ADDITION CHAINS WITH MULTIPLICATIVE COST*

R.L. GRAHAM

Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

A.C.-C. YAO

Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

F.-F. YAO

Brown University, Providence, Rhode Island, U.S.A.

Received 30 December 1975 Revised 20 February 1978

If each step in an addition chain is assigned a cost equal to the product of the numbers at that step, "binary" addition chains are shown to minimize total cost.

Introduction

For a positive integer n, by a chain to n we mean a sequence $C = ((a_1, b_1), (a_2, b_2), \ldots, (a_r, b_r))$ where a_k and b_k are positive integers satisfying:

- (i) $a_r + b_r = n$,
- (ii) for all k, either $a_k = 1$ or $a_k = a_i + b_i$ for some i < k, with the same also holding for b_k .

The cost of C, denoted by S(C), is defined by

$$(C) = \sum_{k=1}^{r} a_k b_k.$$

The minimum cost required among all chains to n is denoted by f(n). (In the case of ordinary addition chains S(C) is just equal to r; e.g., see [1].) A few small values of f(n) are given in Table 1.

Table 1

$$n=1$$
 2 3 4 5 6 7 8 9 10
 $f(n)=0$ 1 3 5 9 12 18 21 29 34

The function f arises in connection with determining the optimal multiplication

*The work on this paper was done by all three authors while visiting Stanford University, Stanford, CA 94306. Partially supported by National Science Foundation grant DCR 72-03752 A02, by the Office of Naval Research contract NR 044-402, and by IBM Corporation. Reproduction in whole or in part is permitted for any purpose of the United States Government.

chain for computing the *n*th power of a number by ordinary multiplication. If a number x has d digits, then computing x^{a_k} from x^{a_i} and x^{b_i} requires $(a_ib_i) \cdot d^2$ digitwise multiplications in general. Let g be defined by

$$g(1) = 0,$$

$$g(2n) = g(n) + n^{2}$$

$$g(2n+1) = g(n) + n^{2} + 2n$$

$$n \ge 1$$

It was conjectured by McCarthy [2] that f(n) = g(n) for all n. In this note we prove his conjecture.

Two properties of g

We first establish several facts concerning the function g which will be used later.

Fact 1. For $m, t \ge 0$ with m odd we have

$$g(2^{t}m) - g(2^{t}m - 1) = t + m - 1. \tag{1}$$

Proof. For t = 0, (1) follows at once from the definition of g. Assume t > 0. Then

$$g(2^{t}m) = g(2^{t-1}m) + (2^{t-1}m)^{2},$$

$$g(2^{t}m-1) = g(2^{t-1}m-1) + (2^{t-1}m-1)^{2} + 2(2^{t-1}m-1)$$

$$= g(2^{t-1}m-1) + (2^{t-1}m)^{2} - 1.$$

Thus

$$g(2^{t}m) - g(2^{t}m - 1) = g(2^{t-1}m) - g(2^{t-1}m - 1) + 1$$

and consequently, (1) holds by induction on t.

Fact 2.

$$g(n)-g(x) \ge (n-x)^2 + 2x - n$$
, for $x+2 \le n \le 2x + 1$. (2)

Proof. Note that for n = 2x and n = 2x + 1, this is just the definition of g. The validity of (2) for x = 1, 2, 3 is immediate. We assume by induction on x that (2) holds for all values less than some x > 3. The proof of (2) can be most easily accomplished by splitting it into 4 cases, depending on the parity of n and x.

Case 1.
$$n = 2N$$
, $x = 2X$.

By hypothesis

$$2X + 2 \le 2N \le 4X + 1$$

i.e.,

$$X+1 \leq N \leq 2X$$
.

For N = X + 1,

$$g(2N) - g(2X) = g(X+1) + (X+1)^2 - g(X) - X^2$$

$$= g(X+1) - g(X) + 2X + 1$$

$$\ge 2X + 2 = (2X + 2 - 2X)^2 + 4X - 2(X+1).$$

by Fact 1 and (2) is proved in this case. For $N \ge X+2$, the induction hypothesis applies and

$$g(2N) - g(2X) = g(N) - g(X) + N^2 - X^2$$

$$\geq (N - X)^2 + 2X - N + N^2 - X^2$$

and so (2) will hold in this case provided

$$(N-X)^2+N^2-X^2+2X-N \ge (2N-2X)^2+4X-2N$$

However, this equality can be rewritten as

$$(2N-2X-1)(2X-N) \ge 0$$

which certainly holds for $X+2 \le N \le 2X$.

The other three cases are similar and will be omitted.

The main result

Theorem. For all n,

$$f(n) = g(n)$$
.

Proof. It is clear that $f(n) \le g(n)$ for all n since the definition of g(n) determines a unique chain to n with cost g(n). Hence, it will suffice to show that $f(n) \ge g(n)$. In fact, it will be enough to establish the following analogue of (2) for f:

$$f(n)-f(x) \ge (n-x)^2 + 2x - n$$
, for $x+2 \le n \le 2x + 1$. (2')

For this implies

$$f(2x)-f(x) \ge x^2$$
, $f(2x+1)-f(x) \ge x^2+2x$,

and so, by induction,

$$f(2x) \ge f(x) + x^2 \ge g(x) + x^2 = g(2x),$$

 $f(2x+1) \ge f(x) + x^2 + 2x \ge g(x) + x^2 + 2x = g(2x+1).$

From Table 1, (2') certainly holds for x = 1, 2, 3. Assume that for some X > 3, (2') holds for all x < X and all n with $x + 2 \le n \le 2x + 1$. In particular, this implies f(m) = g(m) for $1 \le m \le 2X - 1$. Suppose N satisfies $X + 2 \le N \le 2X + 1$. If

 $N \le 2X - 1$ then in fact,

$$f(N) - f(X) \ge (N - X)^2 + 2X - N$$

holds by applying (2') with x = X - 1. Hence, we are left with the two cases N = 2X and N = 2X + 1.

(i) N = 2X. Suppose the last step in some arbitrary chain C to N is (a, b) with a + b = N and $X \le b < 2X$.

Thus,

$$(C) \ge f(b) + ab = f(b) + b(2X - b) \ge f(X) + X^2$$

since the last inequality is immediate for b = X, and follows by induction from (2) for $b \ge X + 1$. Since C was arbitrary then

$$f(2X) \ge f(X) + X^2$$

which is the desired inequality.

- (ii) N = 2X + 1. Again, assume the last step in some chain C to N is (a, b) with a + b = N and $X + 1 \le b < 2X + 1$.
 - (a) If b > X+1 then

$$\$(C) \ge f(b) + b(2X + 1 - b)$$

$$\ge f(X) + X^2 + 2X$$

since

$$f(b)-f(X) \ge (b-X)^2+2X-b$$

holds for $X+2 \le b \le 2X-1$ by induction and for b=2X by the preceding case (i).

(b) If b = X + 1 then a = X. Consider the step (a', b') of C for which a' + b' = b. We have

$$\$(C) \ge f(X) + a'b' + ab
= f(X) + b'(X + 1 - b') + X^2 + X
\ge f(X) + X^2 + 2X$$

since for $1 \le b' \le X$,

$$b'(X+1-b') \ge X$$
.

Hence

$$f(2X+1) \ge f(X) + X^2 + 2X$$
.

This completes the induction step and the Theorem is proved.

Concluding remarks

We should note that the optimal chains to n are not unique. This is due to the

fact that

$$f(2n+1) = f(n) + n^2 + 2n$$

can be realized in going from n to 2n+1 by either

$$(n, n), (2n, 1)$$
 with additional cost $n \cdot n + 2n \cdot 1 = n^2 + 2n$

or

$$(n, 1), (n+1, n)$$
 with additional cost $n \cdot 1 + (n+1) \cdot n = n^2 + 2n$.

One might consider generalizations of the problem in which the cost of a chain $C = ((a_1, b_1), \dots, (a_r, b_r))$ is given by

$$\$_{\lambda}(C) = \sum_{k=1}^{r} \lambda(a_k, b_k),$$

where λ maps $Z \times Z \to R$. It would be interesting to know for which λ the "binary representation" chain to n is always optimal. This is the case for example for $\lambda(x, y) = (x+1)(y+1)$ (see [2]), but it is not the case for $\lambda(x, y) = x + y$.

References

- [1] D.E. Knuth, The Art of Computer Programming, Volume II, Seminumerical Algorithms (Addison-Wesley, Reading, MA, 1969).
- [2] D.P. McCarthy, An optimal algorithm to evaluate x^n over integers and polynomials modulo M, Mathematics of Computation (to appear).