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BACKGROUND 

Baxter permutations apparently first arose in attempts to prove the 
“commuting function” conjecture of Dyer (see [I]), namely, if f and g are 
continuous functions mapping [0, l] into [0, l] which commute under 
composition, then they have a common fixed point. Although numerous 
partial results were obtained for the conjecture (e.g., see [l, 3, 7, IO]), it was 
ultimately shown in 1967 to be false by Boyce [5] and independently, by 
Hunecke [8]. However, it has recently been pointed out by Boyce [6] that 
Baxter permutations are of more general significance in analysis than had 
previously been realized. This comes about as follows. 

For a continuous function h : [0, l] -+ [0, 11, let [/z] = (x : h(x) = x) 
denote the set of fixed points of h and let [h]* C [h] denote the set of crossing 
points of h, i.e., 01 E [h*] if and only if (Y is a limit point of both {x : h(x) < x} 
and (x : h(x) > x} (if 01 = 0 then only the first condition must hold; if 
(Y = 1 then only the second must hold). For continuous functions 
f,g: [0, l]+[O, l],ifaE[gof]then 

(.I-~ gxf(4> = f(df(4)) = f(4, 

i.e., f(a) E Lfo g]. In fact, when [fo g] (and therefore, [g 0 f]) is finite, f is a 
l-l map of [g of] onto [fo g] and therefore induces a permutation nf of 
{1,2 ,..., M} onto itself as follows: If we write [g of] = (x1 ,..., xM}, [fo g] = 
{Yl *** yM) then for i E (1 2,..., M}, 

wheref(xJ = y3. . 
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It was shown by Baxter [l] that in this case, ][g of]] = 2n - 1 for some n; 
the corresponding induced permutation n,* is called a Baxter permutation 
on (1, 2,..., 2n - l} = Izn-l . 

Baxter permutations 7 on IznS1 have the following intrinsic characterization 
(see [l]): 

(i) 7r maps odd numbers to odd numbers and even numbers to even 
numbers; 

(ii) If n(x) = i, r(u) = i + 1, and z is between x and y then r(z) > i 
if i is even and n(z) > i + 1 if i is odd (where we say that a is between b and c 
ifb<a<corc<a<b). 

The purpose of this note is to answer a question first raised in [4], namely, 
to determine the number B(n) of Baxter permutations on IznV1 . The answer 
turns out to be surprisingly nice: 

THEOREM. 

Proof. The proof we give is not entirely straightforward. We have no idea 
whether or not a purely combinatorial proof of (1) can be given, based on the 
special form of the sum. 

THE FIRST RECURRENCE 

It was already noted in [4] that a Baxter permutation is actually deter- 
mined by its action on the odd numbers in its domain. Hence, by (i), to each 
Baxter permutation 7r on Iznwl there corresponds a unique “reduced’ Baxter 
permutation i3 on I,, , defined by: 

The condition corresponding to (ii) becomes 

$) If 97(X) = . I, z-(y) = i + 1 then for some ki between x and y: 
z-(z) < i if z is between x and k( , r(z) > i + 1 if z is between ki + 1 and y. 

In fact, it2 somewhat surprising (but not too hard to prove) that all the 
values ki in (ii) are distinct, although this fact will not be used in what follows. 

If we regard a permutation rr on I,, as an arrangement of I,, into the 
sequence (77(l), r(2),..., n(n)) then it is easy to see that (%) can be expressed as 
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follows: An arrangement A = (aI ,..., a,) of Z, corresponds to a reduced 
Baxter permutation if and only if there do not exist indices i < j < k < I 
such that 

or 
Uk + 1 < ai + 1 = a, < aj 

q + 1 < a, + 1 = ai < uk . 

Let us call such an arrangement admissible. For example, (2, 6, 3, 1, 5,4) and 
(5, 1,4, 3, 7, 692) are admissible while (2,4, 1, 3) is not. The problem we face 
now is simply that of enumerating the admissible arrangements of Z, . We 
shall denote the set of admissible arrangements of Z, by A, . 

Consider an admissible arrangement c = (q, a, ,..., a,) E A, . Let i*(Z) 
denote the index i for which ai = n. It is easy to see that if we delete ai* = n 
from c then the resulting (n - 1)-tuple c’ is admissible, i.e., c’ E A,-, . Thus 
we can think of generating elements of A,+1 by inserting n + 1 at various 
positions in a. Let us partition the it + 1 positions into which n + 1 may be 
inserted in c into two classes: the allowed positions in which after n + 1 is 
inserted the resulting arrangement c+ is still admissible, and the prohibifed 
positions where this is not the case. We will represent each allowed position 
by a 0 and each prohibited position by a 1, thereby generating the insertion 
vector P(G) = (pO ,pl ,..., p,). Also, it will be convenient to indicate in 
P(E) the location of i*(C) by placing the symbol * between piq(a)-1 and 
pirg. For example, 

Suppose now that n + 1 is inserted into a, say in the kth position, to form 
ii+ E A,,, . Thus, by definition we must have pK = 0. Then it is not hard to 
see that P@+) can be formed from Z’(z) as follows: 

(i) Replace all O’s between pr and the * in P(a) by 1; 
(ii) Replace pr = 0 by 0: 0 and remove the old *. 

As an example, for a = (2, 6, 3, 1, 5,4) mentioned earlier, 

a+ = (7, 2, 6, 3, 1, 5,4) 3 P(c+) = (0: 0, 1, 0, 1, 1, 0, 0,), 

a+ = (2, 6, 7, 3, 1, 5, 4) =+- P@+) = (0, 0, 0: 0, 1, 1, 0, 0), 
a+ = (2, 6, 3, 1, 5, 4, 7) * P(g+) = (0, 0, 1, 1, 1, 1,O; 0). 

Note that once a position is prohibited in a, it remains prohibited no matter 
how many insertions are made into a. 
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All admissible arrangements are therefore generated by starting with 
Z, = (1) and recursively inserting n + 1 in all possible valid ways into each 
Z E A, . We show the beginning of this process in Fig. 1, where we also list 
P(Z) below each 3. 

(2,l) //\‘\\ (1,2) 
(o:o,o) (0,o:ol 

A\ A\ 
(3,Z.l) (2,3,1) (2,1,31 (3,l.Z) (1,3,2) (I,?.,31 

ro:o,o,o, (o,o:o,ol (0, I ,o:o, co:o, I ,O) ~o,o:o,ol ~o,o,o:ol 

A\ /I\\ /I\\ /A /I\ /I\\ 

FIGURE 1 

Now, the number of ways that n + 1 can be validly inserted into Z 
to form an admissible a+ is just equal to the number of O’s in P(Z). 
Furthermore, we know the number of O’s in P@+) if we know how many 
O’s were changed to l’s in going from P(Z) to P(G+). In fact, since the number 
and location of the l’s in P(Z) does not affect the number of “descendants” 
of 5, we can just as well delete them. We can make this precise as follows. Let 
T-(&j) denote the number of ways of obtaining an 5 E A,+1 for which P(G) has 
i + 1 O’s preceding the * and j + 1 O’s following the *. Then T,(i, j) satisfies 
the following recurrence: 

T,+di + Lj + 1) = f (m(i + kl) + T&j + W, n 3 0, (2) 
k=l 

where 
T,(i, j) = 1 ifi=O=j, 

=o otherwise. 

This equation follows at once from the preceding algorithm described for 
generating P@+) from P(Z). Of course, the sum in (2) is a finite sum since for 
any fixed n, only finitely many of the T&j) are nonzero. The value of B(n) 
is obtained from the T’s by 
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It follows from (2) and (3) that T&j) = T,(j, i) and 

We can write the T,(i,j) in a triangular array as shown in Fig. 2, where 
unlisted values are zero. In Table I we list some values of T&j) for small 
It, i, j. 

T.&J, 0) 
Tn(1 , 0) Tn(O, 0 

T& , 0) T,(L 1) TntO, 2) 
Tn(3,O) T,CTl) r*u, 2) T&4 3) 

. . . 

Tnh 0) T,(n - 1, 1) **. T,(l, n - 1) TnW’, 4 

FIGURE 2 

We have reduced the problem of determining B(n) to that of deter- 
mining the T,(i, j). However, it is still far from clear how (2) and (3) imply (1). 
To remedy this situation, further transformations must be made. 

TABLE I 

Some Values of T,(i, j> 

n=O 1 

n=l 0 
1 1 

n=2 0 
1 1 

1 2 1 

n=3 0 
2 2 

3 4 3 
1 3 3 1 

n=4 0 
6 6 

9 12 9 
6 11 11 6 

1 4 6 4 1 

n=5 0 
22 22 

33 44 33 
26 43 43 26 

10 24 30 24 10 
1 5 10 10 5 1 
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THE SECOND RECURRENCE 

From (2) we can count the number of times T&J) occurs in the expansion 
of B(n + m + 1) given by (3). Because of the form of the recurrence (2), it is 
easy to see that this number is independent of m; we shall denote it by C,(i,j). 
For example, from (3) it follows that C,,(i j) = 1 for all i andj. Similarly, 

=i~ofl(TJi+k-lTj- I)+ T(i- l,j+-k- 1)) 
‘/ 

= Jo ((P + 1) ~&A 4) + (4 + 1) ~n(zA4)) * / 
= izo (i + j + 2) T,(U) */ 

and consequently, C,(i, j) = i + j + 2. 

TABLE II 

Some Values of C&j) 

n=O 1 
1 1 

1 1 1 
1 1 1 1 

1 1 1 1 1 
. . . . . . 

n=l 2 
3 3 

4 4 4 
5 5 5 5 

6 6 6 6 6 

n=2 6 
11 11 

17 18 17 
24 26 26 24 

32 35 36 35 32 
. . . . . . . 

n=3 22 
46 46 

79 86 79 
122 138 138 122 

. . . . . . 
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In general, this argument yields the following recurrence for CJi,j): 

C,+,(i,j) = c C,(i’,j + 1) + c w + lJ’), n 3 0, 
O<i’(i Oqj’<j 

where C,(i,j) = 1 for i, j > 0. 
We list some values of C,(i,j) in Table II, using the same format that we 

used for T,(i, j). Since, by definition 

B(n + m + 1) = c Cd, j) T,(i, j), (6) 
i,i>O 

then setting n = 0 and using the fact that the only nonzero value of T,(i,j) is 
T,(O, 0) = 1, we obtain (replacing m by n) 

B(n + 1) = C,(O, 0). (7) 

We are now ready for our next transformation. 

GENERATING FUNCTIONS 

Let us introduce the following generating function; 

Then 

and, in a similar way, 

= C C C,-,(i’, j + 1) xiyj 
i j>O O<i’<i I/ .-. 

.f,CxsY) -fn(05Y) = 1 
(1 - Y) x 

C Cnpl(f + l,j')xiyj. 
i&O O&Q 
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Therefore, by (5), 

f&G Y> - fn(x, 0) + fn(x9 Y) - fn(O9 Y> 
(1 - -4 Y (1 -Y) x 

= i;. ,ZGi G-l(i’Yj + 1) + o<E<j G-1G + lJ>) XiYi (9 
‘/ . -. 

= c C,(i, j) X”Yj = fn+dx, VA n 2 1. 
i&O 

The first fewf,(x, y) are as follows. 

“m, Y> = ,;, COW) X’Yj = i,;. X”Yj = (1 _ x;(l _ y) , 
3, 

fik Y) = (1 _ x)21(1 _ y) + (1 - x)c’l - y)” ’ 

f&2 Y) = (1 _ x)i(l _ y) + 
4-x-y 

(I - x)2 (1 - y)” + (1 - x;1 - y)” ’ 

f4(x7 y) = (1 - ,,h(l - y) + 
10 - 5x - 4y + xy + x2 

(1 - x)” (1 - y)” 

+ 10 - 5y - 4x + xy + y2 + 
(1 - x)” (1 - y)3 (1 - x):I - y)4 (10) 

Let us write 

P7%.k~X, Y) 
fXx,y) = &l -e~)n+l--k(l -J,)" * (11) 

Thus, 
n+1 

n+d-% Y) 
fn+1(x, Y) = z1 (1 -$+2-r(1 -y)k 

= hl(& Y) -f&G 0) + A(-% Y) -Ado, Y) 

(1 - 4 Y (1 - Y) x 

= jl l I(1 Lx) y ( (1 _ x~kyL y)" - ,:nk$%k) 

+ (1 -lY) ( 
Pn.k(X, Y> _ P%k(O, Y) 

x (1-x) n+1-k (1 - y)” (1 - Y)” ,1 

p, kk 0x1 - Y)” 
= jl ly(l _ $!y{ -y)k - y(1 _: $n+2+K(l - y)" 

+ 
P%k(X9 Y) P,.,(O, Y)(l - 4n+1-k 1 

x(l -X)4+14(1 - y)"+l - (1 - ;y)W-k(1 - y)k'l ) * 
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Pn+&, Y> = U/YXPn,k(X, Y) - Pn,r(x, w - Y)‘“) 

+ (1/4(pn,k-1(4 Y) - P&k-164 Y)O - x>s+*-k) 

forn>l,l <k,(n+l,where 

Pl,l(& Y) = 1, p,,,d-u, Y> = 0 for s < 0 and s > r. 

The recurrence (11) consequently determines an array ofpolynomials Pn&, y). 
The value of B(n) is obtained from these polynomials by; 

(13) 

Our job now becomes that of determining the P&x, y). 

THE POLYNOMIALS Q,,&, y) 

In order to avoid complications with & signs which could occur later, we 
shall define polynomials Q,,,(x, y) by 

Q,&, Y) = Pn,d-x, -Y>. 

Thus, the Q&x, y) satisfy (from (12)) 

Qn+&, Y) = O/~)(Qn.dx> ON + Y>~ - Qn.kk Y)) 

+ (~lx)(Q,dO, YN + ~)n+~-~ - Qn,lc& YN 

for n > 1, 1 < k < n + 1, where 

Q&, Y) = 1, Qr.sk Y) = 0 for s < 0 and s > r. 

Let us write 

Qn,&, Y) = 1 Dn.k,i.jXiY'. 
i,j>O 

(14) 

(15) 

If we substitute the expression for Q&x, y) in (15) into (14) then we obtain 

D ni1,k.i.j - - Dn.k.i.0 -D n.k.i.91 

+ Dn,lc--l.o,i n,k l,z+l,i . _. (16) 
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At this stage of the proof one would ordinarily pull out of a hat an explicit 
expression for Dn,k,i,j which would then be shown by induction to satisfy 
(14). For this problem, however, this process is not completely trivial. To 
illustrate this, we give in Table III the coefficients D,,a,i,j . Values not shown 
are zero. It follows from (14) that 

D 72.k.i.i - - Dn,n+w,i.i (17) 

so that the arrays for k = 6, 7, 8,9 not listed in Table III are just transposes 
of arrays for k = 4, 3,2, 1, respectively. The most striking aspect of the 
coefficients, generally, is the lack of large prime factors. For example, no 
Dg,k,i,j has any prime factor exceeding 13. It was perhaps this property more 

TABLE III 

Values of D8,5.1., 

i i 
k=l: i 

\- 
0 k=2: i 

\ 
0 1 

0 I 1 0 120 84 
1 210 126 
2 252 126 
3 210 84 
4 120 36 
5 45 9 
6 10 1 
7 1 0 

i 
k=3: i \ \- 

0 1 

2520 3360 1176 0 
6048 7392 2352 1 
7560 8400 2352 2 
5760 5760 1344 3 
2700 2400 420 4 

720 560 56 5 
84 56 0 

i 
k=5: i 

\ 

i 
2 k=4: i \ 

0 1 2 

0 1 2 3 

14112 26460 17640 4116 
35280 61740 38220 8232 
40320 65520 36960 7056 
25200 37800 18900 2940 

8400 11550 4900 490 
1176 1470 490 0 

3 4 

24696 56448 52920 23520 4116 
56448 120960 105840 43680 7056 
52920 105840 85050 31500 4410 
23520 43680 31500 9800 980 

4116 7056 4410 980 0 
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than any other which convinced us that there must be a relatively simple 
expression for DpZ,k,i,j . 

Indeed, after several hours of reflection, the following expression emerged: 

D n.k.i.5 = (” ; ‘)-l (” ; ‘rl (” ; ‘)(k ;;; I)& rl): 1) 

x 
K 

kSi--2 n+j-k-l 
i I( j 1 

k+i-2 n+j-k-l - 
i-l I( )I j-l ’ 

where c) is taken to be 0 if y < 0 or y > x. A straightforward substitution 
of (18) into (16) now yields (after clearing the denominators) the following 
equivalent equation (19), which holds if and only if the asserted value of 
D n,k,i,j in (18) satisfies (16): 

(k - 1) k(i + l)(n - k - i)(n - k + j + 2)(72 - k + j + l)(n - k + j) 
+ (j + I)(k - j - I)(n - k + l)(n - k)(k + i + l)(k + i)(k + i - 1) 
+ (n - k + I)(n - k)(i + l)(n - k - i)(k - j - l)[i(j + 1) 
- (k - I)(n - k - I)] 
+ k(k - l)(j + l)(n - k - i)(k -j - I)[j(i + 1) - (k - 2)(n - k)] 
+ (n - 1) n(n + l)(i + l)(j + I&j - (k - I)(n - k)] L 0. (19) 

As unlikely as it seems, (19) does indeed hold identically and, consequently, 
since (18) gives the correct values of Dn,p,i,j for small values of n, then by 
induction, (18) gives the value of Dn,k,i,i for all values of the parameters. 

We now use (18) to deduce (I), the main result of the paper. From (18), 

D ~.k,O,O=(“~l)-l(‘~l)-l(;I.:)(n~l)(f:::)’ (I’) 

So, from (13) (15), and the definition of Qnsk(x, y), 

B(n) = fn(O, O> = i Pn.k(O, O) 
k=l 

which is just (1). This completes the proof of the theorem. 
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SOME REMARKS 

In Table IV we give some small values of B(n). It was pointed out to us by 
A. M. Odlyzko that the first few terms in the asymptotic expansion of B(n) 
are given by 

B(n) = s 11 - g + O(n71 . 

This approximation is not too bad, even for relatively small n. For example, 
from Table IV 

B(50) = 1.16356... x 103s, 

whereas the first two terms of the asymptotic expansion give 

B(50) FZJ 1.14598 x 103s. 

We point out in passing that B(n) satisfies the following linear recurrence 
(derived from (1) by Paul S; Bruckman): 

(n + Nn + 2)(n + 3)(3n - 2) B(n) 
= 2(n + 1)(9n3 + 3n2 - 4n + 4) B(n - 1) 

+ (3n - l)(n - 2)( 1 5n2 - 5n - 14) B(n - 2) 
+ 8(3n + l)(n - 2)2 (n - 3) B(n - 3) (21) 

for n > 4, where B(1) = 1, B(2) = 2, B(3) = 6. 
As mentioned at the beginning, there is no proof of (1) known which 

enumerates classes of Baxter permutations corresponding in a natural way to 
the individual summands in (I). There are almost certainly other classes of 

TABLE IV 

n B(n) 

1 1 
2 2 
3 6 
4 22 
5 92 
6 422 
7 2074 
8 10754 
9 58202 

10 326240 
20 29949238543316 
30 7101857696077190042814 
40 2554987813422078288794169298972 
50 1163558691573487855005674103586862832160 
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restricted permutations for which similar techniques can be applied although 
none of us has done this yet. 

A few historical notes may be in order here. The recurrence for T,(i,j) in 
(2) was derived in 1967 by one of the authors (R. L. Graham) in response to 
a query of W. M. Boyce, who had already tabulated the values of B(n) for 
small values of n (see [4]). These values subsequently appeared in the unique 
handbook of Sloane [l l] as Sequence No. 652. In 1977, another of the authors 
(V. E. Hoggatt) discovered that the first 10 row sums of a certain array of 
generalized binomial coefficients happened to agree exactly with the values 
of B(n) tabulated in Sloane. It had not been suspected beforehand that they 
might be given by such a simple expression. 
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