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We investigate those graphs G, with the property that any tree on N vertices 
occurs as subgraph of G, . In particular, we consider the problem of estimating 
the minimum number of edges such a graph can have. We show that this number 
is bounded below and above by $z log II and nl+l/log log %, respectively. 

A typical question in extremal graph theory1 is one which asks for the 
maximum number of edges a graph G on n vertices can have so that G does 
not contain some given graph H (or class of graphs Z) as a subgraph. 
Perhaps the most well-known result of this type is the theorem of Turdn 
[9, lo] which asserts that if H = K,,, , the complete graph on m vertices, 
then this maximum number is just 

where r is the unique integer satisfying 

r = Iz(mod n? - 1) and l,<I.<:M?--1. 

In general, let t(H; 12) (or t(&; 12)) denote this maximum number of edges 
when the forbidden subgraph is the graph H (or class of graphs 2). The 
preceding result can be stated as 

t(I‘& ; 77) = 
tt1 - 2 

2(777 _ I) (73 - r’> + ($ 

where r is defined as before. 

(1) 

l For any undefined terminology, see 161. 
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GRAPHS CONTAINING ALL SMALL TREES 15 

Numerous other results along these lines are available, although usually 
only estimates for t(H; n) are known, as opposed to exact values. For example: 

(i) If C, denotes the cycle of length 4, then it has been shown [4, 71 
that 

t(C4 ; 72) - $z3/‘2. 

(ii) If K3,3 denotes the complete bipartite graph with vertex sets of 
sizes 3 and 3, then Brown [3] and others [7] have proved 

cdl3 < t(K3,3 ; n) < (21/3nsi3 + 3n)/2. 

(where c, cl, ce ,..., will hereafter denote suitable positive constants). 

(iii) If C,, denotes the cycle of length 2m, then it has been shown 
by Erdos [5] and Bondy and Simonovits [2] that 

cn log 72 
log log 77 

< t(Czm ; n) < c,,nl+l@n. 

An interesting old (and apparently difficult) conjecture of Erdiis and 
S6s [5] asserts that for Ym , the class of all trees with m edges: 

Conjecture. t(Ym ; n) = [(m - 1) 12/2]. 
In this paper we consider the compZeme\ztary extremal problem. That is, 

for a given class &, what is the least number s(Z; n) of edges a graph G 
on n vertices can have so that a22 H E 2 are subgraphs of G? Also of interest 
to us will be the quantity s(s), defined to be the least number of edges 
any graph G (with no restriction on its number of vertices) can have so that 
all HE X are subgraphs of G. 

In contrast to the situation for t(P; n), very few results for ~(2; n) 
or s(X) are known. It has been shown by Bondy [I] that 

n - 1 + l”g(n - l) < s(V ~~ 
log 2 

* 12) < 11 + log I2 Iz? ___ 7 H(n) f O(l), 
log 2 

where H(n) denotes min{k: log log 3.. log n < 2) and V, denotes the set 
of all cycles of length at most n. 

Our results deal almost exclusively with the case in which Z is & , the 
set of all trees with n edges. In particular, we show for all sufficiently large n, 

in log n < s(9J < nl+llloglogn. (2) 

From the definitions it is clear that 

It is not known whether, in fact, (3) always holds with equality. 
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A LOWER BOUND 

By the degree sequence of a graph G, denoted by ds(G), we mean the 
nonincreasing sequence (dl , d, ,., ., dJ formed from the set of degrees of the 
vertices of G (where, as usual, the degree of a vertex v is the number of edges 
incident to v). It is not difficult to see that if H is a subgraph of G then for 
any j, the jth component of ds(H) is less than or equal to the jth component 
of ds(G). 

THEOREM 1. s(YJ > $m log n. 

"2 "3 "k 

T(k) 

FIGURE 1 

Proof. Let G be a graph containing as subgraphs all trees T in n edges. 
Now, for each k, 1 < k < n + 1, there exists a tree T(k) E Yn so that 

ds(T(k)) = (d’“’ d(‘) . 1, d’“’ ) 2 , .., ni-1 

with dik) > n/k. To see this, consider the tree T(k) shown in Fig. 1. 
If d(j) denotes the degree of vertex vj then 

;d(j)=n+k-I. 
j-1 

Hence, by distributing the edges as uniformly as possible we can guarantee 
that 

48 3 [ 
/Zfk-I 

k ] 3 ; for l<j<k. 

Thus, the kth term of ds(T(k)) must be as large as n/k. If ds(G) = (d,, d,,..., d,), 
then by the previous observation, 

dk > n/k for l<k<n+l. (4) 

However, the number of edges of G, denoted by j/ G I/, satisfies 

I/G!] = 4 c dk 
k=l 
n+1 

3 4 c n/k = $17 log n + yn + O(1) 
k=l 

as n---f co, where y denotes Euler’s constant. This proves the theorem. 1 
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AN UPPER BOUND 

In this section we establish the upper bound of (2). Before doing so, 
we first require a preliminary result. For a vertex v of a tree T, a subtree T’ 
of T consisting of one of the components C formed from T by the removal 
of v, together with v and the edge joining it to C, is called a v-subtree of T. 
For example, if 7’ is the tree shown in Fig. 2a, then the v-subtrees of T are 
shown in Fig. 2b. 

T 

(a) 

FIG. 2. Example of c-subtrees. 

LEMMA. Suppose T is a tree with at least k + 1 edges. Tljen for some 
vertex v of T, there is a set C(v) of v-subtrees of T so that 

k+l < c [IT’lj ,<2k. 
T’EC(ti) 

(51 

Proof: If II 3’11 = k + 1, the result is immediate. Hence we may assume 
IT;j>kt 2. Choose a vertex v0 of degree 1 and let {vO, uI> denote the 
edge incident to vO. Consider the set +7(u1) of u,-subtrees of T not 
containing z+ . Thus, we have 

1 ‘jT’(: >k+ I. 
T’EP?I(t$ 

If all T’ E V(vl) satisfy Ij T’ Ij < k, then by taking increasing tmions of the 
elements of g(vl), it is readily seen that a set C(v) = C(v,) can be formed 
which satisfies (5). Thus, we may assume that il TI jl > k + 1 for some 
T, E %(uJ If I/ TI ij = k + 1, then the result is immediate. Hence we may 
further assume I( T, 1~ > k + 2. Let (vl , z)J be the edge of T, containing z:~ 
and let ~(L;J denote the set of vzsubtrees of T not containing v1 . Thus, 

As before, if all T’ E ??(v,) satisfy /j T’ (! < k then it is easily seen that (5) 
can be satisfied. On the other hand, if some T’ E g(vz) has jj T’ lj > k + I, 
then we let (v2 , 3 v > denote the edge of T’ incident to v3 and we consider the 
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v,-subtrees of T not containing vg , etc. By continuing in this manner, the 
lemma follows by induction. 1 

THEOREM 2. 
S(Fn) ( y~l+lllooJg II (6) 

for all sufi?ciently large II. 

Proof. Let Y(ZJ denote the class of all graphs which contain all T E rn 
as subgraphs. The key to the proof of (6) is the following construction. 
Suppose G, E Y’(&E-J and G, E P(Yn-k-2) for some k. Form the graph G 
by joining a new vertex x to all the vertices in G, and G, (which we assume are 
disjoint). It follows at once from the lemma that G E Y(KJ. 

If / H / denotes the number of vertices of a graph H then we have in the 
above construction 

,GI = IG,/ + IG,/ + 1, 

II G I/ = II Gl II + I Cl I + Ii G2 /I t I G2 i. (7) 

The general plan is to construct graphs G(n) in Y(YJ for large N by applying 
the preceding construction recursively. However, at each stage the choice 
of an appropriate k must be made. On one hand, if k is chosen too large, 
e.g., k is always chosen to be a fixed proportion 01 of 11, then we find that 
I/ G(n)11 will grow faster than yla, where p = p(a) > 1 and /?(a) + 1 as 01-+ 0. 
On the other hand, if k is chosen too small, e.g., so that k is constant, then 
the corresponding G(n) will have /j G(n)[\ growing like ~‘12~. What we use is 
something in between, namely, we choose k = k(n) to be about n/log n. 

For a large fixed constant c (to be specified later), let P(x) denote the 
following assertion: 

There exists a graph G(x) E Y(&) satisfying: 

(i) \ G(x)1 < c,++O~~/lOglOg~ = v(x); 

(ii) /I G(x)11 < cxl+O.g/losloaz =f(x). 

In order to prove (6), it will suffice to show that P(x) holds for all x > 2. 
This, however, will follow from the inequalities 

v(2x/log x) + v(x - x/log x) < u(x); If9 

v(x) + f(2x/log x) + j-(x - x/log 4 G f(x). (9) 

For, if (8) and (9) hold, then by (7), the monotonicity of v(x) andf(x) and 
the fact that v(x) 2 x, we obtain by the preceding construction a graph 
G(x) E Y(Yz) satisfying (i) and (ii). 
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Rather than grind out the rather straightforward proofs of (8) and (9) 
in detail, we limit ourselves to sketching (8) ((9) is similar). 

In the following sequence of inequalities, each one is implied by the 
following one (always for sufficiently large x). 

x1+o.8/loglogx - 
i 

X .& - - 
log x 1 

l+0.s/loglog~r-z/log2~ 

0.8 log x _ l _ 1 
exp log log x i 1 ( log x 1 i exp 

0.8 log@ - x/log x) 
log log(s - x/log x) j 

2 
3- log x exp ( 

0.8 log(2x/log x) 
log log(2x/log x) i ’ 

exp ( 
0.8 log(x - x/log x) 0.8 log(2x/log x) 
log log(x - x/log x) 1 b 2 exp ( log log(2x/log x) 1 ’ 

0.8(log x + log(l - l/log x)) 
log log x 

3 log 2 + 
0.8(log 2 + log x - log log x) 

log log(2x/log x) . 

But 

log x 
( 

1 1 
1 

1 
log log(2x/log x) - log log x - log log .x 

as x -+ co so that (11) is valid provided we have 

ha - l/log 4 > log 2 I 2 + log 2 - log log x 
log log x 0.8 1.1 loglogx -’ 

(10) 

(11) 

( 1 - l$ly 2 j log log x > 2 + log 2 - 1.1 log (I - Q-j, 

which clearly holds for large x since the coefficient of log log x is positive. 
For a suitable fixed m (chosen large enough so that the preceding approx- 

imations are valid), P(x) is clearly valid for all x satisfying 2 < x < m 
(by an appropriate choice of c). Thus, by induction P(x) holds for all x > 2. 
This proves the theorem. 

In exactly the same way, one can show that for any E > 0, 

s(Fn) < ~l+lom+c)lloglogn 

for all sufficiently large 12. 
(12) 
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SOME EXACT VALUES 

In Table I, we list the values of s(YJ for some small values of II. We also 
list the best bound // G*(rz)jj on s(9J which we can obtain using the con- 
struction of the preceding section (i.e., we optimize the values of k in the 

TABLE I 

Some Exact Values of s(.&) 

n II G*(n) II 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
2 
4 
6 
a 

11 
13 
1 
? 
? 

0 
1 
2 
4 
6 
8 

11 
14 
17 
21 
25 

construction of a suitable G*(n)). The values for s(&) and s(YI) are obvious. 
To establish the values of s(YJ, 2 < n < 5, it suffices to note that any 
graph G E Y(&) must contain a path of length 12 and a vertex of degree n. 
This forces 11 G 11 2 2n - 2 and this lower bound is achieved by the graphs 
G*(n) shown in Fig. 3. 

0 - 0 : 0 

G* (0) G*(1) G*(2) G"(3) 

G*(4) G*(5) 

FIG. 3. Optimal elements of 8(YJ, rz Q 5. 

For B = 6, suppose G E .Y(&) with /j G /j = 10. Since G contains a path 
of length 6 and a vertex u* of degree 6, there are only three possibilities, 
shown in Fig. 4. However, the two trees Tl and T, shown in Fig. 5 must 
also be subgraphs of G. But the only possibility for TX in Fig. 4 is (c) (shown 
in Fig. 6) and this case is impossible for T, ! Thus, // G 11 > 11 for G E P(Y”). 
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v” V” V” 

(0) lb) (6) 
FIG. 4. Possibilities for G E Y&Q with j[ G jl = 10. 

FIGURE 5 

.._ . . . 

FIGURE 6 

For ~1 = 7, the obvious lower bound of 12 can be increased to 13 by noting 
that any G 6 P(Y,) must contain the tree with degree sequence (4, 4, 1, 1, 
1, 1, 1, 1). Two graphs which achieve these lower bounds are shown in Fig. 7. 
Note that all examples given thus far for optimal elements of LY(Y,J have 

G”(6) n=7 

FIG. 7. Optimal elements of .F(ZJ, n = 6, 7. 

just IZ + 1 vertices, the minimum number possible. Whether this always 
happens is not known. 

SOME RELATED QUESTIONS 

The preceding results suggest a number of related problems, several 
of which we now mention. 

1. Iss(Yfi;n + 1) =s(Q? 

2. Is S(Q = O(n log n)? 

3. What can be said about s(X) for other classes Z? For example, 
if A? = 99%) the class of all graphs with 12 edges, is ~(9’~) = ~(yllf’) for all 
E > O? Of course, the same questions make sense when we replace the word 
“edges” by “vertices,” both in the definitions of s(P) and/or in 8, . 
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4. We could define ~~(26) for classes of graphs X and Z? by 

s&S) = min{/j Kll: KE Y(#) n X}. 

An interesting example of this is the case X = s, the set of all finite trees. 
Does ~~(9%) grow faster than any power of n? 

5. Suppose we define 9’*(X) by 

9’*(X) = {G: Each N E S-P occurs as an induced subgraph of G}. 

What is the behavior of s*(P) = min{/I G I/: GE 9’*(%)}? One would 
generally expect s*(Z) to be much larger than s(H) as 2 becomes large. 
It has been shown by Moon [S] that for 2 = 9%‘, the class of all graphs 
with n vertices, 

21P(?L-1) < s*(gn’) < II . 2cn--l1j2 for n odd, 

for n even. 

6. All of the preceding questions can be asked more generally for 
hypergraphs. One suspects that in this case results might be significantly 
more difficult to obtain than for the case of ordinary graphs. For example, 
even the analog of Turan’s theorem for 3-uniform hypergraphs is not 
currently known. 

Note added irzproof. It has very recently been shown by N. Pippenger and the authors 
that (6) can be strengthened to s(r%) = 0 (n log n(log log n)“). 
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