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ON UNIMODALITY FOR LINEAR EXTENSIONS OF PARTIAL ORDERS*

F. R. K. CHUNG’I’, P. C. FISHBURN’I" AND R. L. GRAHAMf

Abstract. R. Rivest has recently proposed the following intriguing conjecture: Let x* denote an arbitrary
fixed element in an n-element partially ordered set P, and for each k in {1, 2, , n let Nk be the number of
order-preserving maps from P onto {1, 2,..., n} that map x* into k. Then the sequence N1,’’ ’, N,, is
unimodal. This note proves the conjecture for the special case in which P can be covered by two linear orders.
It also generalizes this result for P that have disjoint components, one of which can be covered by two linear
orders.

1. Introduction. Given a finite partially ordered set (P, <), where < is asymmetric,
we say that an injection A from P into the set Z of integers is a linear extension of P if,
for all x, y P,

x < y :::),A (x) < A (y).

We shall presume that P has n elements and, in the main part of the paper, restrict
ourselves to bijections A :P-> In]---{1, 2,..., n}. Generalizations are discussed later.

Let x* be an arbitrary fixed element in P. For each k [n], define Nk to be the
number of linear extensions A :P --> In ] for which A (x*) k. Rivest [2] has proposed the
following tantalizing conjecture.

CONJECTURE. The sequence Nk, k [n ], is unimodal.
By unimodal we mean that, for all 1 _-< < j < k <_- n,

N. -> min {N, Nk).

In this note we shall prove that the conjecture is valid for the important class of
partially ordered sets that can be partitioned into two linearly ordered subsets, i.e.,
chains, with <-pairs allowed between the chains. In fact, we show that the Nk’S in this
case satisfy the stronger property of logarithmic concavity, i.e.,

N2k >=Nk-lNk+l for 1 < k < n.

A similar proof provides an interesting result involving the unimodality of certain
sequences of integers.

2. Lattice paths in Z2. We shall say that the partially ordered set (P, <) can be
covered by two chains if there is a partition {A, B} of P such that the restriction of < on
each of A and B is a linear order. To avoid the trivial case, we shall suppose that < on P
is not linear, and that (P, <) can be covered by two chains, denoted as A
{ax< < ar} and B {b <. < b}, with r-> 1, s _-> 1 and r + s n. There can be
"cross-relations" like a <hi or bi<a from (P, <), but in any event < must be
asymmetric (x < y => not (y < x)) and transitive.

Let L denote the set of all ordered pairs of nonnegative integers. Each linear
extension A:P In] induces maps of A and B into In], with A (a)<... < A (a) and
A (b) <. < A (b). To each such A we will associate a lattice path ,r(A) in L as follows.
The first point on zr(A) is (0, 0). If the kth point on r(h) is (Xk, Yk) and if A (p)- k + 1,
then the (k + 1)st point on 7r(h) is (Xk + 1, Yk) if p cA, and (Xk, Yk + 1) if p B. The
terminal point on r(h) is (r, s). An example appears in Fig. 1.
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FIG. 1. The correspondence between A and r(A ).

The fact that A preserves the linear orders on A and B is reflected in the fact that
the indices of the ai and bj increase as we move along 7r(A) from (0, 0) to (r, s). But how
do the other <-pairs show up in or(A)? For Fig. 1, what constraint does a < be (which
forces A(al)<A(b2)) place on r(A)? The answer is very simple. Each ai <bi cor-
responds to a rectangular "barrier" which the path 7r(A) is not allowed to penetrate.
This barrier is defined to be all lattice points (x, y) in L for which x -<_ and y ->_ j- 1, as
illustrated in Fig. 2.
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FIG. 2. The barrier for ai < bi.

The barrier for ai < bj forces rr(A to reach a lattice point with x-coordinate before
it reaches one with y-coordinate j, i.e., ai occurs before bj on 7r(A). This is precisely what
is needed for A (a) < A (b).

In a similar manner, b. < ai corresponds to a rectangular barrier consisting of all
(x, y) in L for which x -> 1 and y -< j. For A to be a linear extension of P, rr(A must not
penetrate any of the barriers formed from the cross-relations in (P, <). Fig. 3 shows the
union of the barriers for (P0, <) from Fig. 1.

The next point we consider is how A (x*) k is reflected in 7r(A). Without loss of
generality, we assume that x* ai, SO that x* A. Then it is easy to see that A (ai) k iff
7r(A) contains the two points (i 1, k i) and (i, k i). (Similarly, A (b) k iff zr(A)
contains (k-,- 1) and (k-/’, ).)

Suppose Nk-1 and Nk/ are both positive, and let A / and A- be linear extensions of
P such that Z +(ai) k + 1 and A-(ag) k 1. Thus, 7r(A /) contains points (i 1, k + 1
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FIG. 3. The union of barriers for (Po, <).

i) and (i, k + 1 i), and zr(h-) contains (i 1, k 1 i) and (i, k 1 i). Let Xo be the
largest integer that is <=i 1 such that, for some y, (Xo, y + 1) is on r(h 4) and (Xo, y) is on
zr(h-), and let yo, which cannot exceed k-l-i, be the largest integer such that
(Xo, yo + 1) is on r(h 4) and (Xo, yo) is on 7r(h-). Similarly, let x be the smallest integer
->i such that, for some y, (xl, y + 1) is on r(h +) and (Xl, y) is on r(h-), and let Yl, which
cannot be less than k- i, be the smallest integer such that (Xl, y / 1) is on 7r(h +) and
(X1, Yl) is on 7r(h -).

We now form two new lattice paths zr(h 1) and zr(h) as follows. Let r(h 1) consist of
the points on 7r(h-) from (0, O) to (Xo, Yo), plus the points on 7r(h 4) from (Xo, yo + 1) to
(X 1, Y / 1) translated by -1 in the y-direction, plus the points on zr(h-) from (x 1, y 1) to
(r, s). Let 7r(h2) consist of the points on (h 4) from (0, O) to (Xo, yo + 1), plus the points
on zr(h-) from (Xo, yo) to (x 1, y 1) translated by + 1 in the y-direction, plus the points on
7r(h4) from (X1, YI / 1) to (r,s). It is of course possible to have "//’(h l) (h2), or,
equivalently, h h 2, but this will not affect our conclusions. We observe that:

(i) 7r(h 1) and r(h 2) are lattice paths from (0, 0) to (r, s) which contain (i, k i) and
(i- 1, k-i), and, therefore, hl(ai)=hE(ai) k;

(ii) since zr(h 4) lies strictly above 7r(h-) in the region where the translations occur
in the construction, neither 7r(h 1) nor r(h2) penetrates any of the barriers formed by
(P, <). It follows that h and h2 are linear extensions of P;

(iii) if two ordered pairs of the form (h 4, h-) are distinct, then their associated
(hi, h.) pairs are distinct. This follows from the construction: if two (zr(h /), 7r(h-))
differ prior to on the abscissa, then their associated (r(h 1), 7r(h 2)) will differ before i; if
two (zr(h 4), r(h -)) differ after 1, then their associated (r(h 1), 7r(h 2)) will differ after
i-1.

Thus, our construction provides an injection from the ordered pairs (h /, h-) into
pairs (h 1, hE), where h + and h- are any linear extensions of P for which h +(ai) k + 1
and h--(ai) k 1, and h and hE are linear extensions of P that satisfy h l(ai) h2(ai)
k. If a, / and y are the number of linear extensions of P for which h (ai)= k / 1,

2h (ai) k 1, and h (ai) k, respectively, then such an injection requires y -> a/3, for
otherwise two (h 1, hE) pairs associated with distinct (h 4, h-) pairs would have to be
identical.

The preceding argument applies analogously when x* bj. Thus, we have proved
the following result.

THEOREM 1. Letx* be a fixed element in a partially ordered set (P, <) on n elements,
and suppose (P, <) can be covered by two chains. For k E {1, 2,..., n}, let Nk be the
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number of linear extensions h P {1, 2,. , n} for which h (x*) k. Then

N Nk_lNk+ for k 2,. , n 1.

COROLLARY. Given the hypotheses of Theorem 1, the sequence N1, N2,""", Nn is
unimodal.

The same basic argument for Theorem i can be used to prove the following result
for sequences of integers. Let A--(al->a2 ->’’ ") be a nonincreasing sequence of
nonnegative integers. Given A, let Sn be the number of nonincreasing sequences
x =(xl>--xz>-_ >--xn) of integers for which 0<--_xk--<_ak, for k 1,. , n.

THEOREM 2. The sequence $1, S2, is logarithmically concave, i.e.,

S >= $n_IS,+ for all n >-2.

When A is constant, say A (t, t, t,...), Theorem 2 shows the (easily proved)
logarithmic concavity of the binomial coefficients (tk) for k 1, 2,. .

3. A generalization. We now generalize our analysis of logarithmic concavity by
considering disjoint partial orders along with linear extensions that map P into
[m =- {1,. , m) when m exceeds the cardinality of P. The following lemma provides a
basis for the generalization.

LEMMA. Let (P, <) and (P tA C, <) be partially ordered sets on n and n + a elements,
respectively, that have the same ordered pairs in their partial orders with C P . Let
x*P be fixed, and let Ng and N’, respectively, be the number of linear extensions
h "P-[n] and A"Pt.JC[n +a] that have h(x*)=k and h’(x*)=k. IfN1,... ,Nn is
logarithmically concave, then so is N’, N’,+.

If C is empty, there is nothing to prove; so suppose initially that C {c }, with a 1.
Since neither c < x nor x < c for each x P, each h for P generates n + 1 h’ for P LJ {c}
according to the n + 1 placements of c. With No N,/I 0,

N=(k-1)N_+(n-k+l)N fork=l,...,n+l.

Using this relationship, (N’)2-N’k_N’/ 1, for 2 -< k =< n, reduces to

k(k 2)[N_ -N,-:zN,]+(n k)(n k + 2)[N, -N,_,Nk.I]

+ (k 2)(n k)[N,_N, N,_2N,+] + (Nk- Nk)2,

which must be nonnegative if {Nk} is logarithmically concave.
This completes the proof of the lemma if a <_- 1, so suppose in this paragraph that

a _->2 with C ={cl,’’’, ca}. The A’:Pt.JC--,[n +a] can be generated from the h :P
In] by adding one ci at a time. For a given A, we first add c1 to obtain n + 1 linear
extensions from Pt.J{c} onto In + 1]; for each of these n + 1, we then add c2 to obtain
n + 2 linear extensions from Pt.J{cl, c2} onto In + 2]; and so forth. If {N,,} is logarith-
mically concave, then successive applications of the result obtained in the preceding
paragraph for each ci addition show that {N, } must be logarithmically concave. The
lemma is thus proved.

We now state our generalization, discuss its features, and then conclude this section
with its proof.

THEOREM 3. Suppose (P1, < x), (P2, <2) and (P, <) are partially ordered sets on n 1,

n2 and n elements respectively such that 0<n_-<n, P LIP2 P, P P2 and
<1LI <2 <. Let x* PI be fixed, and let Nk (k 1,. , n) be the number of linear
extensions h :Pl-,[n] for which h(x*)=k. In addition, given m>-n, let Mk (k=
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1,.. ",m) be the number of linear extensions h*’P[m] for which h*(x*)=k. If
N1, , Nnl is logarithmically concave, then so is M1, , M,,.

When n2 0 and m > n, this shows that logaritlamic concavity tor h P/n carries
over to h *" P [m]. When n2 > 0 and m n, Theorem 3 says that logarithmic concavity
for the elements within a part of (P, <), namely (P1, < 1), carries over to all of (P, <) for
those same elements, provided that the rest of (P, <) is not connected to the first part.
The combination of these two cases provides the generalization stated in the theorem.

Theorems 1 and 3 together yield the following result.
THEOREM 4. If an n-element partially ordered set (P, <) can be partitioned into

partially ordered sets (P1, < 1) and (P2, <2) with no <-connection between P1 and P2, if
(P1, < 1) can be covered by two chains, and if x* P1, m >-_ n, and Mk is the number of
linear extensions h P [m] for which h (x*) k, then M1, , M,, is logarithmically
concave and unimodal.

We now sketch the proof of Theorem 3 using the notation in its statement. In
addition, let Tk be the number of linear extensions h0" P In for which ho(X*) k, and
if n2>0, let/3 be the number of linear extensions h2"P2[n2], and let N, be the
number of linear extensions h"Plt_JC[n] that have h’(x*)=k when C is a
completely unordered n2-element set (see the lemma) that is disjoint from P1.

If n2 0 then T N, so assume henceforth in this paragraph that n2 > 0. We shall
apply the lemma with a n2. Consider a fixed h2"P2-[n2] along with a generic
hi "P1 [n]. The n2 numbers in In] that are not in hl(P) can be bijectively assigned to
the elements in P2 in exactly one way that preserves the h2 order and yields a
h0"P [n]mas compared to the n2! ways this could be done for the unordered set C.
Since this is true for each such h 1, it follows that the number of h0" P In] that have
ho(X*) k and have P2 in its h2 order is N/n2!. Since there are /3 such h2, Tk-"
BN/N2!. If N1,"’,N,, is logarithmically concave, then the lemma says that
TI," ", rn is too.

This proves Theorem 3 if m n. If m > n, we reapply the lemma with a m n. In
this case let C’ be a completely unordered (m n)-element set disjoint from P and, with
respect to (Pt_J C’, <), let T, be the number of linear extensions h"PtA C’ [m] for
which h’(x*) k. By the lemma, if {T} is logarithmically concave then so is {T, }. Since
the m-n numbers in [m] that aren’t in a h’(P) can be bijectively assigned to C’ in
(m n)! ways, it follows thatM as defined in Theorem 3 equals T/(m n)!. When this
is combined with preceding conclusions, we see that if N1,’’’, N, is logarithmically
concave, then so is M1,""", Mm.

4. Concluding remarks. The preceding techniques can be used to prove other
unimodality results for restricted lattice path problems. For example, consider lattice
paths zr that are not allowed to penetrate barriers of the type shown in Fig. 3, so that r is
bounded between two increasing staircases. Let D,,k be the number of such paths that
go through point (k, n -k). Then, for each n, the sequence D,,, 0 _-< k _-< n, is logarith-
mically concave and therefore unimodal. (Of course, here we are just looking at the
intersections of lattice paths with the line x + y n.) The reader is referred to the recent
paper of Graham, Yao, and Yao [1] for similar applications of these ideas.

Finally, we note another open conjecture that is suggested by our analysis. Within
the context used for the earlier conjecture, we propose"

CONJECTURE*, The sequence N, k [n ], is logarithmically concave.
Conjecture* is stronger than Rivest’s Conjecture since unimodality follows from

logarithmic concavity, but not conversely. Thus, a counterexample for Conjecture*
need not disprove unimodality, while verification of Conjecture* would establish
Rivest’s Conjecture.
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Note added in proof. R. Stanley has just proved Conjecture* using a very ingenious
application of the Alexandrott-Fenchel theorem (which guarantees the logarithmic
concavity of certain coefficients arising from the volume of weighted sums of n-
dimensional polytopes).
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