ON UNIMODALITY FOR LINEAR EXTENSIONS OF PARTIAL ORDERS*

F. R. K. CHUNG[†], P. C. FISHBURN[†] and R. L. GRAHAM[†]

Abstract. R. Rivest has recently proposed the following intriguing conjecture: Let x^* denote an arbitrary fixed element in an *n*-element partially ordered set P, and for each k in $\{1, 2, \dots, n\}$ let N_k be the number of order-preserving maps from P onto $\{1, 2, \dots, n\}$ that map x^* into k. Then the sequence N_1, \dots, N_n is unimodal. This note proves the conjecture for the special case in which P can be covered by two linear orders. It also generalizes this result for P that have disjoint components, one of which can be covered by two linear orders.

1. Introduction. Given a finite partially ordered set (P, <), where < is asymmetric, we say that an injection λ from P into the set Z of integers is a *linear extension* of P if, for all x, $y \in P$,

$$x < y \Rightarrow \lambda(x) < \lambda(y).$$

We shall presume that P has n elements and, in the main part of the paper, restrict ourselves to bijections $\lambda: P \rightarrow [n] \equiv \{1, 2, \dots, n\}$. Generalizations are discussed later.

Let x^* be an arbitrary fixed element in *P*. For each $k \in [n]$, define N_k to be the number of linear extensions $\lambda : P \rightarrow [n]$ for which $\lambda(x^*) = k$. Rivest [2] has proposed the following tantalizing conjecture.

CONJECTURE. The sequence N_k , $k \in [n]$, is unimodal. By unimodal we mean that, for all $1 \le i < j < k \le n$,

$$N_i \ge \min\{N_i, N_k\}.$$

In this note we shall prove that the conjecture is valid for the important class of partially ordered sets that can be partitioned into two linearly ordered subsets, i.e., *chains*, with <-pairs allowed between the chains. In fact, we show that the N_k 's in this case satisfy the stronger property of logarithmic concavity, i.e.,

$$N_k^2 \ge N_{k-1}N_{k+1}$$
 for $1 < k < n$.

A similar proof provides an interesting result involving the unimodality of certain sequences of integers.

2. Lattice paths in \mathbb{Z}^2 . We shall say that the partially ordered set (P, <) can be covered by two chains if there is a partition $\{A, B\}$ of P such that the restriction of < on each of A and B is a linear order. To avoid the trivial case, we shall suppose that < on P is not linear, and that (P, <) can be covered by two chains, denoted as $A = \{a_1 < \cdots < a_r\}$ and $B = \{b_1 < \cdots < b_s\}$, with $r \ge 1$, $s \ge 1$ and r+s=n. There can be "cross-relations" like $a_i < b_i$ or $b_j < a_i$ from (P, <), but in any event < must be asymmetric $(x < y \Rightarrow \text{ not } (y < x))$ and transitive.

Let L denote the set of all ordered pairs of nonnegative integers. Each linear extension $\lambda: P \rightarrow [n]$ induces maps of A and B into [n], with $\lambda(a_1) < \cdots < \lambda(a_r)$ and $\lambda(b_1) < \cdots < \lambda(b_s)$. To each such λ we will associate a lattice path $\pi(\lambda)$ in L as follows. The first point on $\pi(\lambda)$ is (0, 0). If the kth point on $\pi(\lambda)$ is (x_k, y_k) and if $\lambda(p) = k + 1$, then the (k + 1)st point on $\pi(\lambda)$ is $(x_k + 1, y_k)$ if $p \in A$, and $(x_k, y_k + 1)$ if $p \in B$. The terminal point on $\pi(\lambda)$ is (r, s). An example appears in Fig. 1.

^{*} Received by the editors March 19, 1980.

[†] Bell Telephone Laboratories, Murray Hill, New Jersey 07974.

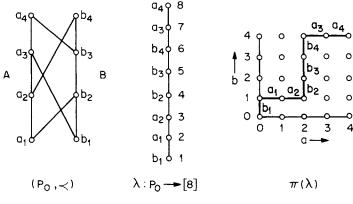


FIG. 1. The correspondence between λ and $\pi(\lambda)$.

The fact that λ preserves the linear orders on A and B is reflected in the fact that the indices of the a_i and b_j increase as we move along $\pi(\lambda)$ from (0, 0) to (r, s). But how do the other <-pairs show up in $\pi(\lambda)$? For Fig. 1, what constraint does $a_1 < b_2$ (which forces $\lambda(a_1) < \lambda(b_2)$) place on $\pi(\lambda)$? The answer is very simple. Each $a_i < b_i$ corresponds to a rectangular "barrier" which the path $\pi(\lambda)$ is not allowed to penetrate. This barrier is defined to be all lattice points (x, y) in L for which $x \leq i$ and $y \geq j-1$, as illustrated in Fig. 2.

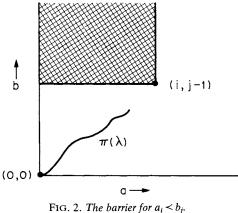


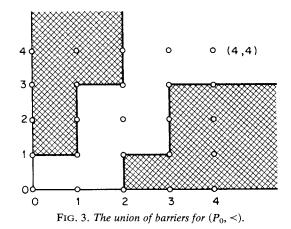
FIG. 2. The burner for $u_i < v_j$.

The barrier for $a_i < b_j$ forces $\pi(\lambda)$ to reach a lattice point with x-coordinate *i before* it reaches one with y-coordinate *j*, i.e., a_i occurs before b_j on $\pi(\lambda)$. This is precisely what is needed for $\lambda(a_i) < \lambda(b_j)$.

In a similar manner, $b_i < a_i$ corresponds to a rectangular barrier consisting of all (x, y) in L for which $x \ge i - 1$ and $y \le j$. For λ to be a linear extension of P, $\pi(\lambda)$ must not penetrate any of the barriers formed from the cross-relations in (P, <). Fig. 3 shows the union of the barriers for $(P_0, <)$ from Fig. 1.

The next point we consider is how $\lambda(x^*) = k$ is reflected in $\pi(\lambda)$. Without loss of generality, we assume that $x^* = a_i$, so that $x^* \in A$. Then it is easy to see that $\lambda(a_i) = k$ iff $\pi(\lambda)$ contains the two points (i-1, k-i) and (i, k-i). (Similarly, $\lambda(b_i) = k$ iff $\pi(\lambda)$ contains (k-j, j-1) and (k-j, j).)

Suppose N_{k-1} and N_{k+1} are both positive, and let λ^+ and λ^- be linear extensions of P such that $\lambda^+(a_i) = k + 1$ and $\lambda^-(a_i) = k - 1$. Thus, $\pi(\lambda^+)$ contains points (i-1, k+1 - 1)



i) and (i, k+1-i), and $\pi(\lambda^{-})$ contains (i-1, k-1-i) and (i, k-1-i). Let x_0 be the largest integer that is $\leq i-1$ such that, for some $y, (x_0, y+1)$ is on $\pi(\lambda^+)$ and (x_0, y) is on $\pi(\lambda^-)$, and let y_0 , which cannot exceed k-1-i, be the largest integer such that (x_0, y_0+1) is on $\pi(\lambda^+)$ and (x_0, y_0) is on $\pi(\lambda^-)$. Similarly, let x_1 be the smallest integer $\geq i$ such that, for some $y, (x_1, y+1)$ is on $\pi(\lambda^+)$ and (x_1, y) is on $\pi(\lambda^-)$, and let y_1 , which cannot be less than k-i, be the smallest integer such that (x_1, y_1+1) is on $\pi(\lambda^+)$ and (x_1, y_1) is on $\pi(\lambda^-)$.

We now form two new lattice paths $\pi(\lambda_1)$ and $\pi(\lambda_2)$ as follows. Let $\pi(\lambda_1)$ consist of the points on $\pi(\lambda^-)$ from (0, 0) to (x_0, y_0) , plus the points on $\pi(\lambda^+)$ from (x_0, y_0+1) to (x_1, y_1+1) translated by -1 in the y-direction, plus the points on $\pi(\lambda^-)$ from (x_1, y_1) to (r, s). Let $\pi(\lambda_2)$ consist of the points on $\pi(\lambda^+)$ from (0, 0) to (x_0, y_0+1) , plus the points on $\pi(\lambda^-)$ from (x_0, y_0) to (x_1, y_1) translated by +1 in the y-direction, plus the points on $\pi(\lambda^+)$ from (x_1, y_1+1) to (r, s). It is of course possible to have $\pi(\lambda_1) = \pi(\lambda_2)$, or, equivalently, $\lambda_1 = \lambda_2$, but this will not affect our conclusions. We observe that:

(i) $\pi(\lambda_1)$ and $\pi(\lambda_2)$ are lattice paths from (0, 0) to (r, s) which contain (i, k-i) and (i-1, k-i), and, therefore, $\lambda_1(a_i) = \lambda_2(a_i) = k$;

(ii) since $\pi(\lambda^+)$ lies strictly above $\pi(\lambda^-)$ in the region where the translations occur in the construction, neither $\pi(\lambda_1)$ nor $\pi(\lambda_2)$ penetrates any of the barriers formed by (P, <). It follows that λ_1 and λ_2 are linear extensions of P;

(iii) if two ordered pairs of the form (λ^+, λ^-) are distinct, then their associated (λ_1, λ_2) pairs are distinct. This follows from the construction: if two $(\pi(\lambda^+), \pi(\lambda^-))$ differ prior to *i* on the abscissa, then their associated $(\pi(\lambda_1), \pi(\lambda_2))$ will differ before *i*; if two $(\pi(\lambda^+), \pi(\lambda^-))$ differ after *i*-1, then their associated $(\pi(\lambda_1), \pi(\lambda_2))$ will differ after *i*-1.

Thus, our construction provides an injection from the ordered pairs (λ^+, λ^-) into pairs (λ_1, λ_2) , where λ^+ and λ^- are any linear extensions of P for which $\lambda^+(a_i) = k + 1$ and $\lambda^-(a_i) = k - 1$, and λ_1 and λ_2 are linear extensions of P that satisfy $\lambda_1(a_i) = \lambda_2(a_i) = k$. If α , β and γ are the number of linear extensions of P for which $\lambda(a_i) = k + 1$, $\lambda(a_i) = k - 1$, and $\lambda(a_i) = k$, respectively, then such an injection requires $\gamma^2 \ge \alpha\beta$, for otherwise two (λ_1, λ_2) pairs associated with distinct (λ^+, λ^-) pairs would have to be identical.

The preceding argument applies analogously when $x^* = b_j$. Thus, we have proved the following result.

THEOREM 1. Let x^* be a fixed element in a partially ordered set (P, <) on n elements, and suppose (P, <) can be covered by two chains. For $k \in \{1, 2, \dots, n\}$, let N_k be the number of linear extensions $\lambda : P \rightarrow \{1, 2, \dots, n\}$ for which $\lambda(x^*) = k$. Then

 $N_k^2 \ge N_{k-1}N_{k+1}$ for $k = 2, \dots, n-1$.

COROLLARY. Given the hypotheses of Theorem 1, the sequence N_1, N_2, \dots, N_n is unimodal.

The same basic argument for Theorem 1 can be used to prove the following result for sequences of integers. Let $A = (a_1 \ge a_2 \ge \cdots)$ be a nonincreasing sequence of nonnegative integers. Given A, let S_n be the number of nonincreasing sequences $x = (x_1 \ge x_2 \ge \cdots \ge x_n)$ of integers for which $0 \le x_k \le a_k$, for $k = 1, \dots, n$.

THEOREM 2. The sequence S_1, S_2, \cdots is logarithmically concave, i.e.,

$$S_n^2 \ge S_{n-1}S_{n+1} \quad \text{for all } n \ge 2.$$

When A is constant, say $A = (t, t, t, \dots)$, Theorem 2 shows the (easily proved) logarithmic concavity of the binomial coefficients $\binom{t+k}{k}$ for $k = 1, 2, \dots$.

3. A generalization. We now generalize our analysis of logarithmic concavity by considering disjoint partial orders along with linear extensions that map P into $[m] = \{1, \dots, m\}$ when m exceeds the cardinality of P. The following lemma provides a basis for the generalization.

LEMMA. Let (P, \prec) and $(P \cup C, \prec)$ be partially ordered sets on n and $n + \alpha$ elements, respectively, that have the same ordered pairs in their partial orders with $C \cap P = \emptyset$. Let $x^* \in P$ be fixed, and let N_k and N'_k , respectively, be the number of linear extensions $\lambda : P \rightarrow [n]$ and $\lambda' : P \cup C \rightarrow [n + \alpha]$ that have $\lambda(x^*) = k$ and $\lambda'(x^*) = k$. If N_1, \ldots, N_n is logarithmically concave, then so is $N'_1, \cdots, N'_{n+\alpha}$.

If C is empty, there is nothing to prove; so suppose initially that $C = \{c\}$, with $\alpha = 1$. Since neither c < x nor x < c for each $x \in P$, each λ for P generates $n + 1 \lambda'$ for $P \cup \{c\}$ according to the n + 1 placements of c. With $N_0 = N_{n+1} = 0$,

$$N'_{k} = (k-1)N_{k-1} + (n-k+1)N_{k}$$
 for $k = 1, \dots, n+1$.

Using this relationship, $(N'_{k})^{2} - N'_{k-1}N'_{k+1}$, for $2 \le k \le n$, reduces to

$$k(k-2)[N_{k-1}^2 - N_{k-2}N_k] + (n-k)(n-k+2)[N_k^2 - N_{k-1}N_{k+1}] + (k-2)(n-k)[N_{k-1}N_k - N_{k-2}N_{k+1}] + (N_{k-1} - N_k)^2,$$

which must be nonnegative if $\{N_k\}$ is logarithmically concave.

This completes the proof of the lemma if $\alpha \leq 1$, so suppose in this paragraph that $\alpha \geq 2$ with $C = \{c_1, \dots, c_{\alpha}\}$. The $\lambda': P \cup C \rightarrow [n + \alpha]$ can be generated from the $\lambda: P \rightarrow [n]$ by adding one c_i at a time. For a given λ , we first add c_1 to obtain n+1 linear extensions from $P \cup \{c_1\}$ onto [n+1]; for each of these n+1, we then add c_2 to obtain n+2 linear extensions from $P \cup \{c_1, c_2\}$ onto [n+2]; and so forth. If $\{N_m\}$ is logarithmically concave, then successive applications of the result obtained in the preceding paragraph for each c_i addition show that $\{N'_k\}$ must be logarithmically concave. The lemma is thus proved.

We now state our generalization, discuss its features, and then conclude this section with its proof.

THEOREM 3. Suppose $(P_1, <_1)$, $(P_2, <_2)$ and (P, <) are partially ordered sets on n_1 , n_2 and n elements respectively such that $0 < n_1 \le n$, $P_1 \cup P_2 = P$, $P_1 \cap P_2 = \emptyset$ and $<_1 \cup <_2 = <$. Let $x^* \in P_1$ be fixed, and let N_k $(k = 1, \dots, n_1)$ be the number of linear extensions $\lambda : P_1 \rightarrow [n_1]$ for which $\lambda(x^*) = k$. In addition, given $m \ge n$, let M_k (k = 1, ..., m) be the number of linear extensions $\lambda^*: P \rightarrow [m]$ for which $\lambda^*(x^*) = k$. If N_1, \dots, N_{n_1} is logarithmically concave, then so is M_1, \dots, M_m .

When $n_2 = 0$ and m > n, this shows that logarithmic concavity for $\lambda : P \to \lfloor n \rfloor$ carries over to $\lambda^* : P \to \lfloor m \rfloor$. When $n_2 > 0$ and m = n, Theorem 3 says that logarithmic concavity for the elements within a part of (P, <), namely $(P_1, <_1)$, carries over to all of (P, <) for those same elements, provided that the rest of (P, <) is not connected to the first part. The combination of these two cases provides the generalization stated in the theorem.

Theorems 1 and 3 together yield the following result.

THEOREM 4. If an n-element partially ordered set (P, <) can be partitioned into partially ordered sets $(P_1, <_1)$ and $(P_2, <_2)$ with no <-connection between P_1 and P_2 , if $(P_1, <_1)$ can be covered by two chains, and if $x^* \in P_1$, $m \ge n$, and M_k is the number of linear extensions $\lambda : P \rightarrow [m]$ for which $\lambda(x^*) = k$, then M_1, \dots, M_m is logarithmically concave and unimodal.

We now sketch the proof of Theorem 3 using the notation in its statement. In addition, let T_k be the number of linear extensions $\lambda_0: P \rightarrow [n]$ for which $\lambda_0(x^*) = k$, and if $n_2 > 0$, let β be the number of linear extensions $\lambda_2: P_2 \rightarrow [n_2]$, and let N'_k be the number of linear extensions $\lambda': P_1 \cup C \rightarrow [n]$ that have $\lambda'(x^*) = k$ when C is a completely unordered n_2 -element set (see the lemma) that is disjoint from P_1 .

If $n_2 = 0$ then $T_k = N_k$, so assume henceforth in this paragraph that $n_2 > 0$. We shall apply the lemma with $\alpha = n_2$. Consider a fixed $\lambda_2: P_2 \rightarrow [n_2]$ along with a generic $\lambda_1: P_1 \rightarrow [n]$. The n_2 numbers in [n] that are not in $\lambda_1(P_1)$ can be bijectively assigned to the elements in P_2 in exactly one way that preserves the λ_2 order and yields a $\lambda_0: P \rightarrow [n]$ —as compared to the $n_2!$ ways this could be done for the unordered set C. Since this is true for each such λ_1 , it follows that the number of $\lambda_0: P \rightarrow [n]$ that have $\lambda_0(x^*) = k$ and have P_2 in its λ_2 order is $N'_k/n_2!$. Since there are β such λ_2 , $T_k = \beta N'_k/N_2!$. If N_1, \dots, N_{n_1} is logarithmically concave, then the lemma says that T_1, \dots, T_n is too.

This proves Theorem 3 if m = n. If m > n, we reapply the lemma with $\alpha = m - n$. In this case let C' be a completely unordered (m - n)-element set disjoint from P and, with respect to $(P \cup C', <)$, let T'_k be the number of linear extensions $\lambda' : P \cup C' \rightarrow [m]$ for which $\lambda'(x^*) = k$. By the lemma, if $\{T_k\}$ is logarithmically concave then so is $\{T'_k\}$. Since the m - n numbers in [m] that aren't in a $\lambda'(P)$ can be bijectively assigned to C' in (m - n)! ways, it follows that M_k as defined in Theorem 3 equals $T'_k/(m - n)!$. When this is combined with preceding conclusions, we see that if N_1, \dots, N_{n_1} is logarithmically concave, then so is M_1, \dots, M_m .

4. Concluding remarks. The preceding techniques can be used to prove other unimodality results for restricted lattice path problems. For example, consider lattice paths π that are not allowed to penetrate barriers of the type shown in Fig. 3, so that π is bounded between two increasing staircases. Let $D_{n,k}$ be the number of such paths that go through point (k, n-k). Then, for each n, the sequence $D_{n,k}$, $0 \le k \le n$, is logarithmically concave and therefore unimodal. (Of course, here we are just looking at the intersections of lattice paths with the line x + y = n.) The reader is referred to the recent paper of Graham, Yao, and Yao [1] for similar applications of these ideas.

Finally, we note another open conjecture that is suggested by our analysis. Within the context used for the earlier conjecture, we propose:

CONJECTURE^{*}. The sequence N_k , $k \in [n]$, is logarithmically concave.

Conjecture^{*} is stronger than Rivest's Conjecture since unimodality follows from logarithmic concavity, but not conversely. Thus, a counterexample for Conjecture^{*} need not disprove unimodality, while verification of Conjecture^{*} would establish Rivest's Conjecture.

Note added in proof. R. Stanley has just proved Conjecture^{*} using a very ingenious application of the Alexandroff-Fenchel theorem (which guarantees the logarithmic concavity of certain coefficients arising from the volume of weighted sums of n-dimensional polytopes).

REFERENCES

- R. L. GRAHAM, A. C. YAO, AND F. F. YAO, Some monotonicity properties of partial orders, this Journal, 1 (1980), pp. 251–258.
- [2] R. RIVEST (personal communication).