RAMSEY THEORY

R. L. Graham and B. L. Rothschild

INTRODUCTION

In 1930, F. P. Ramsey [27] proved a remarkable theorem as
part of his investigations in ‘formal logic’. The theorem is a pro-
found generalization of the ‘pigeon hole principle’ or ‘Dirichlet
box principle’. As is the case with many beautiful ideas in math-
ematics, Ramsey’s Theorem extends just the right aspect of an ele-
mentary observation and derives consequences which are extremely
natural although far from obvious. Recently it has been recognized
that many results in combinatorial theory and other areas have the
same flavor as Ramsey’s Theorem, and the attempt to capture
this common flavor, and to develop some general ideas based on
it, has led to a proliferation of results which consitute what we
describe here as ‘Ramsey Theory’. In many cases, including the
original theorem itself, the existence of certain numbers is asserted.
A large effort has gone into finding exact values and bounds for
these ‘Ramsey numbers’.

We shall try here to describe some interesting aspects of the
subject. We will of necessity leave out many more specialized re-
sults as well as all proofs, with the exception of several simple ones
which we include at the end of the chapter. Rather we will try to
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emphasize the general ideas of Ramsey Theory, hopefully sacrificing
completeness for the sake of palatability.

We now describe a certain very general class of theorems which
we shall call Ramsey theorems. In contrast to many subjects, here
the most general formulation is by far the most elementary and
immediate.

A bipartite graph G is a graph with its vertices divided into two
classes A and B, such that each edge of G has one vertex in A and
one vertex in B. If the vertices of A are partitioned into » classes
(called colors) then a vertex b in B is called monochromatic if all
vertices @ in A which are adjacent to b lie in a single class (where
possibly 7 is infinite). G is said to have the Ramsey property for »
colors, or to be r-Ramsey, if for every partition of A into r or fewer
parts (called r-colarings), there is a monochromatic vertex in B
(see Figure 1). The entire field of Ramsey Theory basically can be
thought of as the attempt to decide which graphs are r-Ramsey.

Although this general formulation is very simple, and all Ramsey
theorems can be expressed in this common form, more intuitively
convenient formulations are used for individual cases. Below we
give a few of the more appealing examples of Ramsey theorems.

SOME EXAMPLES

One of the earliest of the Ramsey theorems is the following
theorem of Schur [28]:

monochromatic point 2

2-coloring -}
FiG. 1.
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Example 1. For every positive integer r, there is an N = N(r)
such that if the set [1, N] (integers x, with 1 = x < N) is r-colored,
then there must exist x, y, z € [1, N] all having the same color and
satisfying x + y = 2.

In terms of bipartite graphs, we define a graph G as follows. Let
A=[LN,B={{xypz}x+y=zxy z€l, N1}, and for
a€A b€B, let {a, b} be an edge of G iff a € b. That the bipartite
graph G is r-Ramsey is Schur’s theorem.

An example of a result not usually thought of as a Ramsey
theorem is the Baire Category Theorem.

Example 2. Let A be the set of points of a complete metric space
X. Let B be the set of subsets S S X such that the closure 3 con-
tains an open set of X. Fora € A, b € B, let {a, b} be an edge iff
a € b. Then this graph is & (-Ramsey.

This is just the statement that a complete metric space is not the
countable union of nowhere dense sets. Of course, even though
this theorem is of the Ramsey form, it is not really a combinatorial
theorem.

The next example is Ramsey’s original theorem.

Example 3. Let A be the set of all k element subsets of a count-
able set S. Let B be the set of all infinite subsets of S. For a € A,
b € B, let {a, b} be an edge iff a = b. Then this graph is r-Ramsey
for all positive integers r.

Ramsey also proved a finite version of this theorem (where B is
the set of all / element subsets of a sufficiently large finite set S')
which we treat in the next section. We remark here that the
reader is probably already familiar with the simplest case of this
theorem, namely, that if all the edges of the complete graph on 6
vertices are 2-colored, then some monochromatic triangle must be
formed. To see this, simply observe that for any vertex v there
must be three vertices vy, v, v3 with all edges {v. v} having the
same color. If any edge {v, v;} also had this color, we are done.
On the other hand, if all the edges {v, v;} have the opposite color,
we are also done.
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Example 4. Let A be the set of all subsets of cardinality 2 of a
set § of cardinality 2*0*, (If « is a cardinal, «* denotes the next
largest cardinal.) Let B be the set of all subsets of S of cardinality
2%0. Fora € A, b € B, let {a, b} be an edge iff a € b. Then this
graph is 2-Ramsey.

This is a theorem of Erdés. Replacing 2%+ by 2*0, Dushnik
and Miller [7] show that the resulting graph is not 2-Ramsey.
These results belong to a vast and still growing literature on Ramsey
theorems for large cardinals, ordinals and order types. The asser-
tions that certain graphs of this sort are Ramsey sometimes turn
out to be independent of the usual axioms for set theory [10].

Example S (van der Waerden [30]). Let r and k be positive in-
tegers. Let A = [1, W] and let B be the set of all k£ term arithmetic
progressions in [1, W]. Fora € A, b € B, let {a, b} be an edge iff
a € b. Then there is a function W(k, r) such that if W = W(k, r)
then the graph is »-Ramsey.

This theorem asserts that if we r-color a sufficiently large inter-
val of integers, it must contain a monochromatic arithmetic pro-
gression of k terms. In fact, an awesome result has recently been
proved by E. Szemerédi [29], settling a 40 year old conjecture of
Erdos and Turan. Namely:

If R is a subset of the positive integers with positive upper den-
sity, i.e.,

: IR N [1,N]]
llmsup — N > 0,

then R contains arbitrarily long arithmetic progressions.

This theorem is equivalent to a deceptively simple strengthening of
van der Waerden’s Theorem. It is the statement that for Example
S, not only is there a monochromatic progression of length &, but
in fact there must be such a progression having that color which
occurs most frequently in [1, W].
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CATEGORIES

Until now we have considered individual graphs and their Ramsey
properties. However, many of the most important theorems and
their proofs, including Ramsey’s Theorem itself, require the con-
sideration of whole families of graphs. K. Leeb [21] pointed out
that in such situations the use of category theory can be quite
helpful both in the formulation and in the proofs of results. The
introduction of categorical methods was initially inspired by the at-
tempt to prove the insightful conjecture of G.-C. Rota, namely,
that the analogue to Ramsey’s Theorem for finite vector spaces
holds. It is now known that certain categories are “Ramsey”. These
include the category of sets (Ramsey’s Theorem) and the category
of finite vector spaces (Rota’s conjecture).

In their usual formulation these theorems are as stated below.
The more formal statements in terms of categories will be given
at the end of this section, where we state a general theorem for
certain categories. These categories include the two above.

TeEOREM [27]: For all k, I, r, there exists a least integer n(k, |,
r) such that if n = n(k, I, r) and the set of k-subsets of an n-set
N is arbitrarily r-colored, all the k-subsets of some I-subset of N
have a single color.

TuEOREM [14]: For all k, I, r, there exists a least integer n,(n, 1,
r) such that if n = n,(n, I, r) and set of k-dimensional subspaces
of an n-dimensional space N over GF(q) is arbitrarily r-colored,
then all the k-dimensional subspaces of some I-dimensional sub-
space have a single color.

There are categories, however, for which the Ramsey property
holds only in part. The proofs of the validity of the Ramsey prop-
erty for the appropriate parts of these categories are among the
nicest in the theory. For example, van der Waerden’s theorem is
one such case.

Consider the category P whose objects are the finite arithmetic
progressions of the positive integers. Let the morphisms be the
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monomorphic affine maps from one progression to another (i.e.,
x — ax + b). The Ramsey property for this category would assert:
For every k, I, r, there is an n = n(k, I, r) such that if the k term
progressions in [1, ] are r-colored, then all the k term subpro-
gressions of some / term progression have the same color. For k =
1, this is just van der Waerden’s theorem. However, for k = 2, it
is false. To see this, consider the following 2-coloring of the two
term arithmetic progressions:

c({x1, x2}) = a* where a* = a(mod 2), a* = 0 or 1

and 2= is the largest power of 2 dividing x; — x;.

Another category for which the partial validity of the Ramsey
property holds is the category G of finite, undirected graphs for
which the morphisms are induced subgraph embeddings. ¢ is such
an embedding if it is an injective mapping taking vertices of a finite
graph L into vertices of a finite graph N and edges of L into edges
of N such that for any two vertices u, v, of L, {u, v} is an edge of
L iff {¢(u), ¢(v)} is an edge of N. The Ramsey property for this
category then says that for any graphs K, L and any integer r,
there is a graph N such that for every r-coloring of the K-subgraphs
of N (i.e., induced subgraphs isomorphic to K), there is an L-sub-
graph with all of its K-subgraphs having the same color. For the
case in which K is a single vertex (and L is arbitrary), the Ramsey
property holds by a result of Folkman [13]. In the case where K
consists of a single edge, the Ramsey property also holds. This is
a powerful new result of Deuber [6]. If K is a complete graph on
k vertices and L is a complete graph on [ vertices, then the Ram-
sey property becomes just the statement of Ramsey’s Theorem.

Finally, if we consider the category G, of graphs with no com-
plete subgraph on n vertices (and the same morphisms as before),
then the Ramsey property holds if K is a single vertex or if K is a
single edge. The first result here is due to Folkman [13]. The second
result is a major new result of Nesetfil and Rédl [23].

However, just as in the case of arithmetic progressions, easy
counterexamples show that the Ramsey property does not hold in
general in these categories. For example, in the category G, let K
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be P;, the tree on three vertices and let L be the 4-cycle Cy. Let N
be an arbitrary graph on n vertices labelled with the elements of

[1, n]. Color the tree —e—e red if y > max(x, z) and blue other-
x y z

wise. Clearly, no C4 in N can have all four of its subgraphs P;
with the same color. Similar counterexamples work for the cate-
gories G,.

Very recently, Ramsey properties for certain categories of hyper-
graphs have been established in work of Nesetfil and Rodl [24].
Deeper understanding of these categories will be required before
the full role of the Ramsey property is apparent.

We conclude this section with the Ramsey theorem for cate-
gories. The later sections will not depend on ideas from category
theory.

Formally, we can define the Ramsey property for a category C
as follows: If N and K are objects of C, then we let C [Ijg denote
the set of subobjects of N of type K, where a subobject of N is
said to be of type K if it contains a monomorphism K — N, If

¢:L — N is a monomorphism then we let 3:C [llé}' C [11;,] denote

the obvious induced map.

The category C is called Ramsey if for every positive integer r
and every pair of objects K and L, there is an object N such that

for every r-coloring ¢:C [I]g — [1, r] there exists a monomorphism

¢:L — N and an i € [1, r] such that the following diagram com-
mutes:

" A

C Ib{] _..___c_.[l, r]

@ I incl.
L] ;

c| g )

For example, to state Ramsey’s Theorem in this form, we con-
sider the category S of finite sets with morphisms being injective
mappings. We see that if N is an n-set, then its subobjects of type
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K correspond to its subsets of k = |K| elements. Note that

/x|

phic, then the assertion that S is Ramsey is just Ramsey’s original
statement. For vector spaces, we consider the category V, of finite-
dimensional vector spaces over GF(g) with morphisms being injec-
tive linear mappings. Here the subobjects of type K of an n-dimen-
sional space N correspond to the | K |-dimensional subspaces of N.

= <Z> Since all sets of the same cardinality are isomor-

TueoreM: Let C be a class of categories such that for each
category B in @ there is a category A in C such that A and B satisfy
the conditions below. Then all categories in C are Ramsey.

The conditions are as follows, where we are assuming that all
categories have as objects the set of nonnegative integers:

There is a function M from A to Bwith M) =1+ 1,1 =0, 1,
2, ..., afunctor PfromBtoAwithP() =1 1=0,1,2, ..., an
integer ¢t = 0, and for each / = 0, there are ¢ monomorphisms
121+ 1, € [1, 1}, satisfying the following three conditions:

I. For each £k = 0, 1, 2, ..., the diagonal d in the following
diagram is epic, where ll (together with the indicated injections)
denotes coproduct, and d is the unique map determined by the co-
product which makes the diagram commute:

! .
B[k-kl} g
[ ]

. .
. 'B I }”/'“
i k+1 T"O

REES! b N
k+1 k
Here, M is the mapping induced on subobjects by M.

II. For each s £ ['in B and eachj € [1, ¢], the following diagram
commutes:
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@y
|/ +1

g I‘I’I (P))

s s+1

" 1}

III. For some I — [ + 1in A, the following diagram commutes
forallje[1,]:

I+1
1) Pi+1,j
I I1+2
7 M(e)
I+1

For C consisting of the single category § with morphisms k — /
being the monomorphisms from [1, k] to [1, /], the theorem (with
appropriate choices M, P and ¢t = 1) becomes Ramsey’s Theorem.
In this case only condition I remains interesting, reflecting simply

1
the basic relation for binomial coefficients, namely, (,i i 1)

(Ii) + (k _f_ 1). In particular, the (k + 1)-subsets of an ( + 1)-

set consist of those which contain a fixed element x together with
those not containing x. The relation above is an example of a
much more general “Pascal relation”, as described by Leeb [22].
The study of such general theorems has sometimes been referred
to as ‘Pascal Theory’. Other categories, including those of finite
binary trees (with appropriate inclusion morphisms) and finite
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Boolean algebras (with sublattice monomorphisms) also have
Pascal relations and the Ramsey property.

RAMSEY NUMBERS

Most of the finite Ramsey theorems we have considered up to
this point involve the existence of “Ramsey numbers”. In this
section we will discuss some of the known values and bounds for
these numbers.

We recall that Ramsey’s Theotem asserts the existence of a least
integer n(k, I, r) such that any r-coloring of the k-subsets of an
n-set § forces all the k-subsets of some /-subset of § to have a
single color, provided n = n(k, 1, r). All the values of n(k, I, r)
currently known are given by (e.g., see {18]):

nl,Lry=rl— D+ L;nl =1
n(2,3,2) =6,n2,3,3) =17, n(2, 4, 2) = 18.

The most thoroughly studied case has been & = 2, for which it
is natural to phrase the results in terms of coloring the edges of a
complete graph. We can define R(ly, ..., ) to be the least integer
such that if n = R(l;, ..., [,) and the edges of the complete graph
K, are arbitrarily r-colored, then there is a monochromatic K, for
some color i. The numbers known here [18] (which are not included
above) are as follows:

R(@3,4) =9,R(3,5) = 14,R(3, 6) = 18, R(3, 7) = 23.

These are all the values known exactly. For other choices of
the parameters, only estimates are available, some of which are:

27 < R(3, 8) =< 30,36 < R(3,9) < 37,

4 log log k
I — 0B K
C']kz = R(k, k) = 02 \/E log £’ [9]) [18]
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log log y [18]

< -1
R(x, y) =< c3y~ logy

(a proof for the lower bound on R(k, k) may be found in the paper
by Joel Spencer in this volume).

For van der Waerden's theorem (Example 5), the estimates for
the corresponding Ramsey numbers Wik, r) are much less accur-
ate. For small values, it is known that: W(2, 2) = 3, W@3,2) =09,
W(4, 2) = 35 [4]. On the other hand, for larger values it is known
that

k2 < W(k, 2) < Ak, 4),

where the first inequality holds for k prime [1] and A(m, n) is
defined by:

A,n) =2, Am, 2) =4, m=1,n > 2,
Am, n) = Am — 1,Am, n — 1)), m = 2,n = 3.

The reader is invited to calculate a few values of A, eg., A5, 5)
or A(12, 3), in order to get a feeling for the disparity between
these upper and lower bounds.

In general, the best constructive upper bounds for Ramsey
numbers are strongly correlated to the complexity of the arguments
used to show their existence. Hence, it is not surprising that the
estimates for some of the more subtle Ramsey numbers are
extremely large. For example, consider the Ramsey number N(J)
defined to be the least integer such that if » = N() and the line
segments between all pairs of vertices of a given n-dimensional
rectangular parallelepiped P, are arbitrarily 2-colored, then all the
line segments between the pairs of vertices of some /-dimensional
rectangular subparallelepiped of P, have a common color (see [15]
for a proof of existence). Of course, N(1) = 1. The best available
estimate for N(2), however, is:

6 = N(2) = A(A(A(A(A(A(A(12, 3), 3), 3), 3), 3), 3), 3).

It is conjectured that N(2) = 6.
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SOME OLD DIRECTIONS

An important area we have yet to discuss originated some 40
years ago with the fundamental work of R. Rado [25], [26]. It
deals with the integer solutions to systems of linear equations and
contains as special cases both the theorem of Schur (Example 1)
and van der Waerden’s theorem.

Let £ = £(xi, ..., x,) denote a system of homogeneous linear
equations in the variables x,, ..., x, with integer coefficients. We
say that £ is 7-Ramsey (called r-regular by Rado) if for any parti-
tion of the positive integers P into r classes, £ has a solution (a1,
..., a,) with all the a; in one class. If £ is r-Ramsey for all r then
L is called Ramsey.

The basic result here is the following theorem of Rado [25]:

THEOREM: £ is Ramsey if and only if there is a partition of
[1,n] = 8 U .-+ U S so that for each k € [1, l], there is a
solution u™® = (u,®, ..., u,®) satisfying

1, ifi € Sk

0,ifi€S;forj>k,
u® =
arbitrary, otherwise.

For the special case in which £ consists of a single equation, the
result is particularly appealing:

CoRroLLARY: The equation ;E ARk = 0 is Ramsey if and only

if some nonempty subset of the a,'s sum to zero.

Not only does the above theorem imply van der Waerden’s
theorem and the previously mentioned theorem of Schur, but it
also proves the following interesting generalization (see also [16]):

TuEOREM: Given integers k and r, there exists an integer N(k, r)
such that if n = N(k, r), then for any r-coloring of [1, n] there
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exists A < [1, n] with |A| = k for which all the sums bEB b, @ #
€

B < A, have the same color.

A striking extension of this result for the case of & infinite has
recently been given by Hindman [20], [0].

THEOREM: For any r and any r-coloring of the positive integers
P there is an infinite set A S P such that all sums E b # B ¢
A, have the same color.

An intriguing problem is to determine those infinite systems of
homogeneous linear equations which are Ramsey.

We call a set A S P regular if any Ramsey system £ of linear
equations has a solution entirely in A. More than 35 years ago,
Rado put forth the following conjecture: If a regular set of inte-
gers is partitioned into a finite number of classes then at least one
of the classes is regular. This conjecture has very recently been
proved in a study of Deuber [S) in which he characterizes regular
sets of integers in terms of certain high-dimensional array-like
subsets for which he is able to establish a Ramsey property.

SOME NEW DIRECTIONS

Certain questions have only recently been pursued. We discuss
here two of the most active areas. The first of these involves the
determination of numbers somewhat more general than those
arising from Ramsey’s Theorem, an immediate corollary of which
is the following statement: For any choice of finite graphs G, ...,
G,, there is an N = N(Gi, ..., G.) such that if n = N and the
edges of K, are r-colored, then there is an i € [1, ] and a subgraph
(not necessarily induced) isomorphic to G; with all its edges having
color i. If I = max(|Gy|, ..., |G.|) where |G:| denotes the number
of vertices of Gi then clearly N(G,, ..., G.) = n(2, I, r), the num-
ber from Ramsey’s Theorem. The estimation of the “graph Ramsey
numbers” provides some information on the size of the original
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Ramsey numbers. However, in most of the cases considered up to
now, the graphs G; have been too simple for the resulting bounds
on N(Gi, ..., G,) to be of much use in estimating Ramsey num-
bers. Some of these cases do turn out to have nice, exact answers
and are themselves fascinating results in graph theory. For exam-
ple,

NP, P)) = m +[%] -1,

N(mK;s, nK;) =3m + 2nform =z n, m = 2,

N(Cs, ..., Cs) = r + O(n),

r

where P, denotes a path with m vertices, mK3 denotes the union
of m disjoint triangles and C, denotes a 4-cycle. For a survey of
results in this direction, the reader is referred to Burr [2].

We have already seen one area of Ramsey theory where geometric
considerations arise, namely, the Ramsey theorem for finite vector
spaces. The theory is rather complete here, except for the calcula-
tion or estimation of the corresponding Ramsey numbers. When
we consider Euclidean geometry, however, the corresponding
theorem is clearly false. That is, there are 2-colorings of the points
of Euclidean n-space E” so that no Euclidean line is monochromatic.
(For example, consider concentric spherical shells of alternating
colors). The question of which monochromatic configurations must
occur is the subject of “Euclidean Ramsey Theory” [11], [12]. In
some sense, the obstruction to finding a monochromatic line is the
fact that the underlying field is infinite, and consequently there are
infinitely many points on each line. (Cates and Hindman [3] have
investigated Ramsey properties for other infinite fields and for
spaces of infinitely many dimensions, mostly along lines similar to
the studies of the Ramsey properties of large cardinals.)

Thus, it is natural to consider finite configurations C < E". Let
G be a permutation group acting on E”. The problem is to deter-
mine those configurations C such that for any r-coloring of E*, for
some g € G, all the points of g(C) have a single color.
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For the case when G is the affine group on E", it was shown by
Gallai [26] that all finite configurations are Ramsey, i.e., are r-
Ramsey for all r, thus generalizing van der Waerden’s theorem.
For the case when G is the identity group, then, of course, only
one-point configurations are Ramsey.

An extremely interesting case is that of G being the group of
Euclidean motions in E". Thus, we must find a monochromatic
set C'’' which is congruent to C. For the configuration C; consisting
of two points separated by a fixed distance d, it is easily seen that
any 2-coloring of E? contains a monochromatic set congruent to
C, e.g., by just considering the three vertices of an equilateral
triangle of side d. A similar argument using higher dimensional
simplexes shows that some regular simplex of side d will occur
monochromatically in any r-coloring of a sufficiently high dimen-
sional space. The minimum sufficient dimension n(k, #) is a func-
tion of k, the number of vertices of the simplex, and r. At present,
even the value of n(r, 2) is unknown. It is known that n(2, 2) = 2,
n(7, 2) > 2 and n(2, 3) = 3. In general, if for each r there is a mono-
chromatic set congruent to C in any r-coloring of E*, provided only
that n is sufficiently large depending upon r and C, then we say
that C is Ramsey. At present the only configurations known
[11] to be Ramsey are subsets of the vertices of a rectangu-
lar parallelepiped. In the other direction, it has been shown
[11] that any Ramsey configuration must lie on some (perhaps very
high dimensional) sphere. For configurations not in either of
these classes, the simplest being the set of vertices of an obtuse
triangle, it is not known whether any of them are Ramsey. The
arguments for the spherical sets involve an extension of certain
negative results of Rado (mentioned in the previous section) to a
larger class of underlying fields than he considered.

One of the most appealing questions in this area is the conjec-
ture that any 2-coloring of the Euclidean plane must contain a
monochromatic set congruent to any given 3-set, with the possible
exception of the set of vertices of a single equilateral triangle.
Many families of triangles (i.e., 3-sets) are known to occur in this
case, but for most triangles it is undecided [12]. Since this area is
so new, very few of the obvious questions have been studied, e.g.,
other configurations, other groups G, and other geometries, to
mention a few.
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A FEW PROOFS

This section contains short proofs of the earliest Ramsey theo-
rems, namely, Ramsey’s Theorem, van der Waerden’s theorem,
Schur’s theorem and a proof that the Ramsey number (K3, Kj,
K3) = 17 (due to Greenwood and Gleason [19]).

TeEOREM (Ramsey): For every k, I, r there is a least integer
nk, I, r) such that if n = n(k, I, r) and all the k-subsets of an
n-set § are r-colored, then all the k-subsets of some l-subset of S
have the same color.

Proof: We use induction on k. For £ = 1, this is just the box
principle and n(1, , r) = (! — 1)r + 1. Assume that the theorem
holds for some k£ = 1 and all / and r. We prove the following: For
each j < k, there is a number f{j, k) such that if n = f{j, k) and
the (k + 1)-subsets of [1, n] are r-colored, then there exists a
k-subset H = X U Y with | X| = jsuch thatifx € X, y € Y, then
x < y and, if K is any (k + 1)-subset of H with K N X # @, then
the color of X is determined only by IIIE}P x.

We prove this by induction on j. For j = 0 it is trivial and we
can choose f10, k) = k. Assume that it holds for some j = 0. Let
fU+LE=fnk k—j—1,rn+j+1),letn=fF+1,k)
and suppose the (k + 1)-subsets of [1, n] are arbitrarily r-colored.
By the induction hypothesis, there is a subset 7 = X' U Y’ with
|X'| = j which satisfies the required conditions. Let xj+; = zxelipy.

We now r-color the k-subsets of Y’ — {x;+1} by assigning to the
k-set Z € Y" — {x;+1} the same color that the (k + 1)-set Z U
{x;+1} has. By the definition of n(k, k— j — 1, r), there is a (k —
J — 1)-subset Y of Y’ — {x;+:} with all its k-subsets having the
same color. Hence, if X = X' U {x;+}, then X U Y satisfies the
required conditions for the value j + 1 and the induction step is
complete.

Now, consider ann = A(I — )r + 1, (. — 1)r + 1) and let the
(k + 1)-subsets of [1, n] be r-colored. By the definition of f, there
is an (I — 1)r + 1)-subset X of [1, n] such that the color of any
(k + 1)-subset of X is determined only by its least element. Hence,
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each element determines a color and since |X| = (! — 1)r + 1,
there is an I-subset L of X with all (¢ + 1)-subsets of L having
the same color. This completes the induction step and the theorem
is proved.ll

THEOREM (van der Waerden): Given k and r, there exists an in-
teger W(k, r) such that any r-coloring of [1, W(k, r)] must contain
an arithmetic progression of k terms all having the same color.

Proof [17]: For a positive integer I, let us call two m-tuples (xi,
cons Xm)y (01, oL, X)) € [0, U™ l-equivalent if they agree up
through their last occurrences of /. For any , m = 1, consider the
statement

S(I, m): For any r, there exists W(, m, r) so that for any function
C:1, WU, m, r)] — [1, r], there exist positive a, dy, ..., dm

such that C(a + __El x; d;) is constant on each /-equivalence class of
[0, 7.

Fact 1. S(, m) forsomem = 1 = S, m + 1).

Proof: For a fixed r, let M = W(I, m, r), M' = W(, 1, ¥™) and
suppose C:[MM'] — [1, r] is given. Define C":[1, M'] — [1, #]
so that C'(k) = C'(k") iff C(kM — j) = C(k'M — j) for all 0 <
J < M. By the inductive hypothesis, there exist a’ and d' such that
C'(a’ + xd') is constant for x € [0, I — 1]. Since S(, m) can
apply to the interval [a'M + 1, (@’ + 1)M], then by the choice of

M, there exist a, d,, ..., d,, with all sums a + ;1 x; di, x; € [0, 1],

inf[a’M + 1, (a' + 1)M] and with C(a + El x; d;) constant on I-

equivalence classes. Set d;" = d; for i € [1, m] and dpt' = d'M;
then S(, m + 1) holds.

Fact2. S(, m)forallm=1= S(I+ 1, 1).
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Proof: For a fixed r, let C:[1, 2N(, r, r)] — [1, r] be given. Then

there exist a, dy, ..., d, such that for x; € [0, ]], a + ‘z:lx,-d,- <

W(, r, r) and C(a + ‘Elx,- d;) is constant on l-equivalence classes.

By the box principle there exist # < v in [0, r] such that Cla +

Elldi) = Cla + El Id;). Therefore C((a + El id) + x(:}l+l dy)) is

constant for x € [0, []. This proves S( + 1, 1).
Since S(1, 1) holds trivially, then by induction S(I, m) is valid for
alll, m = 1. Van der Waerden’s theorem is S(/, 1).1B

TrEOREM (Schur): For all r there is an integer N(r) such that
any r-coloring of [1, N(r)} contains three elements x, y, z having
the same color and which satisfyx +y = z.

Proof: Choose N(r) = n(2, 3, r), the Ramsey number from
Ramsey’s Theorem. Any r-coloring of [1, N(r)] induces an r-color-
ing of the edges of Kn. by assigning to the edge {i, j} the color
that | — j| has. By the definition of N(r), there exists a mono-
chromatic triangle in Ky, i.e., x <y < zsuchthatz — x, z — y,
y — x all have the same color. But (z —y) + (y —x) =z — x s0
we are done.l

TaeoreM (Greenwood and Gleason): r(K;, K3, K3) = 17.

Proof: Form a 3-coloring of K by labelling the vertices with the
elements of GF(16) and coloring the edge {x, y}, x, y € GF(16),
according to the coset of the group of cubic residues in which the
difference x — y lies. This coloring is well defined since —1 = 1
(mod 2). It is not hard to check that no monochromatic triangle
is formed and so r(Kj, K;, K3) > 16.

To show that r(K3, K3, K3) < 17, let K7 be arbitrarily 3-colored.
For a fixed vertex x, some color, say blue, occurs in at least six
edges incident to x. If the vertices at the other ends of these six
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blue edges span a blue edge then we have a blue triangle. On the
other hand, if no blue edge is so spanned, then we have a 2-colored
K. Since r(K;, K3) = 6, then we have a monochromatic K3 in this
case as well. Thus n(Ks, K3, K3) < 17 and the proof is completed. B
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