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Lower Bounds for Constant Weight Codes
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Abstract—Let A(n,26,w) denote the maximum number of codewords in
any binary code of length n, constant weight w, and Hamming distance 25.
Several lower bounds for A4(n,25,w) are given. For w and § fixed,
A(n,28,w)z=n* %1 /w! and A(n,4,w)~n""'/w! as n—co. In most
cases these are better than the “Gilbert bound.” Revised tables of
A(n,28,w) are given In the range <24 and §< 5.

I. Lower BOUNDS FOR A(n,4,w)
Theorem 1:
lin
A(n,4,w) > ;( w)‘
Proof: Let F}, denote the set of ( 3}) binary vectors of
length n and weight w, and let Z,=2/nZ denote the
residue classes modulo n. Consider the map

T: F,—>Z,
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whose value at a=(ag," - -,a,_,) EF" is
T(a)= X i (modn)
a;=1
n—1
= > ia,  (modn). (1)

i=0

For 0<i<n—1 let C, be the constant weight code T ~'(i).
We claim that the Hamming distance between any two
distinct codewords of C,, say a and b, is at least four. For
suppose it is two. Since @ and & have weight w this means
that @ and b agree everywhere except for two positions,
one (say the rth) where a is one and b is zero and another
(say the sth) where a is zero and b is one. But T(a)= T(b)
=, so from (1)

T(a)=x+r=i (modn),
T(b)=x+s=i (modn)

for some x €Z,,. This implies r =s(modn), which is impos-
sible. Thus C; has a Hamming distance of at least four
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between its codewords. Also
ICol +1Cyl+ -+ +[C,_i|=( 1),

so, for at least one j,

1in
51> (3)
This completes the proof of Theorem 1.

Corollary 2: Let C; be as defined in the proof of Theo-
rem 1. Then

A(n,4,w)> max |C)
0<i<n—1

This is stronger (though less informative). For example,
Theorem 1 gives 4(14,4,6) > 215 while Corollary 2 gives
A(14,4,6) > 217 (see Table I).

Remarks

1) This paper was prompted by our seeing B. Bose and
T. R. N. Rao’s report [1] on unidirectional codes, where
(among other things) it is proved that
A(n,4,w)> (n+ 1)“(:,). Our proof of Theorem 1 is al-
most identical to their proof.

2) Other bounds on 4(n,28,w) may be found in S. M.
Johnson [2] and in [3] and in the references given in these
papers. In particular Johnson showed that

(w—’é+l)’
(w-3+1)

(8—1)1pw—o+1
w!

A(n,28,w)<

which implies

A(n,28,w)s )

as n—oo. For § =2 this reads

nw—l

w!

A(n,4,w)ss

Combining this with Theorem 1 we have Theorem 3.

Theorem 3.

w—1
A(n,4,w)~ n

for w fixed, as n— 0.

II. LowEer BOUNDS ON A(n,28,w) BASED ON

GF(q)°~!
Theorem 4: Let q be a prime power such that g>n.
Then
1 (n
A(n,28,w) > 2 (w)

Proof: Let g>n be a prime power, and let the ele-
ments of GF(q) be labeled wg,w,," - - »w,_;. Define a map

T: F* >GF(q)* '

by
Tl(a)
T
T@y=| |,
Ts_(a)
where
T\(a)= 21‘*’."
T(a)= I ww,
i<
gi=a;=1
Tya)= 3  www,
i<j<k

a=ag=q =1

For each (8 —1)-tuple

Yy
v
o=| ° €GF(q)°,
Vs -1
let C,= T ~!(v). Then for some v
1 n
|C°l> qs—l (w)

It remains to show that C, has a Hamming distance of 28.
Suppose on the contrary that there are vectors a,b€ C,
with distance (a,b)=2y<28—2. This means that there

are 2y distinct coordinates r,- - - JTysSy5° + +»5, such that
ryrp Iy 518 5
a=---1111---0000---,
b=---0000---1111---,

and a and b agree in all other coordinates. Write o =w,,
B;=w, (1<i<y). Since T(a)=T(b) the elementary sym-
metric functions of the a; and B, agree:

0= 2"‘i= 2:31"

0, = 2 oq05= 3 B,
i<y i<j

O5_ = 2 @ e = 2 'Bil""Bia_.'
< <igoy < <igy
Therefore a;,--- ,a.,,B,,- .- ,,B7 are 2vy distinct zeros of the
polynomial
XV = x" o x7 2~ xo,.

But a polynomial of degree y over a field has at most y
zeros. This contradiction completes the proof of Theorem
4,

Again we can strengthen this result.
Corollary 5: Let q be a prime power such that g>n.
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Then

A(n,28,w)> max_ |C,|.

v€GF(q)* ™"

Remarks

1) For any e there is an ny(€) such that for all n>ng(e)
there is a prime in the interval (n,(1 + €)n) [4, p. 88]. Thus
in Theorem 4, g need never be much greater than n and
combining this with (2) we have Theorem 6.

Theorem 6:

nw—8+l

I\ w8+l
' SA(n,28,w)5(—q——l—)—'"—
w!

w!

for w fixed, as n—>c0.

2) As A. M. Odlyzko has observed, the standard argu-
ment used to prove the Gilbert bound for codes (see
Berlekamp [S, Theorem 13.71]) when applied to constant
weight codes yields Theorem 7.

Theorem 7 (The “Gilbert Bound”):

A(n,28,w) >

and so as n—o0
(8—1)pv—84!

W!(sfl)

For small w this is sometimes better than the lower
bounds of Theorems 4, 6, and 11. For example when n is
large Theorem 7 is stronger than the lower bound of
Theorem 6 if w is such that

(52q)<@-n

but for larger values of w the new bounds are better than
the “Gilbert bound.”

3) For large n the best upper and lower bounds on
A(n,28,w) differ by a factor of

min{(a—l)!,(sfl)}.

In at least one case it is known that the upper bound is

correct. From the work of H. Hanani, A. E. Brouwer, and

A. Schrijver (the references are given in [3]) it follows that
2

A(n,6,4)~%.

A(n,28,w)=

III. Lower BOUNDS ON A(n,28,w) USING SETS
WITH DISTINCT SUMS

A subset S={s,, - -,s,} of Z,, is called an S,-set of size
n and modulus m if all the sums
s st +s (3)

for i, <iy<--- <i, are distinct in Z,,.
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Provided t<(n+1)/2, an S,-set is automatically an
S,-set for u<i. Since there are ( ) sums (3), we must

n
m> (7). (@)
The set {0,1,2,4} is an example of an §,-set of size 4 and
modulus m=6={ _ ). It can be shown that no S,-set of

t
have

size n and modulus exists for n>4; this and other

properties of S,-sets will appear in a companion paper [6].
A perfect difference set is also an S,-set, for if the
differences s;,—s; are distinct then so are the sums s;+s,,
but the converse is not true, as the above example shows.
The following construction was given by R. C. Bose and
S. Chowla [7] in 1962 and generalizes the construction of a
Singer perfect difference set (see for example [4, p. 83]).

Theorem 8 (Bose and Chowla): For any prime power ¢
there is an S,-set of size ¢+ 1 and modulus m=(g‘*'—
1/(g-D.

Proof: Let m(x) be a primitive irreducible polynomial
of degree t+1 over GF(q) and let £ be a zero of #(x).
Then ¢ is a primitive element of GF(g**"),

(M=a,

where a is a primitive element of GF(g). Also the ele-
ments of GF(¢‘*!) may be written as

g=bP+ b5+ -+ + b, (5)
where b €GF(g), for 0<j<q‘*!—2 (see [8, ch. 4]). Let
S consist of those values of j in the range 0<j<m for

which the coefficients by),---,bY are zero. Then the
products

ga' 1= and

§1'1 gjz. .. &l},
are distinct elements of GF(g™*!) (since these are the
products of ¢ linear factors, the representations of these
products in the form (5) are all distinct). Therefore S is an
S, set.

J<i < <

Remark: The other construction of S,-sets given by
Bose and Chowla [7, Theorem 1], [4, p. 81, Theorem 3]
leads to a bound on 4(n,28,w) which is weaker than
Theorem 4.

The connection between S,-sets and A(n,28,w) is given
by the following theorem.

Theorem 9: If there exists an S;_,-set of size n and
modulus m then

A(n,28,w) > 7171(3’)

Proof: The proof is similar to that of Theorems 1 and
4, but using the map

T: F'Z,,
given by
T(a)= D, s, (modm)

a;=1
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and the codes C,= T ~!(i).
Corollary 10:
A(n,28,w)> max |C]
0<i<m—1

From Theorems 8 and 9 we have Theorem 11.

Theorem 11: Let q be the smallest prime power such
that g+ 1> n. Then for § >3
=1 (n
A(n,28,w) > ;3—_]-( W)'
For some values of n this is'stronger than Theorem 4, for
others, weaker. Asymptotically they are the same.

IV. TABLES

Tables of 4(n,28,w) for n< 24 and §< 5 are given in [3]
and [8]. A number of the lower bounds for §=2 and 3 can
now be improved using the above results, and the revised
tables are shown in Tables I-IV which appear on the
following three pages. The tables for §=4 and 5 are
included for completeness.

Key to Tables

Unmarked entries are copied from [3].

a) From Theorem 1.

b) From Corollary 2.

¢) From Corollary 5.

d) From Corollary 10, using an S,-set of size 24 and
modulus 554 obtained from a perfect difference set
[9].

e) From translates of the Nordstrom-Robinson code
[10].

f) From the weight distribution of a certain code [10].

g) From a Hadamard matrix [10].

h) See Kibler [11].

i) These values were obtained by Colbourn ([12]; also
written communication, August 1979) using the
bound given by Johnson in [13, (29)]

J) A. E. Brouwer, [15].

We conclude with some addenda to [3]. Brouwer [10]
has communicated to us the following improvements to [5,
Table IIIA].

7(1,3,6,15,10) =6,
7(1,4,6,15,10) =7,
7(1,5,6,15,10)=7,

T(1,6,6,15,10)=7 (not 8).

The results mentioned in the Note on page 92 of [3] have
appeared in Best [14]. In the fifth line of eq. (5), change
197 to 297. On page 89, in line 2 of Section IVA the words
“D(t,k,v) where v="" are illegible.
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NOTE ADDED IN PROOF

A. E. Brouwer has recently shown that 4(24, 10,11) >
52, and P. Delsarte and P. Piret [16] have improved the
lower bounds to several values of A(23,6,w) and
A(24,6,w).
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TABLE I
A(n,4,w)
n\w 2 3 4 5 6 7 8 9 10 11 12
y 2 | 1 1
5 2 2 1 1
6 3 y 3 1 1
7 3 7 7 3 1 1
8 y 8 14 8 4 1 1
9 y | 12| 18 18 12 4 1 1
10 5 | 13 30 36 30 13 5 1 1
11 5 1 17 35 66 66 35 17 5 1 1
12 6| 20| 51 |I75-88] 132 75-84 51 20 6 1 1
h J
118-| J158- 158- 118-
1316126 65 | 1337 182 -182 -132 65 26 6 .
J169-| *275- I316- 275- 169-
14 T2 91 | 3857 | -308 -364 -308 -182 91 28 7
J J J -
222-| I370- 82 - 370~ 222
15 735 | 105 | “222- 310 _gse _e8s _i55 271 105 35
305-| J592- a715- | J1164- 715~ 592- 305-
16 8 ) 37 | 40 | _33z7| -722 -1040 -132 -1040 =722 -336 1ho
17 g | uy | 134- | seu- Jguo- | Prooue | Pyiyge. | 1496- 1224- 840 ok
157 | -u76 | -952 -1753 -2210 |-2210 <1753 -952 -476
13 48 | 198 Isou-|T1260- | B1768- | Pauzs- |Porou- 2438- 1768- 1260-
9 9 _565 |-1428 ~2448 _39h4 | -y20 -394 -2448 -1428
1 57 | 208 612-|P1u82- | a679- | B3978- | 2useo- 4862 3978~ 2679
9 9 —752 |-1789 -3876 -5814 | -8326 -8326 _5814 -3876
b a b
816-| 2040- | 23876- 6310~ |®8398- 9252- 8398~ 6310-
20 110 | 60 | 285 } g707|_ 5506 -5111 -9630 |-12920 | -16652 -12920 ~9590
b a
1071-| 2856- | @5538- | 29690~ |°14000- 16796~ 16796~ 14000~
2L |10 4 70 ) 315 | 1797 [-3192 _7518 -13016 |-22610 | -27132 -27132 _22610
a b a b a
3927- 7752- 14550- | 222610- | Pagnin- 32066~ 29414-
22 {11 1 73 | 385 | 1386 | _j3gg -10032 | -20674 |-32794 | -hko7h2 —5h264 -h37h2
416- 810659~ | 221318- [®35530- | Pug7s2- 858786- 58786-
23 111§ 83 f ;14 | 1771 | 5313 -1442) | -28B42 |-52833 | -75h26 ~104006 —104006
b b b a b
1859~ 314u21- | P30667- |Psuusu- | P817s50- 104006- 112720~
24 12 83 498 -2011 7084 -18216 -43263 -76912 -126799 -164565 -208012
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TABLE 11
A(n,6,w)

n\w y 5 6 7 8 9 10 11 12
6 1 1 1

7 2 1 1 1

8 2 2 1 1 1

9 3 3 3 1 1 1

10 5 6 5 3 1 1 1

1 6 11 11 6 3 1 1 1

12 9 12 22 12 9 4 1 1 1
13 13 18 26 26 18 13 4 1 1
14 14 28 N2 42-51 I2 28 14 y 1
15 15 42 70 60-88 60-88 70 42 15 5
16 20 48 112 90-156 | 120-150 | 90-156| 112 48 20
17 20 68 112-136 | Pa19-z2u0t M136-283 | 136-283] 119-240 | 119-2%9 | 68
18 22 | 68-7z | 144-202 | 160-349 | 232-428 | 289-u25| 232-428 | 160-349 | 144-202
R e R e I I I I e
20 30 {M8u-100] 232-276 | 310-651 _Qii;i _:ggg- _lzg:‘ -1§2§' _gig;
21 31 [Ros-126 | 253-350 | 465-828 _igggi _%ggg- _%;gg- _éigg- _;ggﬁ-
ol e S e I B T e
23 4o |147-170| 399-521 | 969-1518 fgfg; f;g;;- f;;gz- f;g;g— _;ggg-
il N R el M S I b e e
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TABLE IlI
A(n,8,w)
AT 5 6 7 8 9 10 11 12
8 2 1 1 1 1
9 2 2 1 1 1 1
10 2 2 2 1 1 1 1
11 2 2 2 2 1 1 1 1
12 3 3 y 3 3 1 1 1 1
13 3 3 4 4 3 3 1 1 1
14 3 4 7 8 7 4 3 1 1
15 3 6 10 15 15 10 6 3 1
16 4 6 16 16-22 30 16-22 16 6 ]
17 4 7 17 21-31 34-35 34-35 21-31 17 7
18 4 9 | 20-21 33-41 46-63 48-70 46-63 33-41 20-21
19 41 12 28 52-57 78-97 88-122 88-122 78-97 52-57
20 5 | 16 4o 80 130-142 | 160-215 176-244 160-215 130-142
21 51 21 56 120 210 280-331 336-399 336-399 280-331
22 51 21 77 176 330 280-493% | 616-659% 672-785% 616-659
23 54 23 | 77-80 253 506 noo-801t | ¢16-1111 | 1288-1350%] 1288-1350
o4 | 6| 24 | 77-92 | 253-274 759 640-11431| 960-1639 | 1288-22311 2576
TABLE IV
A(n,10,w)
v | 5 6 7 8 9 10 11 12
10 2|1 1 1 1 1
11 2| 2 1 1 1 1 1
12 2| 2 2 1 1 1 1 1
13 212 2 2 1 1 1 1
1k 2| 2 2 2 1 1 1
15 3 3 3 3 3 3 1 1
16 3 3 3 4 3 3 3 1
17 3 3 5 6 6 5 3 3
18 3] 4 6 9 10 9 6 4
19 3| 4 8 12 19 19 12 3
20 4 5 10 17-18 20-24 38 20-24 17-18
21 u |7 13 21-26 | 21-41 38-49 38-49 21-41
22 4 | 7| 15-19 | 22-35 | 22-57 38-74 38-82 38-74
23 y 1 s | 16-23 | 23-50 | 23-87 38-117 | 38-135 38-135
an | u | o | 2u-27 |P27-68"| 23-119 | Tsu-171 | 38-203 | Bue-2u7
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