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ADDITION CHAINS WITH MULTIPLICATIVE COST*
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If each step in an addition chain is assigned a cost equal to the product of the numbers at that
step, ‘““binary” addition chains are shown to minimize total cost.

Introduction

For a posttive integer n, by a chain to n we mean a sequence C=
((ay, by), (a3, by), . .., (a, b)) where g, and b, are positive integers satisfying:

(i) a,+b,=n,

(ii) for all k, either a, =1 or a, =a;+b, for some i<k, with the same also
holding for b,.
The cost of C, denoted by $(C), is defined by

$(C) = Z akbk.
k=1
The minimum cost required among all chains to n is denoted by f(n). (In the case

of ordinary addition chains $(C) is just equal to r; e.g., see [1].) A few small
values of f(n) are given in Table 1.

Table 1
n=1 2 3 45 6 7 8 9 10
fm)=0 1 3 5 9 12 18 21 29 34

The function f arises in connection with determining the optimal multiplication
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chain for computing the nth power of a number by ordinary multiplication. If a
number x has d digits, then computing x* from x* and x" requires (a;b,) - d>
digitwise multiplications in general. Let g be defined by

g(1)=0,
g(2n)=g(n)+n? n=1
gn+1)=gn)+n%+2n

It was conjectured by McCarthy [2] that f(n)=g(n) for all n. In this note we
prove his conjecture.

Two properties of g

We first establish several facts concerning the function g which will be used
later.

Fact 1. For m, t=0 with m odd we have

g2'm)~g'm—-1)=t+m—1. (1)

Proof. For t =0, (1) follows at once from the definition of g. Assume ¢>0. Then
g@'m)=g(2 ' m)+ (2 m)?,
g2'm-1)=gR" " 'm-1)+Q2" 'm—-1+2Q2" 'm—1)
=g 'm-1)+@2" 'm)>—1.
Thus
g2'm)—g(2’m-1)=gR" 'm)— g2 *m—-1)+1

and consequently, (1) holds by induction on t.

Fact 2.

gln)—gx)=(n—x)*+2x—n, for x+2=sn<=2x+1. 2)

Proof. Note that for n=2x and n=2x+1, this is just the definition of g The
validity of (2) for x =1, 2, 3 is immediate. We assume by induction on x that (2)
holds for all values less than some x>3. The proof of (2) can be most easily
accomplished by splitting it into 4 cases, depending on the parity of n and x.

Case 1. n=2N, x=2X.
By hypothesis

2X+2=<2N=4X+1
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le.,
X+1=sN=s2X
For N=X+1,
82N)—g(2X) =g(X+D+(X+1)*—g(X)- X?
=g(X+1)—g(X)+2X+1
22X+2=02X+2-2X)*>+4X~-2(X+1).

by Fact 1 and (2) is proved in this case. For N> X+2, the induction hypothesis
applies and

82N)—g(2X) = g(N)— g(X)+ N*— X?
=2(N-X)?+2X-N+N>-X?
and so (2) will hold in this case provided
(N=-X)’+N>-X?+2X-N=(2N-2X)>+4X—2N.
However, this equality can be rewritten as
CN-2X-1)(2X-N)=0

which certainly holds for X+2<N=2X.
The other three cases are similar and will be omitted.

The main result

Theorem. For all n,

f(n)=g(n).

Proof. It is clear that f(n)=< g(n) for all n since the definition of g(n) determines
a unique chain to n with cost g(n). Hence, it will suffice to show that f(n)= g(n).
In fact, it will be enough to establish the following analogue of (2) for f:

f(M—fx)=(n—x)*+2x—n, for x+2sn<2x+1. 2"
For this implies
f2x)—f(x)=x2, f2x+1)—f(x)=x>+2x,
and so, by induction,
f2x)=f(x)+x*= g(x) + x> = g(2x),
fCx+1)=f(x)+x*+2x=g(x)+x2+2x = g(2x +1).

From Table 1, (2') certainly holds for x =1, 2, 3. Assume that for some X >3, (2')
holds for all x<X and all n with x+2<n=<2x+1. In particular, this implies
f(m)=g(m) for 1sm=<2X-1. Suppose N satisfies X+2<N<2X+1. If
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N=2X-1 then in fact,
fN—f(X)=(N-X)*+2X—-N

holds by applying (2') with x=X—1. Hence, we are left with the two cases
N=2X and N=2X+1.

(i) N=2X. Suppose the last step in some arbitrary chain C to N is (a, b) with
a+b=N and Xsb<2X
Thus,

$(C)=f(b)+ab = f(b) + b2 X — b) = f(X) + X2

since the last inequality is immediate for b =X, and follows by induction from
(2) for b= X+1. Since C was arbitrary then

f2x)=f(X)+X*

which is the desired inequality.

(i) N=2X+1. Again, assume the last step in some chain C to N is (a, b) with
a+b=Nand X+1=s<b<2X+1.
(a) If b>X+1 then

$(O)=f(b)+b2X+1-b)
=f(X)+X*+2X
since
fB)—f(X)=(b—X)*+2X~b

holds for X+2=b=<2X-—1 by induction and for b =2X by the preceding case
).
(b) If b=X+1 then a=X Consider the step (a’,b’) of C for which
a'+b’'=b. We have

$(O)=f(X)+a'b' +ab
=f(X)+b(X+1-b)+X*+X
= f(X)+X>+2X
since for 1=sb'=X,
P(X+1-b)=X.
Hence
f2X+D=f(X)+X*+2X.

This completes the induction step and the Theorem is proved.

Concluding remarks

We should note that the optimal chains to n are not unique. This is due to the
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fact that
fen+1)=f(n)+n*+2n
can be realized in going from n to 2n+1 by either
(n, n), (2n, 1) with additional cost n- n+2n-1=n’+2n
or
(n, 1), (n+1, n) with additional cost n- 1+(n+1) - n=n>*+2n.
One might consider generalizations of the problem in which the cost of a chain
C=((ay, by),...,(a,b,)) is given by
$1(0)= . Aaw bo),

where A maps Z X Z— R. It would be interesting to know for which A the “binary
representation” chain to n is always optimal. This is the case for example for
A(x, y)=(x+1)(y+1)(see [2]), but it is not the case for A(x, y)=x+y.
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