds, can be
used to deliver the loads depicted. In
fact, with an additional 1,800 pounds,
four trucks will still suffice. Again, the
reader ig invited to determine how
such a task can be accomplished.

polynomial algorithms, consists of those algorithms for which the time
complexity function grows no faster than n to some constant power,
such as n?, n®, or ', Notice here that the size n does not appear in the
exponent. The second class, called exponential algorithms, consists of
those for which the time complexity function grows as fast as some
constant to the power n, such as 2", 37, or 7°. Here the size n does
appear in the exponent.

Perhaps the easiest way to see why this distinction is important is by
examining some examples. The table on page 173 illustrates the com-
putation time for various time complexity functions of each type and for
various values of the size n for a problem instance. The first three
functions, n?, n? and n® are time complexity functions for typical
polynomial algorithms; the last two functions, 27 and 37, are time com-
plexity functions for typical exponential algorithms. Each is to be inter-
preted as giving the time in microseconds required by that particular
algorithm for solving an instance of size n.

The immense difference between the growth rates of computation
time for the two types of algorithms is quite striking. All five algorithms
require comparable amounts of time for instances of size 10, but as n
grows they diverge rapidly, and the polynomial algorithms become far
superior. In general, the growth rate for exponential algorithms is so
explosive that they are not reasonable to use for solving problem in-
stances of even moderately large size. For these reasons it is important
to find polynomial algorithms for solving problems. A decidable prob-
lem for which it is impossible to give a polynomial algorithm is said to
be intractable, because even with future computers there is little hope
for the solution of large-sized instances of such a problem.

What is known about the existence of intractable problems? It is only
within the past few years that researchers in mathematics and computer
science have succeeded in proving that any of the classical decidable
problems are intractable. The first results of this type were obtained in
1972 by Albert Meyer and Larry Stockmeyer of the Massachusetts Insti-
tute of Technology. Subsequent work has lengthened the list of intract-
able problems.

One of the most easily described examples of an intractable problem
deals with what is called Presburger Arithmetic. Basically, Presburger
Arithmetic involves a simple, logical system for writing down state-
ments about the integers 0, 1, 2, 3,. . .. The statements are formed using
only the logical connectives (and, or, not), quantifiers ([for all x], [there
is a y such that]), and plus (+) and equals (=) signs. For example,
[for all x][for all y] (x + y = y + x) is such a statement. Another example
is [for all x] [there is a y such that] (x + x = y + y + 1). Notice that the
first statement is true; it merely expresses the familiar commutative law
of addition. However, the second statement is not true, because x + x
is always an even number while y + y + 1 is always an odd number. The
decision problem for Presburger Arithmetic is to decide, given any such
staternent, whether or not the statement is true.

In 1930 the Polish logician M. Presburger showed that the decision

180

5,400 Ib

1.000 Ib

3,600 Ib

3,120 Ib

1.800 b

The Minimum Network Froblem has as

its objective the connection of a given

sat of points with a network having

the shortest possible total length.

Shown at the top of the facing page

are three connecting networks for the

corners of a square. The laft one,

using no junction points, has a total

length of 3. The center one, with one

junction point (a), has a total length of

23, or 2828.... The right network,

with two junction peints (a and b), has

a total length of @V W or

XS smmem , and is the shortest possible
connecting network for this situation.
The network shown in the lower figure
connects 11 oil-consuming and
oil-producing locations in the US. It
employs five additional junction points
and is the shortest possible
connecting network for these
locations. Without junction points the
network would be 5% longer.

problem for Presburger Arithmetic is decidable. He gave an explicit
algorithm that will always eventually determine whether or not any
given statement of the above type is true. This was a major contribution,
for it was by no means obvious beforehand that such an algorithm
would exist. Unfortunately Presburger did not give a polynomial al-
gorithm and subsequent efforts to improve upon his method met with
little success.

However, in 1974 Michael Fischer of miT and Michael Rabin of the
Hebrew University, Jerusalem, showed that the decision problem for
Presburger Arithmetic is intractable. In fact, they showed something
even stronger. They proved the existence of a number ¢ such that, for
any algorithm that solves the decision problem for Presburger Arith-
metic and for all sufficiently large numbers n, there are statements with
no more than n symbols that cause the algorithm to take more than
22°" steps. This “superexponential” function grows much more rapidly
than even the exponential functions discussed above. Such results
certainly help to explain the lack of success in devising computer pro-
grams that would automatically prove theorems in mathematics.

A perplexing class of problems

The subject of intractable problems remains one of the most active
fields of research in contemporary mathematics and computer science.
Many individual problems still have not been classified as to whether
or not they are intractable; neither polynomial algorithms nor proofs of
intractability are known for them. One particular collection of such
problems has been singled out for special attention, both because of
the practical importance of the problems in the collection and because
of the intriguing way in which they are all related. These are known as
NP-complete problems.

The class of NP-complete problems first arose during 1971 in the
work of Stephen Cook of the University of Toronto, Ontario. While
investigating the capabilities of hypothetical “nondeterministic’” com-
puters (the symbol NP in NP-complete stands for nondeterministic
polynomial time), he succeeded in showing that several unclassified
problems were equivalent in the sense that a polynomial algorithm for
any one of them could be used to build a polynomial algorithm for each
of the others. Thus either all of them are intractable or else none of
them is. Subsequently, Richard Karp of the University of California at
Berkeley and others showed that many additional problems, some
of which had been studied for years in other contexts, were similarly
equivalent to the problems of Cook. All such equivalent problems are
called NP-complete problems.

This remarkable equivalence of so many different problems reduces
a multitude of classification questions to one single question. Are all
the NP-complete problems intractable or can they all be solved with
polynomial algorithms? Little progress has been made in answering
this perplexing question. However, based on many years of unsuccess-
ful attempts to find polynomial algorithms for individual problems in

182

Albugquerque '

xxxxx

.........

......

this class, the intuition of most mathematicians is that all NP-complete
problems are indeed intractable. Demonstration that a problem be-
longs to the class of NP-complete problems is widely accepted as a
demonstration of its intractability.

Several typical examples can be used to illustrate the wide variety of
problems currently known to be NP-complete. One example is known
as the Traveling Salesman’s Problem. In this problem a salesman is
given a list of cities and a road map telling him the shortest route
between each pair of cities. The salesman would like to begin at his
home city, visit all the other cities, and return to his home city, traveling
the least total distance in the process. The problem of finding this
shortest route has recently been shown to be an NP-complete problem.
The only algorithms known for solving it consider essentially all possi-
ble routes and compare them to find the best, a hopeless proposition
for general instances involving even as few as 30 cities.

A different type of NP-complete problem, called the Bin Packing
Problem, can be described as follows. One is given a list of items to be
delivered —say, by truck —from one fixed location to another. Each item
has a certain weight and the truck has some maximum total weight it
can hold. The objective is to determine which items should be taken
together on each trip so as to minimize the total number of trips needed
for delivery of the items. For example, if the weights of the items are
4,500, 4,250, 3,500, 2,500, 2,250, and 2,000 pounds and the truck
capacity is 10,000 pounds, then two trips would be sufficient. In the first
trip the truck can carry the items weighing 4,500, 3,500, and 2,000
pounds and in the second trip it can carry the rest. However, if the truck
can hold only 9,500 pounds then three trips would be required, even
though the total weight of the items is only 19,000 pounds.

The Bin Packing Problem can appear in a variety of guises: eg.
cutting up the minimum number of standard-length boards to produce
pieces having prescribed lengths or scheduling a list of television com-
mercials of various lengths into the smallest possible number of station
breaks. Instances of this problem that involve many different items can
be extremely difficult, and again no method short of considering essen-
tially all possibilities is known always to work.

The last illustration is called the Minimum Metwork Problem. In this
problem one is given a set of locations representing, for example, oil-
producing sites in an oil field or branch locations of a large corporation.
The object is to connect all the locations together with a network hay-
ing the shortest possible total length (so that all the oil can reach a
common refinery or shipping port, or so that all the corporate branch
locations can communicate on a private-line telephone network). What
makes this problem difficult is that junction points are allowed in the
network if they can help decrease the total length. For example, if four
oil wells are located at the four corners of a square one mile on a side,
it is easy to envision a network of pipelines with a total length of three
miles connecting them. This is not the shortest network, however. The
shortest network requires two junction points and has a total length of

184

(4/+3) + v2 = 2.808. .. miles. The difficulty of determining in general
precisely where to place these junctions for large sets of locations is
what makes the Minimum Network Problem NP-complete,

Because of the considerable differences among the preceding prob-
lems, it is by no means obvious that they are actually equivalent; ie.,
that any polynomial algorithm to solve one of them (if it existed) could
always be used to obtain polynomial algorithms for solving the others,
In fact, the proofs that they are indeed equivalent are long and com-
plicated. Techniques for proving such equivalences are constantly be-
ing developed and improved, and a substantial amount of theory is
emerging that deals just with NP-complete problems. The examples
presented are intended to indicate the great diversity of NP-complete
problems and how remarkable it is that they can be shown to be compu-
tationally equivalent.

Future directions

The field of computational complexity is still relatively young, and
many questions remain to be answered. One of these has already been
discussed, that of determining whether or not the NP-complete prob-
lems are all intractable. More generally there is a real need to assemble
a collection of analytical tools for determining precisely the inherent
complexity of problems. Efforts are proceeding in this direction, but
progress is slow.

One direction in which substantial gains are being made is that of
coping with the complexity of intractable problems that arise in practi-
cal applications. Many of these problems are optimization problems,
which require one to find the best (cheapest, smallest, shortest, and so
on) among all “feasible” solutions. The intractability of such problems
often can be avoided by no longer requiring the best solution, but by
merely asking for a good solution. For some intractable problems sim-
ple algorithms have been discoverad that are guaranteed always to find
feasible solutions coming within a fixed small percentage of the best
solution. In these cases the tradeoffs between the time required to find
asolution and the quality of that solution are important. Also under way
is research into the possibility of devising simple algorithms capable of
finding good solutions “on the average.” It is anticipated that the next
few years will see substantial progress on these fronts.

185

