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OLD AND NEW PROBLEMS AND RESULTS
IN COMBINATORIAL NUMBER THEORY

1. INTRODUCTION

In the present work we will discuss various problems in elementary
number theory, most of which have a combinatorial flavor. In general
we will avoid classical problems, just mentioning references for the interested
reader. We will almost never give proofs but on the other hand we will
try to give as exact references as we can. We will restrict ourselves mostly
to problems on which we worked for two reasons: (i) In order not to make
the paper too long; (i) We may know more about them than the reader.

Both the difficulty and importance of the problems discussed are very
variable—some are only exercises while others are very difficult or even
hopeless and may have important consequences or their eventual solution
may lead to important advances and the discovery of new methods. Some
of the problems we think are difficult may turn out to be trivial after all
—this has certainly happened before in the history of the world with anyone
who tried to predict the future. Here is an amusing case. Hilbert lectured
in the early 1920’s on problems in mathematics and said something like
this—probably all of us will see the proof of the Riemann hypothesis,
some of us (but probably not I) will see the proof of Fermat’s last theorem,

but none of us will see the proof that 2¥? is transcendental. In the audience
was Siegel, whose deep research contributed decisively to the proof by

Kusmin a few years later of the transcendence of 2VZ. In fact shortly
thereafter Gelfond and a few weeks later Schneider independently proved
that of is transcendental if « and f are algebraic, f is irrational and « 3 0, 1.
Thus, we hope the reader will forgive us if some (not many, we hope)
of the problems turn out to be disappointingly simple.

Before starting, we mention a number of papers which also deal mainly
with unsolved problems in combinatorial number theory. These references,
which will not be included in the references at the end of the paper, will
have an asterisk appended to them, for ease of later location.

[Er (51) *] ERDOs, P. Some problems and results in elementary num-
ber theory. Publ. Math. Debrecen 2 (1951), 103-109,



[Er (55) *]

[St(55)*]

[Er (57) %]

[Sc-Si (58) *]

[Si (60) *]
[Er (61) *]
[Er (62) a *]
[Er (62) b *]

[Er (63) *]

[Si (64) *]

[Er (65) a *]

[Br (65) b *]

[Er (66) *]
[Ha-Ro (66) *]

[Si (70) *]
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—— Problems and results in additive number theory.
In Colloque sur la Théorie des Nombres, 127-137,
Bruxelles, 1955, Georges Thone, Liége; Masson
and Cie, Paris, 1956.

StoHr, A. Geldste und ungeloste Fragen iiber Basen
der natiirlichen Zahlenreihe, I, II. J. Reine Angew.
Math. 194 (1955), 40-65, 111-140.

ErDOS, P. Some unsolved problems. Mich. Math. J. 4
(1957), 291-300.

ScHINZEL, A. and W. SIERPINSKI. Sur certaines hypo-
théses concernant les nombres premiers. Acta
Arith. 4 (1958), 185-208; erratum, 5 (1959), 259.

SiERPINSKI, W. On some unsolved problems of arith-
metic. Scripta Math. 25 (1960), 125-136.

ERrDGs, P. Some unsolved problems. Magyar Tud. Akad.
Mat. Kut. Int. Kozl. 6 (1961), 221-254,

—— Some problems in additive number theory (in
Hungarian). Mat. Lapok 13 (1962), 28-38.

—— Extremal problems in number theory I (in Hun-
garian). Mat. Lapok 13 (1962), 228-255.

—— Quelques problémes de la théorie des nombres.
Monographie de [’Enseignement Math. n°. 6
(1963), 81-135.

SIERPINSKI, W. A selection of problems in the theory of
numbers. Pergamon Press, Macmillan, New York,
1964,

ErDOs, P. Some recent advances and current problems
in number theory. In Lectures in Modern Math-
ematics, Vol. III, 196-244, Wiley, New York,
1965.

—— Extremal problems in number theory. Proc.
Sympos. Pure Math., Vol. VIII, 181-189, Amer.
Math. Soc., Providence, R.I., 1965.

—— Extremal problems in number theory II (in Hun-
garian). Mat. Lapok 17 (1966), 135-155.

HarserstaM, H. and K. F. RoOTH. Sequences, Vol. I.
Clarendon Press, Oxford, 1966.

SIERPINSKI, W. 250 problems in Elementary Number
Theory. American Elsevier, New York, 1970.
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[Er-Sa-Sz (70) *]

[Er (71) *]

[Gu (71) #]

[Er (73) a *]

[Er (73) b *]

[Er (74) *]

[Er (75) a *]

[Er (75) b *]

[Er (76) a *]

[Er (76) b *]
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ErDOs, P. Some extremal problems in combinatorial
number theory. In Mathematical Essays dedicated
to A.J. Macintyre, 123-133, Ohio Univ. Press,
Athens, Ohio, 1970.

ERrRDGs, P., A. SARKOzY and E. SzeMerépl. On div-
isibility properties of sequences of integers. Number
Theory (Collog. Jdnos Bolyai Math. Soc., Debrecen,
1968), 35-49, North Holland, Amsterdam, 1970.

—— Some problems in number theory. In Computers
in Number Theory, 405-414, Acad. Press, New York,
1971.

Guy, R.K. Some unsolved problems. In Computers
in Number Theory, 415-422, Acad. Press, New York,
1971.

ErDOs, P. Résultats et problémes en théorie des nombres.
Séminaire Delange-Pisot-Poitou, 21 mai 1973 (Théo-
rie des nombres) 14 année, 1972/73, n°. 24, 7 pages.

—— Problems and results on combinatorial number
theory, J. N. Srivastava et al., eds. In 4 Survey
of Combinatorial Theory, 117-138, North Holland,
Amsterdam, 1973.

—— Problems and results on combinatorial number
theory II. Journées Arithmétiques de Bordeaux,
(1974), 295-310, Astérisque Nos, 24-25,

—— Problems and results on number theoretic proper-
ties of consecutive integers and related questions.
Proc. Fifth Manitoba Conf. on Numerical Math.
(1975), 25-44.

—— Some problems and results on the irrationality
of the sum of infinite series. J. Math. Sci. 10
(1975), 1-7.

——— Problems in number theory and combinatorics.
Proc. Sixth Manitoba Conf. on Numerical Math.
(1976), 35-58.

—— Some recent problems and results on graph theory,
combinatorics and number theory. In Proc.
7th Southeastern Conf. on Combinatorics, Graph
Theory and Computing, Louisiana State Univ.,
Baton Rouge (1976), 3-14.
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[Er (76) c *] —— Problems and results on combinatorial number
theory . Jour. Indian Math. Soc. 40 (1976), 1-14.
[Er (77) ¥ —— Problems and results on combinatorial number

theory IIlI. Lecture Notes in Mathematics 626,
Springer-Verlag, Berlin (1977), 43-72.

[Er (xx) a *] —— On the solubility of equations in dense sets of
integers and real numbers. (To appear.)

[Er (xx) b *] —— Some unconventional problems in number theory.
(To appear in Math. Mag.).

[Hal (77) *] HALBERSTAM, H. Some unsolved problems in higher

arithmetic. In The Encyclopedia of Ignorance,
Pergamon Press, Oxford, 1977.
See also:

Proceedings of the 1959 Boulder Number Theory Conference,

Proceedings of the 1963 Boulder Number Theory Conference,

Proceedings of the 1968 Debrecen Number Theory Conference (Collog.
Jdnos Bolyai Math. Soc., Debrecen, 1968), North Holland, Amsterdam,
1970,

Proceedings of the 1971 Washington State Univ. Conference on Number
Theory.

Crorr, H.T. and R. K. Guy. Unsolved Problems in Intuitive Math-
ematics (to appear as a book).

2. VAN DER WAERDEN’S THEOREM AND RELATED TOPICS

Denote by W (n) the smallest integer such that if the (positive) integers
not exceeding W (n) are partitioned arbitrarily into two classes, at least
one class always contains an arithmetic progression (A.P.) of length n.
The celebrated theorem of van der Waerden [Wa (27)], [Wa (71)], [Gr-
Ro (74)] shows that W (n) exists for all n but all known proofs yield upper
bounds on W (n) which are extremely weak, e.g., they are not even primitive
recursive functions of n. In the other direction, the best lower bound cur-
rently available (due to Berlekamp [Ber (68)]) is

Wn+l)>n-2"
for n prime. It would be very desirable to know the truth here. The only
values of W (n) known (see [Chv (69)], [St-Sh (78)]) at present are:
W@ =3, W3 =9, W@ =35, W(5 = 178.
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Recent results of Paris and Harrington [Par-Har (77)] show that certain
combinatorial problems with a somewhat similar flavor (in particular, being
variations of Ramsey’s Theorem [Ramsey (30)], [Gr-Ro (71)]) do in fact
have lower bounds which grow faster than any function which is provably
recursive in first-order Peano arithmetic.

More than 40 years ago, Erdds and Turan [Er-Tu (36)), for the purposes
of improving the estimates for W (n), introduced the quantity r, (n), defined
to be the least integer r so that if 1 <4, < ... < @, <#, then the sequence
of a’s must contain a k-term A.P. The best current bounds [Beh (46)],
[Roth (53)], [Mo (53)] on r; (n) are

n cyn
<r3 (n) < rlﬁ-
exp (¢ \/log n) og log n

where c, ¢y, ¢,, ... will always denote suitable positive constants. Rankin
[Ran (60)] has slightly better bounds for r, (n), k > 3. However, a recent
stunning achievement of Szemerédi [Sz (75)] is the proof of the upper bound

1 (n) = o(n).

His proof, which uses van der Waerden’s theorem, does not give any
usable bounds for W (n). This result has also been proved in a rather
different way by Furstenberg [Fu (77)] using ergodic theory. This proof
also furnishes no estimate for r, (n). A much shorter version has recently
been given by Katznelson and Ornstein (see [Tho (78)]). Perhaps

? n
re(n) = o <(——log n)‘>

for every ¢. This would imply as a corollary that for every k there are k
primes which form an A.P. The longest A.P. of primes presently known
[Weint (77)] has length 17. It is 3430751869 + 87297210z, 0 < ¢t < 16.

We next mention several conjectures which seem quite deep. They each
would imply Szemerédi’s theorem, for example.

The first one ') is this: Is it true that if a set 4 of positive integers satisfies

1
Y, — = oo then 4 must contain arbitrarily long A.P.’s?
acd @

Set

1
a = sup Y -
Ay aeAka

1) One of the authors (P.E.) currently offers US $3000 for the resolution of this
problem.
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where A, ranges over all sets of positive integers which do not contain
a k-term A.P. As far as we know, o, = o0 is possible, but this seems unlikely.
The best lower bound known for o, is due to Gerver [Ge (77)]:

. > (1+o0()k log k.
Trivially,

1
oy = Elog W (k).

It would be interesting to show that
1
o /log W (k) > 3 +c

or even
lim oy /log W (k) -
k—
but at present we have no idea how to attack these questions.

The second conjecture is based on the following ideas. For a finite
set X = {x, .., x, }, let X" denote the set of N-tuples { (yy, ..., ya): ¥;
eX,1 <i<N}. Call a st P={py,P,,....Dp } of t N-tuples p,e X"
a line if the p, have the following property: For each j, 1 < j <N, either
the jth component of p; is x;, 1 <{i <(¢, or all the jth components of the
P; are equal. Since | P| = ¢ then at least one j must satisfy the first condi-
tion. It is a theorem of Hales and Jewett [Hale-Je (63)] that for any r,
if N > N (¢, r) then for any partition of X¥ into r classes, some class must
contain a line, This immediately implies van der Waerden’s theorem by
taking x; = i —1, 1 <i <{t, and letting the N-tuple (y,, ..., y5) correspond

N
to the base ¢ expansion of the integer Y,  y*~'. In fact, it also implies
i=1
the higher-dimensional generalizations of van der Waerden’s theorem
we shall mention shortly. The question now is this: Does the corresponding
“density” result hold? In other words, is it true that for each ¢ > 0 and
each integer ¢, there is an N (¢, ¢) so that if N > N (¢, ¢) and R is any subset
of XV satisfying l R | > &t" then R contains a line P ? (See also [Mo (70)],
[Chv (72)]). For ¢t = 2 each line P can be naturally associated with a pair
of subsets 4, B = X with 4 < B. The truth of the conjecture for ¢ = 2
then follows from the theorem of Sperner [Sper (28)] on the maximum size
of a family of incomparable subsets of an N-set, namely, that such a family
N

can have at most [N] = 0 (2%) sets. However for ¢ >>3 the question

2
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is still wide open. Some recent partial results have been given by Brown

[Bro (75)]. It is not even known whether for every ¢, ck¥/ \/ N points can be
chosen without containing a line. (Also, see Added in proof p. 107.)

It is natural to ask whether analogues of van der Waerden’s theorem
hold in higher dimensions, i.e., for any finite subset S of the lattice points
of E" and any partition of the lattice points of E* into two classes, at least
one class contains a subset similar to S. That this is indeed the case was
first shown by Gallai (see [Rad (33) b]) and independently by Witt [Wit (52)]
and by Garsia [Gar (o0)]. The corresponding “density” results, i.e., the
analogues of Szemerédi’s theorem in higher dimensions, have very recently
been proved by Furstenberg and Katznelson [Fu-Ka (78)] using techniques
from ergodic theory. These would also follow from the truth of the “line”
conjecture previously mentioned. It was previously shown by Szemerédi
[Sz (0)] (using r, (n) = o (n)) that if Ris a subset of { (i,7):1 <i,j <n}
with | R | > en® and n > n (¢) then R must contain 4 points which form a
square. Prior to that, Ajtai and Szemerédi [Aj-Sz (74)] had proved the anal-
ogous weaker result for the isoceles right triangle.

A recently very active area deals with various generalizations of the old
result of Schur [Schur (16)]: For any partition of { 1,2, ..., [r! €]} into r
classes, the equation x + y = z has a solution entirely in one class. This
was generalized (independently) by Rado [Rad (70)], Sanders [San (68)],
and Folkman (see [Gr-Ro (71)]) who showed that for any partition of N

into finitely many classes, some class C must contain arbitrarily large sets
k

{ x4, X5, ..., X; } such that all sums 2 £x;, & = 0 or 1, belong to C.
i=1

However, these results were subsumed by a fundamental result of Hindman

[Hi (74)] who showed that under the same hypothesis, some class C must

contain an infinite set { x, x,, ... } such that all finite sums ). £:X;,
i=1
g; =0 or 1, belong to C (answering a conjecture of Graham and Rothschild
and Sanders). Subsequently, simpler proofs were given by Baumgartner
[Bau (74)] and Glazer [Gl (xx)]. Of course, the analogous result also holds
for products (by restricting our attention to numbers of the form 2%). A
natural question to ask (see [Er (76) ¢*]) is whether some C must simul-
taneously contain infinite sets 4 and B such that all finite sums from 4
and all finite products from B are in C? Even more, is it possible that we
could take 4 = B? In [Hi(79)b], [Hi(80)] Hindman shows that the
answer to the first question is yes and the answer to the second question
is no. In fact, he constructs a partition of N into two classes such that no
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infinite set { x4, X,, ... } has all its finite products and pair sums x; + X,
i # j, in one class. He also constructs a partition of N into seven classes
so that no infinite set { x4, x,, ... } has all its pair products X;x; and pair
sums x; + x;, i # j, belonging to a single class. Whether arbitrarily large
finite sets { x, ..., x;, } with this property can always be found for any
partition of N into finitely many classes is completely open. For a complete
and readable account of these and related developments, the reader should
consult the survey of Hindman [Hi (79)a].

There is a rapidly growing body of results which has appeared recently
and which goes under the name of Euclidean Ramsey Theory. The basic
question it attacks is this: Given » and r, which configurations C < E*
have the property that for any partition of E" into r classes, some class
must contain a set isometric to C. For example, if C consists of 3 points
forming a right triangle then a result of Shader [Shad (76)] shows that any
partition of E? into 2 classes always has a copy of C in at least one of the
classes. A similar result also holds for 30° triangles and 150° triangles
[Er+35 (75)]. Note that this is not true if C is a unit equilateral triangle—in
this case we simply partition the plane into alternating half open strips

of width \/5/2. The strongest conjecture dealing with this case is that for
any partition of E? into 2 classes, some class contains congruent copies
of all 3-point sets with the possible exception of a single equilateral
triangle.

A configuration C < E" is called Ramsey if for all r, there is an N (C, r)
so that for any partition of EY with N > N (C, r) into r classes, some class
always contains a subset congruent to C. There are two natural classes
which are known to bound the Ramsey configurations. On one hand, it is
known [Er+5 (73)] that the set of the 2" vertices of any rectangular parallel-
epided (= brick) is Ramsey (and consequently, so is every subset of a
brick, e.g., every acute triangle). On the other hand, it is known [Er + 5 (73)]
that every Ramsey configuration must lie on the surface of some sphere S™
Thus, any set of 3 points in a straight line is not Ramsey (there are partitions
of E" into 16 classes which avoid having any particular 3 point linear set
in one class). Thus, the Ramsey configurations lie between bricks and
spherical sets. The unofficial consensus is that they are probably just the
(subsets of) bricks but there is no strong evidence for this. Interesting special
cases to attack here would be to decide if the vertices of an isosceles 120°
triangle or the vertices of a regular pentagon are Ramsey.

Another result of this type more closely related to A.P.’s is the following.
It has been shown that there is a large M so that it is possible to partition
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E? into two sets 4 and B so that 4 contains no pair of points with distance 1
and B contains no A.P. of length M. How small can M be made? The only
estimate currently known is that A/ <C 10000000 (more or less). In the other
direction, it has just been shown by R. Juhasz [Ju (79)] that we must have
M > 5. In fact, she shows that B must contain a congruent copy of any
4-point set. As a final Euclidean Ramsey question, we mention the following.
It was very recently shown by Graham [Gr (80)] (in response to a question of
R. Gurevich [Bab (76)]) that for any r, there is a (very large) number G (r)
so that for any partition of the lattice points of the plane into r classes,
some class contains the vertices of a right triangle with area exactly G (r).
It follows from this (see [Gr-Sp (79)] that for any partition of all the points
of E? into finitely many classes, some class contains the vertices of triangles
of each area. The question is: Is this also true for rectangles? or perhaps
parallelograms ? On the other hand, it is certainly not true for rhombuses.

An interesting variation of van der Waerden’s theorem is to require
that the desired A.P. only hit one class more than the other class by some
fixed amount (rather than be completely contained in one class). More
precisely, let f (n, k) denote the least integer so that if we divide the integers
not cxceeding f (n, k) into two classes, there must be an A.P. of length n,
say a + ud, 0 <Cu <n—1, with a + (n—1)d <f (n, k) such that

n—-1
Y glatud) >k

u=0

where g (m) is + 1 if m is in the first class and — 1 if m is in the second class.
/ (2n, 0) has been determined by Spencer [Spen (73)] but we do not have a
decent bound for even f (n,1). It seems likely that lim W (n)'/* = oo

but perhaps lim f (n, cn)'’" < co. Unfortunately, we cannot even prove
lim f (n, 1)"/" < co. Perhaps this will not be hard but we certainly do

not see how to prove lim f (n, ﬁ)l/” < 0. Define
F(x) = min max | Y g(a+kd)|
g

where the maximum is taken over all A.P.’s whose terms are positive
integers and the minimum is taken over all functions g:Z —{ —1,1}.
Roth [Roth (64)] proved that

F(x) > cx'/*
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and conjectured that for every & > 0, F(x) > x!/?7¢ for x > x, (¢). In
the other direction Spencer [Spen (72)] showed that

F (x) < cx!/? log log x .

log x
However, Sarkdzy (see [Er-Sp (74)]) subsequently showed that
F(x) = O((x log x)'%),

disproving the conjecture of Roth.
Cantor, Erdds, Schreiber and Straus [Er (66)] (also see [Er (73) b))
proved that there is a g (n) = #1 for which

max Y g(a+kb)| <h(d)
a,m k=1
1=b=d

for a certain function /% (d). They showed that 4 (d) < cd! No good lower
bound for 4 (d) is known. As far as we know the following related more
general problem is still open. Let 4, = {a{® <a¥ < ..}, k= 1,2, ...
be an infinite class of infinite sets of integers. Does there exist a function
F(d) (depending on the sequences A4,) so that for a suitable g (n) = +1

max

m, 1 =k-—d

<F@d)?

Y g(a®)
i=1

It seems certain that the answer is affirmative.
Finally, is it true that for every ¢, there exist d and m so that

Ygkd)| >c?
k=1
The best we could hope for here is that
max | Y g(kd)| >clogn.
k=1

md=n

We remark that these questions can also be asked for functions g (n) which
take kth roots of unity as values rather than just +1. However, very little
is yet known for this case.

Another interesting problem: For r < s denote by f, (r; s) the smallest
integer so that every sequence of integers of n terms which contains f, (n; s)
A.P’s of length r must also contain an A.P. of length s. Perhaps for s
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= o (logn), f5 (n;s) = o (n?); this is certainly false for s > ¢ log n. At
present we cannot even prove f5 (n; 4) = o (n?).

Abbott, Liu and Riddell [Ab-Li-Ri(74)] define g, () as the largest
integer so that among any n real numbers one can always find g, (n) of
them which do not contain an A.P. of length £. It is certainly possible to
have g, (n) < r (n); in fact, Riddell shows that g5 (14) = 7 but 5 (14) = 8.
It is not known if g5 (n) < r; () for infinitely many n. It follows from
a very interesting general theorem of Komlds, Sulyok and Szemerédi

[Kom-Su-Sz (75)] that g5 (1) > cr; (n). Perhaps lim I3 En; =
n>w g3
re(n)
o

ry(n)

1. Szeme-

rédi points out that it is not even known if

The following question is due to F. Cohen. Determine or estimate a
function % (d) so that if we split the integers into two classes, at least one
class contains for infinitely many d an A.P. of difference 4 and length at
least A (d). Erdos observed that A (d) < cd is forced and Petruska and
Szemerédi [Pe-Sz (0)] strengthened this by showing that A (d) < ed V2.
(1+o (1) log d. The

log 2
theorem of van der Waerden shows that 4 (d) - oo with d but we currently
have no usable lower bound for 4 (d).

Define H (n) to be the smallest integer so that for any partition of the
integers {1,2,.., H(n)} into any number of disjoint classes, there is
always an n-term arithmetic progression all of whose terms either belong to
one class or all different classes. The existence of H (1) is guaranteed by
Szemerédi’s theorem. In fact it is easy to show H (n)'/* — c0; to show
H (m)'""/n - oo might be much harder. What can be said about small
values of H (n)?

Is it true that for any partition of the pairs of positive integers into

Very recently, J. Beck [Bec (xx)] showed 4 (d) <

two classes, the sums Y are unbounded where X ranges over

xeX Og X
all subsets which have all pairs belonging to one class?

It was conjectured by Erdos that for every ¢ > O there is a ¢, so that
the number of squares in any A.P. a + kd, 0 <k <¢,, is less than &z,.
This follows from Szemerédi’s result r, (r) = o (n); in fact, his earlier
result ry (n) = o (n) (see [Sz (69)]) suffices for this purpose. Rudin con-
jectured that there is an absolute constant ¢ so that the number of squares

ina+ kd, 0 <k <t is less than c\/ t. Rudin’s conjecture is still open.
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Denote by F (n) the largest integer r for which there is a non-averaging
sequence 1 <a; < ... < g, <n, i.e, no g, is the arithmetic mean of other
a;’s. Erdos and Straus [Er-Str (70)] proved

exp (c/logn) < F(n) < n??,
However, Abbott [Ab (75)] just proved the unexpected result
F(n) > n/10,

It would be nice to know what the correct exponent is here.

It seems to be difficult to state reasonable conditions which imply the
existence of an infinite A.P. in a set of integers. For example, because there
are only countably many infinite A.P.’s, then for any sequence a,, there is a
sequence b, with b, > a, so that the b,’s hit every infinite A.P. It is not
difficult to show that for any sequence B = (b,, b,, ...) with b, > 5 and
bivy >2b; there is a set 4 = {ay,a,,...} with 2 <a,,, — a, <3 for
all k so that for all i, b;¢ A + A = {a+ a’:a,a’ € A}. Whether such
behavior can hold for 4 + 4 + A4 (or more summands) is not known.

The situation is completely different, however, when one considers
generalized A.P.’s

S(a,p) =(ag,a;,...,a,....).

A generalized A.P. is formed by a, = [oan+ f] for given real « # 0 and B.
It follows from results of Graham and Sés [Gr-S6 (xx)] that if &, ,/b,
== ¢ > 2 then the complement of the b,’s contains an infinite generalized
A.P. This has very recently been strengthened by Pollington [Poll (xx)]
who proved that there is no sequence b, hitting every generalized A.P.
with by, /b, > ¢ > 1 for all k. On the other hand, for any sequence c,
there exist sequences b, with b, > ¢, which hit every generalized A.P.

Of course, almost any question dealing with A.P.’s can also be asked
about generalized A.P.’s. For example, can we get better (much better?)
bounds for van der Waerden’s theorem when we allow generalized A.P.’s?
This question has not yet been investigated so far.

The generalized A.P’s S(a) = S(o,0) = {[an}:n = 1,2, ... } have
an extensive literature (e.g., see [Frae (69)], [Ni(63)], [Frae-Le-Sh (72)],
[Gr-Li-Li (78)] and especially [Stol (76)]). One of the earliest results
[Bea (26)] asserts that S («;) and S («,) disjointly cover the positive integers
iff the «; are irrational and oci + ai = 1. An old result of Uspensky [U (27)],

1 2
[Gr (63)] shows that Z* can never be partitioned into three or more
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disjoint S («;); in fact, for any three S (x;), some pair of them must have
infinitely many common elements.
This situation does not hold for general S («, §) however. For example,

7 75
§(2;0),S4;1),S4;3)and S (Z’ 0> Y <-2—, —>, S (7;4) both form decom-
positions of the nonnegative integers. Of cour,se, more generally, if
Z = Z S(a;b), a;, beZ
i=1

is a decomposition of Z into disjoint A.P.’s of integers then S (x; f)

= ) S(ao;B+ab). It has been shown by Graham [Gr (73)] that if
i=1

m>3,2Z% = Y S(x;p) and some a; is irrational then the S («;; B,
i=1

must be generated from two disjoint S (y;; 0) which cover Z* by trans-
formations of this type. In particular, it follows from the theorem of Mirsky
and Newman (see [Er(50)]) that for some i # j, a; = ;. Curiously,
the situation is much less well understood when all the «; are rational.
A striking conjecture of Fraenkel [Frae (73)] asserts that for any such
decomposition (with m >>3) with all «; distinct, we must have { «;, ..., @, }
= {2 1: 0 <k < m}.

2k

One can ask how sparse (in some sense) a set S of integers can be and
still have the property that for any decomposition of S into r classes, some
class must contain an A.P. of length k. Of course, since the multiples of
any d have this property, we must be more precise about what we mean
by sparse. For example, we might ask whether such an § exists which itself
contains no A.P. of length k£ + 1. That such S’s exist was first shown by
Spencer [Spen (75)] (using the previously mentioned theorem of Hales
and Jewett) and independently by Nesetfil and Rédl [Nes-Rod (o0)].

An old theorem of Brauer [Bra (28)] (also see [Ab-Ha (72)], [Rad (33) a])
proves a stronger form of van der Waerden’s theorem in which not only
must one of the classes contain an A.P. of length r, say, a + kd, 0 <k < r,
but also the common difference d as well. However, the analogue of Szeme-
rédi’s theorem does not hold for this case—we can find sets of positive
density which do not contain a k-term A.P. together with its difference.
For example, the set of odd integers cannot contain a, a + d and d. However,
the densest subset R of { 1,2, ..., n} not containing a k-term A.P. and its
difference has recently been determined by Graham, Spencer and Witsen-
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hausen [Gr-Sp-Wi (77)]. Their result shows that any such R must satisfy

|R| <n - [%] (and this is best possible). Almost all cases of this type

of problem remain open. One of the simplest is this: Let R, be a maximum
subset of { 1, 2, ..., n } with the property that for no x are x, 2x and 3x all

R
in R, What is 4 = lim I——"I ? (Its existence is known). In particular,
n
n

prove that A is irrational. Of course, one could ask these questions for
infinite sets of integers. For example, if ¢, < a, < ... is an infinite sequence
of integers such that for no x are x, 2x, 3x all g;’s, then how large can the
density of the a’s be (if it exists)? Can the upper density be larger?

In a different direction, one could ask how many subsets of { 1, 2, ..., n },
say S, ..., S;, can one have so that for all i # j, S; n §; is an A.P. Simo-

novits, Sés and Graham [Gr-Si-Sé (80)] have recently shown that ¢ < <Z>

+ <r21> + <r11> +1 and this is best possible. If S; N S; must be a nonempty

A.P. then Simonovits and So6s [Sim-S6s (xx)] have given an ingenious proof
that ¢ < cn®. It is conjectured in this case that the maximum families
form strong 4-systems, i.e., the S; are just all the finite AP.’sin { 1,2, ...,n}

n
containing a particular element, presumably the integer [E:I .

An easy consequence of van der Waerden’s theorem is the following: If
A = (a,, a,, ...) is an increasing infinite sequence of integers with @, ., — 4,
bounded then A4 contains arbitrarily long A.P.’s (see [Kak-Mo (30)]).
The analogous questions in higher dimensions are not yet completely
settled. For example, let p; = (x;, y;), i = 1, 2, ... be an infinite set of lattice
points in E2 so that p,,, — p; is either (0, 1) or (1, 0). Must the p; contain
arbitrarily long A.P.’s? Surprisingly, the answer is no. It is possible to use
the strongly non-repetitive sequences of Dekking [Dek (79)] (also, see
Pleasants [Ple (70)], [Bro (71)]) to construct such a sequence of p; having
no 5-term A.P. On the other hand, it is not hard to see that 4-term A.P.’s
cannot be avoided. Similar techniques can be used to show that there are
increasing unit-step sequences of lattice points in E° containing no 3-term
A.P. Whether or not this can be done in E* or E* is not known. Pomerance
[Pom (xx)] has recently shown that if the average step size is bounded,
there must be arbitrarily large sets of the g, which lie on some line. In fact,
he shows somewhat more, e.g., that the same conclusion holds for the points
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(n, p,) where p, denotes the »™ prime [Pom (79)] (however, the proof of the
former does not provide effective bounds).

Gerver and Ramsey [Ge-Ra (xx)] give an effective estimate for the
following special case. Suppose S < Z? is finite and let 4 = (ay, a,, ..., ay)
be a sequence of lattice points with a,,, — a,€ S for all k < N. (Such a
sequence is called an S-walk). Then for any ¢ > 0, if N > N, (M, ¢) where
M denotes the maximum distance of any point in .S from the origin, 4 must
contain at least C (M, &) (log N)/*~¢ collinear points. On the other hand,
such a result does not hold for Z*. In particular, they construct an infinite
sequence B = (b, b,,...) of lattice points in Z* for which b,,, — b,
is a unit vector for all k and such that B has at most 5'! collinear points.
They conjecture that 3 is actually the correct bound for their construction.
It is not known whether there is an infinite S-walk in Z?* for S finite which
has no three points collinear.

A number of interesting questions involving A.P.’s come up in the
following way. Let us say that a (possibly infinite) sequence (ay, a5, ...)
has a monotone A.P. of length k if for some choice of indices i, < i, < ...
< I, the subsequence a;, ay,, ..., a;, is either an increasing or a decreasing
A.P. It has often been noted that it is possible to arrange any finite set of
integers into a sequence containing no monotone A.P. of length 3. Essen-
tially, this can be done by placing all the odd elements to the left of all the
even elements, arranging (by induction) the odds and the evens individually
to have no monotone A.P.’s of length 3 and using the fact that the first
and last terms of a 3-term A.P. must have the same parity. If M (#) denotes
the number of permutations of { 1,2, ..., n } having no monotone 3-term
A.P., it has been shown by Davis, Entringer, Graham and Simmons
[Dav+3 (77)] that

Mm>2"1, MQn—1)<@m)?, MCn+1) <(n+1) (n!)?

It would be interesting to know if M (n)!/" is bounded or even tends to a
limit. The situation for permutations of infinite sets is different. It has been
shown by the above mentioned authors that any permutation of Z* contains
an increasing 3-term A.P. but that there exist permutations of Z* which
have no monotone 5-term A.P.’s. The question of whether or not monotone
4-term A.P.’s must occur is currently completely open. If one is allowed
to arrange Z* into a doubly-infinite sequence ..., a_;, a,, a,, ... then
monotone 3-term A.P.’s must still occur but it is now possible to prevent
those of length 4. If the elements to be permuted are a// the integers rather
than just the positive integers, less is known. It is known [Odd (75)] that
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monotone 7-term A.P.’s can be stopped in the singly-infinite case. We
should note that the modular analogues of these problems have been
studied by Nathanson [Na (77)a).

Must any ordering of the reals contain a monotone k-term arithmetic
progression for every k?

We conclude this topic with a very annoying question: Is it possible to
partition Z* into two sets, each of which can be permuted to avoid monotone
3-term A.P.’s ? If we are allowed three sets, this is possible; the corresponding
situation for Z has not been investigated.

It is not difficult to find finite sets 4 = { ay, ..., @, } with the property
that for any two elements a;, a; € 4, there is an a, € 4 so that { a;, a;, a }
forms an A.P,, e.g., {1,2,3} and {1, 3,4,5,7}. In fact, it is not difficult
to show that up to some affine transformation x — ax + b, these are the
only such sets. It follows from this that the analogue of Sylvester’s theorem
holds for A.P.s, i.e., no finite set 4 has the property that every 3 terms
of A belong to some A.P. in 4. Suppose one only requires that for every
choice of k terms from A4, some 3 (or m) of them belongs to an A.P. in A.
Can those 4 now be characterized ? One might also ask these questions for
generalized A.P.’s as well where we would expect much richer classes of
A’s because of the greater number of generalized A.P.’s.

Stanley has raised the following question (generalizing an earlier question
of Szekeres (see [Er-Tu (36)])). Starting with a, = 0, a; = a, form the
infinite sequence ay, ay, a,, a3, ... recursively by choosing a,,, to be the
least integer exceeding a, which can be adjoined so that no 3-term A.P.
is formed. Can the g, be explicitly determined ? For example, if @ = 1 then
the a, are just those integers which have no 2 in their base 3 expansion.
Similar characterizations are known when a = 3" and a = 23" (see

log 3
[Odl-Sta (78)]). For these cascs, if o = l(ig-i then lim inf " = 1/2,
og n n

a
lim sup—: = 1. However, the case of @ = 4 (and all other values not
n n

equal to 3" or 2 - 3") seems to be of a completely different character, There
are currently no conjectures for the a, in this case.

Hoffman, Klarner and Rado [KI-Ra (73)], [K]-Ra (74)], [Hoff-K1 (78)],
[Hoff-K1(79)], [Hoff (76)] have obtained many interesting results on the
following problem: Let R denote a set of linear operations on the set of
nonnegative integers, each of the type p (x4, ..., x,) = my + mx; + ...
+ m,x,. Given a set 4 of positive integers, let < R : A > denote the smallest
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set containing A4 which is closed under all operations in R. What is the
structure of < R : A > ? Two basic results here are:

(i) For any infinite set B there is a finite set 4 such that < R: B >
= < R: A > whenever at least one p (xq, ..., x;) = my + m;x,
+ ... + mx, has (m,, ...,m,) = 1.

@) If R={my+ mx, +..+mx} and all m; are positive then
< R : A > is afinite union of infinite A.P.’s, again when (m;, ..., m,)
= 1.

The special case that R = {a,x + by, ..., a,x + b, } is particularly interest-
ing. It has been shown by Erdés, Klarner and Rado (see [KI-Ra (74)})

"1
that if ) — <1 then < R: 4 > has density 0. The situation in which
k=1 9k
1

= = 1 is not yet completely understood. This depends, for example,
k=1 O

on when the set of transformations x — a;x + b,, 1 <i <{r, generates
a free semigroup under composition. The reader should consult the relevant
references for numerous other results and questions.

Erdos asked: If S is a set of real numbers which does not contain a
3-term A.P. then must the complement of S contain an infinite A.P.?
R. O. Davies (unpublished) showed that assuming the Continuum Hypo-
thesis the answer is no; Baumgartner [Bau (75)] proved the same thing
without assuming the Continuum Hypothesis. Baumgartner also proved
the conjecture of Erdos that if 4 is a sequence of positive integers with all
sums a + a’ distinct for @, @' € A then the complement of A contains an
infinite A.P. Of course, many generalizations are possible.

Can one prove that the longest arithmetic progression

{atkd 0 <k <t}

with a + kt < x, which consists entirely of primes satisfies £ = o (log x)?
Only ¢t <(1+o0 (1)) log x is clear; this follows from the prime number
theorem. Suppose that at least ¢t of the terms are prime. It is not hard
to see that 1 < (log x)*¢©) where a (¢) - oo as ¢ — o. If there is any justice
« (c) should not tend to infinity. If we take ¢t = log x perhaps the number
of primes tends to O uniformly in d.
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3. COVERING CONGRUENCES

A family of residue classes a; (mod n;) with 1 < n, < ... < n, is called
a system of covering congruences if every integer belongs to at least one of
the residue classes, i.e., every integer satisfies at least one of the congruences
x = q; (mod n;). In 1934 Romanoff asked P. Erdos if there are infinitely
many odd integers not of the form p + 2* where p is prime. This led Erdés
[Er (50) a] to the concept of covering congruences and he answered Roma-
nofl’s question affirmatively by using the system !) of covering congruences

0 (mod 2), 0 (mod 3), 1 (mod 4), 3 (mod 8), 7 (mod 12), 23 (mod 24) .

The major open problem in this topic is:

Is it true that for every c there is a system of covering congruences
with n, > ¢?

The current record is held by Choi [Cho (71)] who constructed covering
congruences with n; = 20. If the answer is affirmative we immediately
obtain that for every m there is an arithmetic progression no term of which
is a sum of a power of two and an integer having at most m prime factors.

Is it true that there is a system of covering congruences with all n;
odd, or more generally, relatively prime to a given integer d? Selfridge
(see [Sch (67) b]) proved the interesting result that a system of covering
congruences with all odd moduli exists if a covering system exists with no
n; dividing any other n;. Schinzel [Sch (67) b] applies these ideas to certain
polynomial irreducibility problems. Can one choose all the n; to be of the
form p — 1 for p prime and at least 57 If p = 3 is allowed then Selfridge
has given such an example using the divisors of 360.

Denote by f(x) the smallest integer so that there is a system of f(u)
covering congruences with n, = wu. If f (1) is finite can we obtain reasonable
estimates of it? It should be quite large, e.g., it is probably true that

S @

uk

— o forevery k .

(where a system of covering congruences is always assumed to be finite
unless stated otherwise). It should be true that

1) No residue class mod 6 could be used since 6 is the only integer » such that 27 — 1
has no primitive prime divisor.
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1
min Y — >

u=ny <ng<... i n;

as u — co. If so, how fast does the sum tend to infinity?

Denote by A4 (n) the largest number of disjoint systems of covering
congruences which can be formed using all moduli less than or equal to n.
Estimate A (n) from above and below. Of course we do not yet even know
that 4 (n) - .

Let B (n) denote the largest integer so that for a suitable choice of a,,
every integer satisfies at least B (1) of the congruences a; (mod i) for 1 < i
< n. What is the relation between 4 (n) and B (n)? For integers n < m
let A (m, n) denote the least possible density of integers not covered by the
congruences «; (mod (n+1)), 1 <i<m — n, taken over all choices of

a;. Trivially ) .
1 - - < A(m,n) < 1-—.
L,y <dmn<T(1- 1)

This should be improved if m/n is large. Is it true that 4 (m, n) > ¢, if
m/n < c (for n large)?

Let 0 < ny < n, < ... < n,. It would be nice to get nontrivial condi-
tions on the n; which would guarantee that a system of covering congruences

{a;(mod n))} exists. Is it true that if ) % grows rapidly enough then
n;<x i
such a system exists? The same question applies if we consider the growth
of ) 1. It seems certain that Y 1 = x + o (x) will be needed,
nyp<x ni<x

i.e., there is no system of covering congruences where all the moduli are
between ex and x. Determine or estimate the largest 4 (x) so that there is
a system of covering congruences with n, = % (x) and n, < x. Our ignor-
ance is complete here—on one hand, % (x) could be bounded; on the other
hand even % (x) > &x cannot be excluded.

Is it true that if the positive integers are partitioned into finitely many
classes then at least one of the classes contains the moduli of a covering
system? Perhaps if a subset X = Z™ has positive upper density then X
already must contain the moduli of a covering system.

Some time ago Erd6s conjectured and L. Mirsky and M. Newman
proved (e.g., see [Z (69)], [Er (50) a] or [Er (52)]) that there is no system
of exact covering congruences, i.e., a system { a; (mod n,) } with n; < n,
< .. < n, such that every x satisfies exactly one of the congruences x
= g; (mod n)). In fact, it is not hard to show that if { ; (mod n;) } covers
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the integers exactly with n; <(n, < ... <{n, then n,_,; = n,. Exact covering
systems have a fairly large literature so we will just restrict ourselves
to mentioning some of the main references (see [Frae (73)], [Z (69)],
[New (71)], [Kruk (71)], [Dew (72)], [Z (74)], [Er (71) *]).

The following recent problem of Herzog and Schénheim should be
mentioned here: If G is an abelian group, can there exist an exact covering
of G by cosets of different sizes?

A system of congruences is called disjoint if no integer satisfies more
than one of them. Erdos and Stein conjectured that if { a; (mod n;) } with
ny < ..<n <x is a disjoint system of congruences then r = o (x).
This was proved by Erdds and Szemerédi [Er-Sz (68)] who, in fact, showed
that if f (x) denotes the maximum possible value of r above then

x P
exp ((log x)'/2*%) (log x)°

It seems likely that the lower bound is closer to the truth but it does not
seem to be easy to prove this.

Erdos conjectured that if a system {a; (mod n;), 1 <i<(r} covers
2" consecutive integers then it covers all integers. This was proved by
Selfridge and also by Crittenden and Vanden Eynden [Cr-VE (69)], [Cr-VE
(70)]. This bound is best possible as the system { 2'~! (mod 2%, 1 <i <r }
shows.

Suppose { a; (mod n;) } is a covering system and assume each n; has

<f )

a prime factor exceeding k. What estimates can be made for % ?
i i

In [Gr (64) ], Graham considers the following question: Is there an
infinite “Lucas” sequence a,, a;, ... satisfying a,,, = a,., + a,, n >0,
and (o, a;) = 1 such that no a, is prime? The starting choice a, = 0,
a; = 1 generates the familiar Fibonacci numbers; it is conjectured that
infinitely many of these are prime but a proof of this at present seems hope-
less. The recent doctoral dissertation of C. Stewart [Stew, (75)], [Stew,
(76)] contains the strongest results currently available in this direction.

It turns out that such composite Lucas sequences exist. By using a
system of covering congruences, it was shown [Gr (64) €] that the following
choice generates such a sequence:

1786772701928802632268715130455793 ,
1059683225053915111058165141686995 .

ay

Il

a,

This is the smallest pair (a,, a;) which is known to work. It would be very
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surprising if a pair existed with both components less than 102°, Is it possible
for a Lucas sequence to have all terms composite without having an under-
lying system of covering congruences responsible? (In other words, no
positive integer has a common factor with every term of the sequence).

It is well known (see [Bat (63)]) that there are odd integers 2m + 1
so that none of the numbers 2* 2m+1) + 1 is a prime. The smallest such
number is not known; it is > 3061 and < 78557. ([Rob (58)], [Me (76)],
[Self (76)]). H.C. Williams [Wil (xx)] recently eliminated the long-time
contender 383 by showing that 383 - 2°3°3 + 1 is prime. Sierpiniski [Sie (60)]
showed that these numbers 2m + 1 have positive lower density. On the
other hand, Erdds and Odlyzko [Er-Odl (xx)] recently proved that the lower
density of the complementary set is positive.

Are there integers m with (m, 6) = 1 so that none of the numbers
2*3fm + 1 is prime? What about for p® ... p%m + 17 What about for
4y --- g;m + 1 where the g; are primes congruent to 1 (mod 4)? If 2% + 1
is never prime for a fixed odd # where « = 1, 2, ..., must there be a covering
system responsible, i.e., must there be an N > 0 so that (2% +1, N) > 1
for all @ > 0? The answer is probably no since otherwise, for example,
this would imply that there are infinitely many Fermat primes, i.e., primes
of the form 2% + 1. This type of problem can be posed in many forms but
it always seems hopeless.

o(n
In [Ben-Er (74)] it was asked if there is a constant C so that if ~Q > C
n
then the divisors of # can be used as the moduli of a system of covering
congruences. Very recently J. Haight [Hai (79)] has shown that no such C
exists.
For which # is it possible to form a covering system a, (mod d) where

d | n which is as disjoint as possible, i.c., so that if
x = a,(mod d), x = a, (mod d')

then (d, d’) = 1? The density of such » is zero. For a given # what is the
minimum density of the integers which do not satisfy any of the congruences?
Probably no such # exists if the system is required to be a covering system.

For every integer n there is a real number ¢, defined as follows: For
all divisors d; > 1 of n, form all possible congruences a; (mod d;), 1 < d,
< .. < d, = n. Let ¢, be the greatest lower bound of the densities of the
set of integers not satisfying any of these congruences. The density of
integers n with ¢, = 0 exists and the ¢, have a distribution function which is
continuous (except at 0) and is strictly monotonic. If ¢, = 0, n is called
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covering. Every such number is a multiple of a “primitive” covering number
g

n'. No doubt, the sum ) % taken over all primitive covering numbers
converges.

For a finite set of moduli »,, n,, ..., ,, one can ask for the minimum
value of the density of integers not hit by a suitable choice of congruences
a; (mod n;). Is the worst choice obtained by taking all the a; equal?

We next return to several questions related to the original question of
Romanoff which motivated the concept of covering congruences. Denote
by V (n) the number of prime factors of » with multiple factors counted
multiply. Is it true that all large integers are of the form 2* + m where
V(m) < loglogm? It is easy to see by probabilistic methods that this
holds for almost all numbers. Perhaps loglog m can be replaced by
¢ log log m or even some function which tends to infinity much more slowly.
Cohen and Selfridge [Coh-Se (75)] found an infinite arithmetic progression
of odd numbers none of which is the sum or differences of two prime powers
(and consequently not the sum or difference of a prime and a power of 2).

Is it true that for every r > 2 there are infinitely many integers not the
sum of a prime and at most » powers of 2? Is there an infinite arithmetic pro-
gression of such numbers? For r = 2, Crocker [Cro (71)] proved that there
are infinitely many such numbers but he does not get an arithmetic pro-
gression. Gallagher [Gal (75)] has shown that for every ¢ > O there is an r
so that the lower density of the integers of the form p + 2¢1 + .., + 2k
exceeds 1 — ¢. Is it true that all (or almost all) integers are the sum of a
power of 2 and a squarefree number?

It is possible to extend the concept of covering systems to include the
possibility of infinite systems of congruences. However, the situation is not
completely satisfactory here since there are several competing definitions
for infinite systems of covering congruences. We will discuss several of
these now although it is certainly possible that we overlook trivial obser-
vations.

To begin with, we could call an infinite system { a; (mod n;) } covering
if every integer satisfies at least one of them and the density of integers not

1
satisfying the first k tends to 0 as k —> c0. If ), —
i

= oo this can always

1
be done so that the only interesting case is when ). — < o0. As in the case
i

of ordinary (finite) covering systems, we can ask whether a set of positive
density always contains the moduli of an infinite covering system.
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Alternatively, one could define an infinite system {a; (modn)} to
be covering if every (large) integer is of the form a; + tn;, ¢ > 1. This

prevents every sequence of ;’s from being the moduli of an infinite covering

1
system. If ) — = oo then almost all integers can be of the form a; + m,,
i

t > 2, but this is certainly not the case for all large integers. More generally,
one could define { a; (mod n;) } to be a covering system if for some k,
all but a finite number of positive integers are of the form a; + tn; for some
t > k. Is it true that with this definition, the primes form the moduli of an
infinite covering system for every £? Even the case & = 3 already seems to
be difficult. It seems that if

> L log log x — o0
ni<x M
and
Y 1 >ex/log x
n;<x
then there are choices of a; so that { g; (mod n;) } is a covering system
of this type.

Still another possibility (suggested by Selfridge) is this. The infinite
system { a; (mod n;)} is said to be covering if when f (k) denotes the
number of integers m < n, with m =£ a; (mod n;), | <i <k, then f (k)/k
— 0as k — 0. As before, it is not clear if every sequence of positive density
contains the moduli of a covering system of this type. Probably if
m > (1+¢) klog k for ¢ > 0 and every k then { a; (mod n;) } is never a
covering system of this type but this is not known and may have to await
improvements in current sieve methods.

Suppose n; < n, < ... are such that for every choice of a; the set of
integers not satisfying any of the congruences a; (mod n;) has density 0.

1 — .
In this case we must have ), — = oo and, if the n; are pairwise relatively
i M

prime, then this suffices. This property clearly holds if for every ¢ there is
a k so that the density of integers not satisfying @; (mod ), 1 <{i <k,
is less than &. Is this in fact necessary?
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4. UNIT FRACTIONS

One of the most ancient problems in mathematics is the representation

n

a . .
of rationals b in the form ) — with x; < x, <... < x,. For reasons which
i=1 X

are not entirely clear (to us) the Egyptians considered fractions of the form
1 a

— to be much simpler than the general expression e Perhaps the first
m

result in the subject was due to Leonardo Pisano (= Fibonacci) [Pis (1857)]
in 1202. He proved that the “greedy” algorithm can always be used to

a . . . .
express any positive rational 5 as a finite sum of distinct unit fractions,
where with the greedy algorithm, we always choose the /argest unit fraction
1
— not yet used for which the remainder is nonnegative.

m

Both of the authors have written a number of papers on unit fractions.
Without claiming completeness, we will state many problems and results
on this topic.

To begin with, we state an old question of Stein [Stei (58)]: In represent-

a
2b + 1
the greedy algorithm always terminate ? It is known that it is always possible

ing

1
as a sum of distinct unit fractions of the form 1’ does
m

a
to represent %+ 1 as a sum of distinct odd unit fractions (e.g., see {Gr

(64) a], [AI-Li (63)], [Stew, (54)], [Bre (54)]). More generally, it has been

a
shown by the second author [Gr (64) a] that M’ can be expressed as a sum

of distinct unit fractions of the form — o,

» pm +gq (b, (p, 9))
(—))) = 1. One could also ask whether the greedy algorithm always
Psq

terminates in any of these cases as well.

The situation can change if we perturb the set of allowable denominators
slightly. For example, define u; = 1 and u,,; = u, (u,+1), n > 1, and
let S={n>0:n%wu,k>1} Then it can be shown that the set of
rationals for which the greedy algorithm does not terminate when using

if and only if <
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only denominators in S is dense in R* (although every positive rational has
infinitely many representations as a sum of distinct reciprocals from S).

a
In a similar vein, it is known [Gr (64) d] that b can be written as a finite

2 2
sum of reciprocals of distinct squares if and only if % € I:O, % - 1) v [1, %)
= I. It seems likely that there are rationals in this range for which the
corresponding greedy algorithm does not terminate. Perhaps this is so for
almost all the rationals in 7.

A classical (and often rediscovered) result of Curtiss [Cu (22)] states
that the closest strict underapproximation R, of 1 by a sum of » unit frac-

tions is always given by taking R, = Y n where u, was defined
k=1 Ug
previously. In this case
1
1-R, =

Upt1

so that R, is also formed by a greedy algorithm, i.e., by choosing for the
next term the largest unit fraction whose subtraction leaves a positive
remainder. The analogous fact is also known [Er (50) b] to hold for under-

1
approximations of rationals of the form —. Although the corresponding
m

11 1 11
result does not hold for arbitrary rationals (e.g., R, (ﬁ) =3 R, <ﬂ>

1 1
= 2 + §> , it does always hold eventually. In other words, it is true that

a a a
for any rational b the closest strict underapproximation R, (E) of b by

a sum of » unit fractions is given by

Ra—R a+1
o) = B ) t
a

a
where m is the least denominator not yet used for which R, <B> < 7
provided that » is sufficiently large. An attractive conjecture is that this
also holds for any algebraic number as well. It is not difficult to construct
irrationals for which the result fails. Conceivably, however, it holds for

almost all reals.
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For each n, let 2, denote the set

{{xl,...,xn}: Yolx=1,0<x; <.. <x,,}
k=1

and let Z denote U . Similarly, let Z, and 2’ denote the corresponding

=1

sets when we only require x, < x, < ... <(x,. There are many attractive
unresolved questions concerning these sets, a few of which we now mention.
Usually we will just state the problem for &, and omit the corresponding
statement for &,

To start with it would be interesting to have asymptotic formulas or
even good inequalities for | x, | The only estimates currently known are
due to Straus and the authors. These are

en2—e < |.90"| <c(z)n+1

where ¢, = lim u,/2" = 1.264085... (see [Ah-SI(73)]). Perhaps the lower

bound can be replaced by ¢2"* .

In view of the large number of sets in Z,, one would expect a wide
variety of behavior for its elements. For example, the second author has
shown [Gr (63) b] that for all m > 78, there is a set { xy, ..., X, } € Z with

t

Y x, = m. Furthermore, this is not possible for m = 77. It seems
k=1

highly likely that for any polynomial p : Z — Z it is true that for all suf-

t
ficiently large m, there is a set {x;,..,x,}e% with Y p(x) = m,
k=1
provided p satisfies the obvious necessary conditions:

(i) The leading coefficient of p is positive;
(i) ged(p(),p(2),..) =1

It is known [Cas (60)] that conditions (i) and (ii) are sufficient for expressing
every sufficiently large integer as a sum ),  p(a;). It has been shown

a; distinct
by Burr [Burr (00)] that for any k, every sufficiently large integer occurs as
a sum Y x} for some (xy, ..., X,,) € &".

It is trivial to see that min { x; : (x4, ..., x,) € Z ,} = n. Since

Yk =1+o0(l)

U=k =eu



then the corresponding quantity

min {x;:{x;,....x,}€Z,} =f(n)
satisfies

£(n) = (1+0(1)) %

As far as we know
n

f(n) =(1+0(D))

could hold. In the same way, we see that

e —1

e

min {x,:{x,,....,x,{eZ,} > (1+0(1)) SO
e —_—

and, as before, it may be that equality also holds here. It follows from our

previous remarks that

max {x,:{x,....,x,}eZ,} = u,
for n 2> 3. In general one could ask for
max {x, : {xq,..,x,} €&, } foragivenk = k(n).

(For %, this turns out to be very easy — just use the “greedy” algorithm
up to x,_,; and choose the remaining x;’s to be equal).
Is it true that

min {x,—x;: {x{, ..., x,} €Z,} = (e—=)n+o(n)?

ng (n
It is not hard to show that it is greater than (e—1)n + lg (n)
og n

function g (n) » co. It might already be hard to prove this for
g (n) > (log n)’.

It is well known that for { x, .., x,} e, max (x,4;—X) > 1, ie.,
the sum of the reciprocals of consecutive integers can never be 1, and in
fact, can never be an integer (e.g., see [Th (15)], [Kii (18)], [Er (32)]). Is it

1 1
true that max (x,,, —x,) > 3? The decomposition 1 = > + 3 + 5 shows

that equality can occur here but we do not know if it can occur infinitely
often (or even ever again). It follows from a special case of hypothesis H
(a plausible but hopeless conjecture for primes [Sch-Sie (58)]), namely
that between x and 2x we eventually always have k consecutive integers
of the form ¢, 2q,, 3¢5, ..., kq, where the ¢; are primes, that

for some

max (X;,1 —X;) <k
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can hold for only finitely many { xy, ..., x, } € Z. It is not hard to see that
a
there is a function f(r) tending to infinity with n so that the sum b of the

reciprocals of  consecutive integers always has b > f(n). In fact it is not too
difficult to show that the correct order of growth of f (n) is e"*°™ although
its exact value seems hopeless. The same type of result also holds if the
denominators form an arithmetic progression. It would be interesting to
know which » consecutive integers minimize b. It can be shown that the

largest must be n + o (1) although it is not always #.
b—a

Suppose we let ), , denote the sum Y .
i—0 a4 +1

Yab t Y .ais an integer only finitely often. However this will probably

It is probably true that

1
be difficult to prove since we can not even show that ), , + — is an integer
n

k

only a finite number of times. Perhaps for each k, Y Zai,,,'. can be an
i=1

integer only finitely often. It seems likely that for large k, we can always

K
write 1 = ) > ., with b, > a; (e.g., see [Hah (78)]). An example
i=1

[Mon (79)] of such a representation for 2 is given by taking the denominators
{2,3,4,5,6,7,9, 10, 17, 18, 34, 35, 84, 85 }. It is not hard to show that

1 . . . . Ugp

Y. = ~—is only possible if b = a = n. In fact, if Yo =—and b > a
n va,b

then v, , > a (a+1). In general, v, , is increasing with b but there can be
. . 37 19

breaks in the increase (e.g., Y35 = &’ Y6 = 2—0). For fixed a what

is the least b = b (a) such that v, ,,, < v, ,? In fact, is there always such
a b for every a?

" a

If we set ) 1/k = i where L, = lcm {1, ..., n} then is it true that
k=1 n

infinitely often we have (a,L,) = | and infinitely often we have (a, L,)

> 1?7 It seems likely that

. . Xn
lim min  —:{x{,...,x,} eZ, ;s =e.
n->w Xy

For n fixed this is a finite problem—some numerical results might be of
interest here for small values of n. It seems obvious that min { xalxy }

= o (log n), for example, but we do not see how to do even this.
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What are the possible values of x, as { xy, ..., x,} ranges over &?
As noted by Straus, the set of x, is closed under multiplication. Is it true
that x, assumes almost all integer values? Note that x, is never a prime
power, in fact x, # ap* if p is a prime exceeding a ! log a. What are the
x, with no element exceeding 1 in { x,} as a proper divisor? Which x,
are not products of two (or more) elements of { x, }? How many integers
x; < ncan occur as a element of { x, ..., X, } € Z? Are there o (n), cn or
n — o (n) such integers?

What is the least integer v (1) > 1 which does not occur as an x,, k
variable, for { x,, .., x,}€%,? It is easy to see that v(n) > cn! using
results of Bleicher and Erdss [BIl-Er (75)], [Bl-Er (76)a)], [BI-Er (76) b].

n(l—g)
. The corre-

It may be that v (n) actually grows more like 229" or 22

sponding question for &, is also interesting here.
Denote by k, (n) the least integer which does not occur as x, in any

{x ., X, } €Z with x; < ... < X, <n. It is easy to show

cn log log n

ki(n) <
log n

and with a slight refinement we can get

cn

ki(n) <
log n

We have no idea of the true value of k, (n) or even of k; (n).

Suppose we define K (n) to be the least integer which does not occur as
x; for any i in any { x;, ..., x, } € Z with x; < ... < x, <n. Again

cn
K@) <

log n
is easy but at present we do not even know if k; (n) < K (n).
Let U, denote
min {k:{x,...,x}eZ, xy >n}.
It seems likely that
lim {U, —(e—1)n} = o0

but we cannot prove this. It was shown by Erdos and Straus [Er-Str (71) a]

that
(e—=Dn—-c< U, <(e=Dn + c'nflog n.
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How many disjoint sets S;e%, 1 <i <k, can we find so that
S;={1,2,..,n}? No doubt £k = o (log n) but we have not proved this.
More generally, how many disjoint sets T; = {1,2,...,n} are there so

that all the sums ) l are equal. By using strong A-systems [Er-Ra (60)],
teT;
it can be shown that there are at least n/e°¢” such T, Is this the right
order of magnitude? One can also ask how many disjoint sets { x,, ..., x; }
€ & are possible. It is trivial to show that there are no more than log &
+ O (log log k); however, it is probably true that there are only o (log k)
such sets. Suppose we drop the restriction of disjointness and ask for the
number of subsets S = {1,2,...,n} which belong to Z. Are there 2
such subsets ? 2"~ °®™ 2 We can show that if f (n) denotes the maximum

1
number of subsets 7 < {1,2, ..., n} which all have the same sums Y -
teT

then for any k,

logyn f log f(n)
"< L1 log > Tlog 2 <"<

lognl 3

H log; n >
log R =3
where log; x denotes the i-fold iterated logarithm of x.

Suppose we arbitrarily split the integers into r classes. Is it true that some
element of 2 belongs entirely to one class? A stronger conjecture is that
any sequence x; < X, < ... of positive density contains a subset xe Z.

This is not true if we just assume Y 1/x, = oo as the set of primes shows.
n k

However, perhaps ), 1/x, cannot grow much faster than this (i.e., log log n)
k=1

for the x;’s to fail to contain an X e %

For a given k, let a; < a, < ... < q, satisfy a;,; — a; < k and suppose
t

g
no sum » —, ¢ = 0or 1, is equal to 1. Probably a, is bounded in terms
i=1 a

of a; and k but we have not excluded the possibility that an infinite sequence
with this property exists.

Let A (n) denote the largest value of | S| such that S< {1,2,..,n}
contains no set in 2. Probably 4 () = n + o (n) but we cannot prove this

A related question is to estimate the number of solutions of 1 = Z —
i=1%;

where en < x; < ... < X,
What is the smallest set S’ < {1, 2, ..., n} which contains no set in &
and which is maximal in this respect? We have no idea about this. More
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generally one could ask for the largest subset S% of {1,2, ..., n} so that

1 m
for any elements s,sy,...,5,€S% = # — where m > 1. We can
1 m n s
k1S

certainly have | S} | > cn as the set {i: <i< n} shows. Can | S} |

n

2
1 4 s

> cn for ¢ > 5? Szemerédi just asks: Suppose S, = {1,2,...,n} so that

g 1 N .
Y 2= T g, = 0 or 1 implies ) &, = 1. Perhaps | S, | > ¢en is no longer
s€Spy § s
possible here. In fact, is it true that if S < {1,2,..,n} with S| > en

then S contains ¢, x and y with } = 1 +l Of course, 1 = 1 + 1 holds
t x y t x y

if and only if x + y | xy. Suppose X < {1,2,..,n} so that x,ye X
implies x + y ¥ xy. Can X be substantially more than the odd numbers?
What if x, ye X, x # y, implies x + y ¥ 2xy? Must we have | X| = o (n)
in this case?

One can ask questions concerning the regularity (in the sense of Rado
[Rad (33) b]) of systems of equations involving unit fractions, e.g., is it
true that if the integers are split into r classes, some class contains x, y and z

1 1 .
satisfying — + - = —? Or is it true that one class always contains integers
x y z
. ) a
whose reciprocals sum to each rational 3 ?

a 1
Let N (a, b) denote the least ¢ for which; =Y —, x <X <..
k=1 Xk

< X,, is possible. Erdos [Er (50) b] proved

¢ log b
cloglog b<N(b) = max N(a,b) < ———
1<=a=h IOg log b
. . : . c'log b .
improving the earlier unpublished upper bound of ———~—— of de Bruijn.

logloglog b
The true order of N (b) seems very hard to determine. Even showing that

log b
N@® = P
® o(loglogb

can be deduced from the following.

) would be of interest. The upper bound on N (b)

Lemma. Every number less than »n ! is the sum of fewer than » distinct
divisors of n !
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No doubt very many fewer than » divisors are required when # is large,
perhaps even only (log n)¢, which would then imply N (b) < ¢’ log log b.

Denote by n, the largest integer for which every m < n, is the sum of
k or fewer distinct divisors of n,. It would be of interest to estimate 7,
—numerical results would also be of interest here.

‘1
Let D (a, b)) = min max {xi: =Y —} where the minimum ranges
i=1%;

a .. . .
over all decompositions of b into a sum of distinct unit fractions, and let

D(®) = max D(a,b). Bleicher and Erdds [BI-Er (76) a] have shown

O<a<b

that
D (b) < ch(log b)*

and, in the other direction, if b is a prime p then
D(p)=c'plog p.
1t is conjectured that for every ¢ > 0,
D(b) <c(e)b(log b)**°.

One can also investigate the related quantity
1 b
n(b) =% Y N(a,b).
a=1

It is known here that n (b) > ¢ log log b.
a
The authors (unpublished) have proved that for any A with b squarefree

there are infinitely many disjoint sets S = { sy, ..., s, } such that each s,

is a product of three distinct prime factors and% =3y . Whether this
i=1 Yk
can be done with two prime factors is not clear.

In [Bar (77)], Barbeau gives an example of { x, ..., X190y } €& with
each x; the product of two distinct primes. Earlier Burshtein [Burs (73)]
gave an example of {x,, ..., x,}eZ with x; ¥ x; for i <j. However, as
Barbeau notes [Bar (76)}, it is not known if 1 can be expressed as the product

1 1
of two sums of the form — + ... + — where the ¢; are distinct primes.
U qr

Perhaps this can be done if the g, are just assumed to be pairwise relatively
prime.
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Consider the set S, of all integers which can be written in the form

k; ;c; with 1 <<x; < ... < x, <{n, r variable. What is the smallest integer
n:)t in §,? Is it true that m ¢ S, implies m + 1 ¢ S,? There are certainly
n element sets Y, such that the sums i y—, y;€ Y,, r variable, represent
more integers than can be represe;:eld kby taking Y, = {1,2,..,n}.

To see this, let E, be the integer defined by

n ) 1 E _ n+} 1
— < £ f—
k=1 k Tk
where a primed sum indicates that the multiples of primes exceeding n/log n
have been omitted. (Clearly such denominators cannot be used in any
representation of an integer). Now adjoin by, ..., b, used in a shortest
representation of
1

1 1+ .
kb b,

’

E,,—

||M=

By the previously mentioned estimates in [Er (50) b], r will be less than the
number of terms < # omitted by the primed sums and so, we have a set
of fewer than # numbers whose reciprocal sums represent more integers
than the reciprocal sums of 1,2, ..., n

In fact, if we write

=E, +t
1

il

0 =
Lol Mo

k

where 0 <t < 1 and E, is an integer, then if ¢ is not too small (as a functlon

of n), we can find » integers 1 < a; < ... < a, for which the sums Z i ,
k=19

& = 0 or 1, represent all the integers 1, 2, ..., E,. To see this, start with

= 1. In general, if ay, ..., a,, have been deﬁned for some m < 1, define

d by

d 1 d+1
d* = Z* < Z*
i=0 Xp + i i=0 Xm =+ i

where x,, is the least integer not occurring in a, ..., a,, and the * indicates
that no denominator in the sum can be an @,. Now, represent d* as econ-

a
omically as possible, using the result that b can be represented as a sum
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c log b . . . .

of at most 080 unit fractions if a < 5. We then adjoin all these new
log log b

denominators to the g, sequence. By continuing this process, we can form

as, ..., a,, u <n, so that if + = ¢(n) is not too small, then all integers

1,2, .., E, can be represented by sums of reciprocals of the a,.

n
. . . £
We have no idea of how many integers can be written as ) Ek , & =0
k=1
or 1. We cannot even rule out the possibility that there are more than ¢ log n
integers of this form.

For a fixed ¢ >0, suppose S, = {1,2,..,n} with |S.| >cn Is

1 a
it true that there is a function f (c¢) so that some sum Y — = b has
seS, N
b < f(0)?
1
What is min | 1 — Z — | where S, c {1,2, ..., } ranges over all
Sn seSp S
SS
sets containing no set of &, i.e., 1 % 2, —, & = 0 or 1. It should be

seSp,
e~ et for some ¢, 0 < ¢ < 1. It is trivially at least lem (1,2, ..., n)~*
and it is probably much larger.

Is it true that there is a ¢ > O such that for fixed « and ¢ sufficiently
t

1
large, if 3 — > o then for some choice of ¢ = 0 or 1,
k=1 S
t
€
01— Y & oy
k=1 Sk

We know only c/a® as an upper bound at present.

Although - + =1 - Langa Lo 1 o 1 babl
ough— +--=1——and - + - + - = —
ueh st 3 6 23ty 12 * Provadly
" 1
Y - 1| >—
k=2k Ln

for every other n where I is an integer and L, = Icm (1,2, ..., n). Can

1 1 1
we have — + ...+ — + — = linfinitely often where q,, ..., g, are distinct
q1 q: m
1 1
primes, such as > + 3 + 3 = 17 It is not difficult to give solutions to
1 1 1
—+ .+t =1.

a; a, lem (aq,...,a,)
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t
1
Choose ¢ = ¢ (n) to be the least integer such thatg, = i 1>0

How small can ¢, be? As far as we know this has not been looked at. It

should be true that lim inf n? ¢, = 0 but perhaps n**%, — oo for every

d > 0. The quantity z¢, is equidistributed modulo 1 and, in fact, is probably
uniformly distributed. In any case, it might be of interest to obtain results
n 1
I — =
L k

k=2

on its distribution function. Similar questions can be asked for n

n

where I is an integer and Z T I <
k=2

With u, defined as before, i.e., u1

|
k-
1, uyeq = u, (u,+1), we have

1 ||M+

oo}

)

=1 and u, = [¢2*+1], k>1, where ¢, = 1.264085... . If

k=1 Up+1
0
a; < a, < ... is any other sequence with } — = 1 is it true that
k=1 9
lim inf a}/?" < lim ul/?" = ¢, ?

n n
|
Is it true that if ¢; < a, < ... <a, and ) — < 2 then there exist
k=1
g = 0 or 1 so that

t

t
Zﬁ<1andz
k=1

k=1 G

1?

ai

This is not true if we just assume a; < a, < ... < g, as, for example, the
sequence 2, 3, 3, 5, 5, 5, 5, shows. It is conjectured by Spencer and the

t

1
authors that in any case, if ) — < N-— 30 then the a; can be split
k=1 %

1
into N sequences a”, 1 <i <N, so that Z <1 for all i.

=00r1}

is investigated. It is shown there that r (n) is at most n~ <= !°¢" No doubt
much more is true if « € (0, 1). It is certain that

Recently, in [Wo (76)] the quantity

i

i=1

r(n) = min{

&

r(n) < e (eamk
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for all k if n > ng (k) and in fact it is probably true that r (n) < e~ "° for
some ¢ > 0.
These questions lead to the consideration of the distribution of the

9
sums Y —% where 5, = 0 or + 1. It should be easy to see that there is
k=0
a ¢ > 0 so that the inequality

min {
[

hoids for all » where the value 0 is not allowed. Unfortunately, we do not
see how to prove this at present. It seems quite likely that there is a ¢ > 0
independent of # so that

n 5k
D

k=1

} <S8 =0, +1
2”

.
lim (2+4¢) min Y -~
n o, k=1 k
Of course,

where L, = lem { 2, 3, ..., n }. For large n we no doubt must have inequality
but this we cannot prove. Examples of equality exist for small #, e.g.,

Erdds and Straus [Er-Str (75)] showed that for any nonconstant sequence

5.

0wk =1,2,..., of 4+ 1’s there is a finite subsequence for which Z k=0,
PERS

R. Sattler [Sat (75)] proved the corresponding more difficult result for

5ik . 5ik
Y — . Is this also true for the general case ), — ? What
r 20, + 1 © ai, + b

about for any set of denominators of positive density? Of course, this

0; 1
cannot hold for all choices of the §, for the case ) —'7" since ) i < 1.
PR k=2
However, it is conceivable that it is still true if we restrict & to be at least 2,

i.e., for any nonconstant sequence J,, d;, ... of + 1’s, there is a finite sub-

5.
sequence &, for which ) —% = 0.

k Lk
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How large can a set 4 = { 1,2, ..., n} be so that for some choice of
6, = + 1, ae 4, we have:

® Z——

acd G

(i) For every nonempty proper subset A" — A,

0
Y = #£0?

aca’ @

A question which has received some attention in the literature is the

n

£
following: What is the number ¢ (n) of distinct sums of the form ) *.
k=1

g = 0 or 1? The best estimates [BI-Er (75)] for ¢ (n) are

log ¢ 1 *
ogr(n) nlogn b
log2 logn ;=3

I tog.n =

log

for k >> 4 and log, n > k. A related question is the following. How many
r(n)

integers @; < a; < ... < @,,) < 7ncan we have so that all the sums ) —
i=14;

are distinct? Estimates of Bleicher and Erdos [BI-Er (75)] imply that

n logc

H log; n

1 < <
fog n ;Us og;n < r(n)

t
for any fixed s. Is it true that j%z — oo with n? Here one can also ask
n
for a maximal such set of a;’s having as few elements as possible. It is easy
to see that the number of elements in such a set has a greater order of

magnitude than zn (r). We don’t know whether this is the case if instead we
r(n)
require all products [[ - to be distinct.
i=1 4"
Let a; < a, < ... be an-infinite sequence of integers and let  (n) denote
the number of solutions of

n

&
Y —, g =0o0r1.
1G4

It is possible to have
lim f (n)'/" = 2
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i
and it is not hard to prove that for the number 4 (n) of sums ) Ek which
k=1
are less than 1, lim A (n)'/" exists and is strictly less than 2. It would be

interesting to know the exact value of the limit. If g (x) is any function
n

€
which tends to infinity with x then for the sums Y, *

less than 1,

k=1 kg (k)
the corresponding counting function A’ (n) satisfies lim 4’ (n)!/" = 2.
&g (k) y

Similarly, for 3
=1k

satisfies lim 4” (n)!/" = 1.

, the corresponding counting function A” (n)

An old conjecture of Erdds and Straus asserts that for all # > 1, the

equation

4 1 1 1
™ — ==+ -4 =

n x y z
has integer solutions. This has still not been settled. However, Vaughan
[Va (70)] and Webb [Web (70)] have each given estimates for the number
f (N) of n < N for which (¥) is not solvable. From these we know

f(N) <N exp { —c(logN)*?*}

for some ¢ > 0. The equation (*) is known to hold for n < 10® (see
[Franc (78)], [Ter (71)], [Ya (64)], [Ya (65)]).

More generally, it has been conjectured by Schinzel and Sierpifiski
[Sie (56)] that the equation
1

a 1 1
_.=_..+_
n x y z

is always solvable for n > n, (a). Schinzel also conjectured that for every

a
a >> 1 there is an n (a) such that all fractions — with n > n (a) can be written
in the form "

with x, y and z positive integers. At present this has been proved for all
a <40 (see [Str-Sub (xx)]) although there is no infinite class of a’s for
which it is known to hold. (Also see [Franc (78)], [Pala (58)], [Pala (59)],
[Stew, (64)], [Stew,-We (66)], [Vi (72)], [Web (74)], for related results).

For a rather complete bibliography on unit fractions, the reader should
consult [Cam (xx)].
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5. BASES AND RELATED TOPICS

A sequence A = (ay, a,, ...) of integers is called a basis of order k
if every (positive) integer is the sum of at most k of the a;’s where repetition
is allowed. For example, as we have remarked earlier, it is well known that
the squares form a basis of order 4. Some of the most famous and intractable
problems of number theory deal with bases, e.g., Goldbach’s conjecture
which states that every even number exceeding 2 is the sum of two primes.
The sharpest known results for this conjecture assert that every large odd
integer is the sum of three primes and that every large even integer is of
the form p + 0 where p is prime and 0 has at most two prime factors.

Another well known problem concerned with bases is Waring’s problem.
J. A. Euler conjectured that every integer is the sum of at most
g (k) = 2* + [(3/2)*—2] k™ powers. This has been proved for most values
of k and is no doubt always true. Hardy and Littlewood introduced the
quantity G (k), defined to be the smallest integer so that every large number
is the sum of at most G (k) k'" powers. It is now known that G (k) < cklogk.
The truth probably is G (k) < 4k with equality if k is a power of 2. Wieferich
proved g (3) = 9 and Landau first showed that G (3) < 8. Dickson proved
that 23 and 239 are the only integers which require 9 cubes in their represen-
tations. Linnik established G (3) < 7; Watson subsequently obtained a
completely different proof which is much simpler. Probably G (3) = 4
but it is not even known at present if every large integer can be expressed
as a sum x; & x3 + x3 + x5. (See [Ellis (71)] for a survey of results on
Waring's problem).

Denote by f;; (x) the number of integers not exceeding x which are
the sum of / nonnegative k™ powers. The estimation of G (k) would be
greatly improved if we could prove

Six(x) > xt7e,
or even

fk,m (x) > cxM/k

for every m < k and & > 0 and every sufficiently large x. This inequality
seems unattackable by the methods at our disposal although the case
k = 2 is quite easy—actually Landau proved

cx
fz,z(x)"" \/logx .
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For k > 2, it is unknown if f; , (x) = o (x) and in fact no one has even a
well motivated conjecture here.

i=

1
Denote by r; ; (n) the number of solutions of n = x¥. The famous
=1

K-hypothesis of Hardy and Littlewood stated

e (n) = 0 (n)

for every ¢ > 0. This is easy for k = 2. However, Mahler [Mah (36)]
disproved the conjecture for k = 3. He showed

ry3(n) > cn'/'?,

for large n, which perhaps is the right order of growth (though nothing
is known about this). Probably the K-hypothesis fails for every kK > 3 as
well. Hardy and Littlewood also made the following weaker conjecture:

x

Y re(m)? < x'te

n=1
for every ¢ > 0. This is probably true but no doubt very deep. However,
it would suffice for most applications.

Mordell proved limsupr; ,(n) = o and Mahler showed r; , (n)
> (log n)* for infinitely many »n and some « > 0. It is also known that
limsupry,(n)>2 and limsupry ; (1) = co (see [Lag(75)D); beyond
this, nothing much is known. For example, it is not known if x> + »°
= 4’ + v° has any nontrivial solutions. Euler conjectured that

has no nontrivial solutions. This is well known for n = 3, unknown for
n = 4 and was disproved [Lan-Pa (66)] for n = 5:

1445 = 1335 + 110° + 84° + 275.

It was proved by Mahler and Erdds [Er-Ma (38)] that the number of
distinct integers not exceeding n of the form x* + y* k > 2, is greater
than cn?/* (in fact, they prove a more general theorem). Hooley [Hoo (64)]
strengthened this result by obtaining an asymptotic formula. It would be
very interesting to prove that the number of integers less than n of the form
XX+ x5 + x4, k>3, exceeds cn®/F or even n3*7° This would be very
useful even for large k but at present only much weaker results are known.
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For k = 3 the sharpest inequality is an old result of Davenport [Dave (50)]:

7.
f3s(m) > n*

Denote by f, (n) the number of solutions of

xk.

=
I
M =

i=1

It was shown by Erdos [Er (36) b] (and independently by S. Chowla) that
fk (n) > nc/log logn .

If the x; are restricted to be primes then the corresponding number
S » (1) has been studied in [Er (37)]. It is known that

f'z (n) > nc/log logn

and it can be shown that max f; (1) tends to infinity with x fairly

1<=n=x
rapidly. However, for k > 4 almost nothing is known. For further problems
and results in this direction, see the paper of Erdés and Szemerédi [Er-
Sz (72)]. However, as we have stated, we do not wish to discuss the classical
questions too much in this paper so we leave this topic now.
Let a; < ... < a; < x be such that every n < x is of the form a; + a;.
Rohrbach [Roh (37)] conjectured that under this hypothesis

k>2/x +0(1).

However, Rohrbach’s conjecture has recently been disproved by Himmerer
and Hofmeister [Him-Hofm (76)].

It was asked by Erdds whether there is an infinite sequence { g, } for
which n = a; + a; is solvable for every n and which satisfies a,/k*> — c.
Cassels [Cas (57)] gave an example of such a basis which in fact satisfies

a, = ck? + 0 (k).

Nevertheless, there is a small amount of “cheating” going on here. Cassels
actually gives a basis { b, } where lim sup b,/k> differs from lim inf b,/k?
and then adds new terms. The “correct” way of formulating the question
is this: Suppose a; < a, < ... is a basis of order 2 such that the removal
of any a; destroys the basis property, i.e., the @,’s form a minimal basis.
Can it happen that

lim g /k? = c?
k-
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We conjecture that it cannot. Another way of stating the problem is this:
Does every basis of order 2 have a subset { @, } which is also a basis and for
which lim a,/k* does not exist?

k— o0

For the sequence 4 = {a,}, let f (n) = f,(n) denote the number

of solutions ton = a; + a;, i < j. We mention several interesting questions
concerning f (1) which have been open for some time now.

1.

exists and is

(8250) Is there a sequence {a} for which limlf(n)
n 108

greater than 0? It can be shown by probability methods that there exists
{ @} with
¢y logn <f(n) <c, logn.

More specifically, between 2* and 2¢*! choose a random subset of size
2k/2

C—F—
Vk
inequalities. It can also be shown by these methods that there exist

sequences { @, } for which f (n) ~ g (n)logn where g (n) tends to
infinity arbitrarily slowly.

, for k > k,. Then almost all such choices satisfy the desired

Give an explicit construction of a sequence { @, } which has 1 < f (n)
= o (n®) for all ¢ > 0.

(Erdds-Turan — $500) Show that f (n) > 0 for all » implies
lim sup f (n) = oo. Is it actually true that this implies f(n)>clogn?

Show that a, < ck? implies lim sup f (n) = co. It is known that there
are sequences { ¢, } with lim inf a/k* < oo and f (n) < 1.

Ajtai, Komlés and Szemerédi [Aj-Ko-Sz (xx)] have just shown that
there exists { @, } with @, = o (k%) and f (n) <1 for all n. Probably a,
can be chosen so that @, < ck?*® It is known that for all ¢ > O there
exists c, and a sequence { g, } with g, < k**tefork >kyand f (n) < c,

Suppose a, < cn® for all n. Is it true that not all the triple sums g,
+ a; + a, can be distinct? Bose and Chowla (see Proceedings of the 1959
Boulder Number Theory Conference) proved that it is possible to
select (1+0 (1)) x'/* integers less than x so that all triple sums are

distinct. They asked if this is possible for (1+¢) x'/? integers.

(P. Erdds and D. J. Newman). Suppose f 4 (n) < c for all n.Is it always
possible to partition A into ¢ = ¢ (c) subsets 4, ..., 4, such that f 4, (n)
< ¢ for all k and n? J. Negetfil and V. Rédl (personal communication)
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have recently shown that the answer is negative for all ¢ .Erdos had
previously shown this for ¢ = 3,4 and infinitely many other values.

A(n
8. Suppose f 4 (n) <1 for all n. How large can p, = lim sup T(_ be?
n n

is possible and later

N =

It was shown by Erdos (see [St (55) *}) that p, =

1
by Kriickeberg [Kriic (61)] that p, = \ﬁ is possible. It can be shown

[Er-Tu (41)] that p, <1 always holds. Is it true that any finite set
with all pair sums distinct can be embedded in some (finite) perfect
difference set? (If so then it would follow that p, = 1 is possible).

For other problems and results on this subject, see the recent papers of
Erdds and Nathanson [Na (74)], [Er-Na (75) a}, [Er-Na (75) b], [Er-Na (76)],
[Er-Na (77)], [Na (77) b], [Na (77) c], [Er-Na (78)].

A sequence a, < a, < ... is called an essential component if for every
sequence b; < b, < ... with Schnirelman density «, the set of all sums
{a; + b;} has density strictly greater than «. By a result in Wirsing’s
thesis (also see [Plii (69)]) it follows that in fact the density of { a; + b; }
is greater than « + f (x) where f depends on {a;} but not on {b;}
or «. In 1935 it was shown by Erdds [Er (35) b] that every basis is an essential
component. However, Linnik [Linn (42)] disproved the converse by giving
an example of an essential component A = { 4y, a,, ... } which is not a

basis. His example satisfies
9

+ &
(log x) 10

Ax) <e

for every & > 0 where, as usual, 4 (x) denotes the number of elements
of A which do not exceed x. Linnik’s proof is very complicated; Wirsing
has recently found a fairly simple proof which appears in [Wir (74)]. His
example satisfies

+ e

(ST

(log x)

A(x) <e
for every ¢ > 0.
We conjecture that if a,,,/a, > ¢ > 1 then the sequence A cannot
be an essential component. Wirsing believes that if

1
N = &
(log x)2

A(x) <e
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for some ¢ > 0 then 4 cannot be an essential component; this would settle
the question of the order of magnitude.

A question of Erdos and Nathanson is the following. Suppose a, < a,
< ... is a minimal basis which has positive density. Can it happen that
for any a, the (upper) density of the integers which cannot be represented
without using g, is positive?

Let A ={a; <a,<..}and B= {b; <b, <..} be sequences of
integers satisfying 4 (x) > ex!/2, B(x) > ex'/? for some ¢ > 0. Is it true
that a; — a; = b, — b, has infinitely many solutions? Very recently,
Prikry, Tijdeman, Stewart, and others (see [Stew, (xx)], (Ti (xx)]) have
shown that if 4 = {a, a,, ... } has positive density, the set of numbers
D(4) = {d; <d, < ..} which occur infinitely often as a4, — a; has
bounded gaps, i.e., d;;; — d; is bounded. In fact, this holds for the inter-
section D (4;) n...n D(4,) for any n sets A; of positive density. It
would be interesting to know to what extent this conclusion holds for
weaker hypotheses on the A4;. We could also ask for the best bound on the
gap sizes in terms of the densities. What if we only require that D (4) or

1
D (4,) n... 0 D(4,) have positive density; or even that Y - = oo;
deD(A)
or even that D (4) # @ instead of bounded gaps?

Let 4 be a set of integers with asymptotic density zero. Does there
always exist a basis B with B(x) = o (\/ x) so that every ae A can be
writtenasa = b; + b;, b;, b; € B? This is known [Er-Ne (77)] to be possible,
for example, when A is the set of squares.

Let S, = {s; <s, < ..} denote the set of all integers which have
all prime factors less than n. What is the largest m = m (n) so that any
tefl, m] can be written as ¢t = s; + 5;?7 At present, we don’t even see

how to show m > n®. Probably the right answer is about ",
For a sequence X, let d (x) denote the asymptotic density of X (assuming
it exists). Suppose d (4) and d (B) are positive and

&) d(A+B) = d(4) +d(B)

where, as usual, 4 + B denotes the set {a + b:ae 4, be 4 }. One way
this can happen is as follows:

Let p be a probability measure on S*, the circle of circumference 1,
and let 4, B = S! with

u(A+B) = p(A) + pu(B)
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where addition on S! is just ordinary addition modulo 1. For some
o > 0, define
A={n>0:{na}ed},
B={n>0:{na}eB}.

where { x } denotes the fractional part of x.

For example, when p is Lebesgue measure and 4 and B are intervals or
when u is an atomic measure supported on certain rationals and 4 and B
are certain rationals in S* (so that 4 and B are unions of congruence classes),
we can get solutions to (*). Is it true that all solutions are generated in a
similar way (using other groups)?

A is called an asymptotic basis of order r if every sufficiently large
integer is a sum of at most r integers taken from 4. We say that 4 has
exact order t if every sufficiently large integer is a sum of exactly ¢ integers
from A. In the first case we write ord (4) = r; in the second case we write
ord*(4) = ¢. In a recent paper we show [Er-Gr(79)] that a basis A
= {a;, a,, ... } has an exact order if and only if g.c.d. { a, ~ a,, a; — a,,
a, = as, ... } = 1. Even when ord* (4) exists it may be larger than ord (A).
For example, the set B defined by

B=U 1

k=0
where [, = {x :2% + 1 <x <{2%**!} has
ord (B) = 2, ord* (B) = 3.
However, there are some fairly good bounds known on the extent of this
increase. To describe these, define the function 4 : Z* — Z* as follows:
h(r) = max { ord* (4) : ord (4) = r and ord* (4) exists }.

Then we have shown
1 5 .
Z(1+0(1))r2 <h() < Z(1+o\1))r2 .

We have no idea what the right coefficient of r? is. It is known that 4 (2)
= 4. However even % (3) is unknown at present (it is >> 7).

For a set 4, let 4,, (x) denote | {a;, + ... + a;, ta, e A} n {1, .., x}|-
If 4 is a basis and 4, (x) = o (x) is it true that

im A4, (x) -
X 00 Al (X)

0 ?
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It has been shown by Freiman [Fre (73)] that for any sequence B of density
zero,

lim sup B, () >3
X0 Bl (X)
and that the constant 3 is best possible. The following related result
has recently been proved by Ruzsa [Ru (73)]. Let A, (x) denote
| {a;—a; <x:i>j}| for the sequence 4 = {a, < a, <..}. Then
if 4 has density zero.

By the restricted order of A, denoted by ordg (4), we mean the least
integer ¢ (if it exists) such that every sufficiently large integer is the sum
of at most ¢ distinct summands taken from 4. As pointed out by Bateman,
for >3 the set 4, = {1} u{x>0:x =0(mod#A)} has ord(4)
= h but has no restricted order. However, Kelly [Ke (57)] has shown that
ord (4) = 2 implies ordy (4) <4 and conjectures that, in fact, ordy (4)
< 3. What are necessary and sufficient conditions on a basis 4 to have a
restricted order? Is there a function f (r) such that if ord (4) = r and
ord, (4) exists then ordg (4) < f (r)? What are necessary and sufficient
conditions that ord (4) = ordg (4). As we have noted, the situation is not
clear even for sequences of polynomial values, e.g., for the set .S of squares,
ord (S) = 4 and ordg (S) = 5 (see [Pall (33)]) while the set T of triangular
numbers has ord (T') = ordg (') = 3 (see [Sch (54))).

Is it true that if for some r, ord (A—F) = r for all finite sets F, then
ordy (A4) exists? What if we just assume ord (4 —F) exists for all finite
sets F?

Let n x A denote the set {a, + .. + a; :a; are distinct elements
of A }. Isit true that if ord (4) = r then r X A has positive (lower) density?
If {a, + .. + a;, :a; € A} has positive upper density then must s x 4
also have positive upper density ?

Of course, many of these questions can be formulated for ordj (4),
defined in the obvious way, but we will not pursue them here.

Let a,, a,, ... be the sequence defined by:

D) a = 1;

(ii) For n >1, a,,, is the least integer exceeding a, so that all the sums
a,+1 T a, 1 <k <n, are distinct from all preceding sums a; + a,
1 <i<j<n



— 53 —

Thus, the sequence begins 1,2, 4,8, 13, 21, 31, 45, 66, 81,97, ... . What
is the order of growth of a,? In particular is @, = O (n***)? Which integers
occur as differences @; — a;? For example, does 22 occur as a difference?
Do the differences have positive density? One could also investigate the
corresponding question where all triple sums a; + a; + a, are distinct.
As far as we know, even the preceding greedy construction yields a sequence
with a, = O (n®).

The following old problem of Dickson [Dic (34)] is still wide open.
Given a set of integers 4, = {4, < .. < a,}, extend it to the infinite
sequence 4 = {a; < .. < g < ..} by defining a,,, for n >k to be
the least integer exceeding a, which is not of the form a; + a;, i, j <n.
Is it true that the sequence of differences a,,.; — a,, is eventually periodic?
Even a starting set as small as { 1, 4, 9, 16, 25 } requires thousands of terms
before periodicity eventually occurs.

Ulam has raised the following problem. Starting with a; = 1, a, = 2,
define a,,,; for n >>2 to be the least integer exceeding a, which can be
expressed uniquely as a; + a;, i # j, i, j <<n. Thus, the sequence begins
1,2,3,4,6,8,11,13,16, 18, 26,28, ... . What can be said about this
sequence. In particular, do infinitely many pairs a, a + 2 occur? Does this
sequence (eventually) have periodic differences? Is the density 0?7 Almost
nothing is known (see [Q (72)], [Mia-Ch (49)]).

Finally, we mention the following very annoying problem. Find a
polynomial f (x) such that all the sums f (a) + f (b), a < b, are distinct.
Of course, it is easy to give such polynomials—for example, f (x) = x°
must certainly work. Unfortunately we are not able to prove that this
(or any) f actually works.

6. COMPLETENESS OF SEQUENCES AND RELATED TOPICS

For a sequence A = (a,, a5, ...) of real numbers, let P (4) be defined by

ool o0
P(4) = { Y gopig =0o0r 1, ) g < oo}.
k=1 k=1
Numerous results are available on the structure of P (4) for various special
sequences 4, particularly when the g, are integers or reciprocals of integers
(for example, see the survey article [Gr (71)]). The general flavor of questions
and results in this area tend to differ from those dealing with bases for the
integers because the sums under consideration have no restriction on the
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number of terms used (whereas bases do have this restriction) although
the sums are restricted by the multiplicity any particular term can have).
For example, for the sequence 4 = {1,4,9, 16, ... } of squares, it is well
known that A4 is a basis of order 4 (Lagrange’s theorem) while it is less well
known [Spr (48) a] that 128 ¢ P(4) and all m > 128 belong to P (4),
i.e., any integer greater than 128 is a sum of distinct squares (but not 128
itself) (also see [Spr (48) b]). In this section, we discuss a variety of what we
consider to be interesting problems related to this topic.

Let us call a sequence S = (54, 55, ...) of integers complete if P (S)
contains all sufficiently large integers. We call S subcomplete if P (S) contains
an infinite arithmetic progression. Finally we call S strongly complete if
the sequence (s,, 5,41, ...) is complete for every #. For example, the sequence
T = (o, 1y, -..) with t, = 2" is complete but not strongly complete, any
subsequence 7™ = (t,, t,s1, --), m > 0, is subcomplete but not com-
plete, and the merged sequence T* = (t,, X, #1, Xy, 13, X3, ...) is strongly
complete provided infinitely many of the x; are odd.

One of the nicest open questions on complete sequences is due to
Jon Folkman. It is this: If § = (sy, 5, ...) is a nondecreasing sequence of
integers satisfying s, < cn for some ¢ and all n, then must S be subcomplete ?
Folkman showed [Fo (66)] that this is true under the stronger hypothesis
s, < cn'~* (strengthening earlier results of Erdos [Er (62) a]). On the other
hand for all ¢ > 0, examples can be given (see [Fo (66)], [Cas (60)] of
sequences S satisfying s, < cn'*® which are not subcomplete. In [Fo (66)]
Folkman also proved the result (conjectured by Erdds) that if the s,’s are
strictly increasing and s, < cn®”° then § is subcomplete. The stronger

1
conjecture that this remains true if we only assume s, << Enz for large n
is still unproved. On the other hand, counterexamples are known [Er (62) a]

1
which satisfy s, < 5 n* + cn for a certain fixed c.

For sequences S (p) = (p (1), p (2), ...) with p (x) € Z [x], it was shown
by Cassels [Cas (60)] that the obvious necessary conditions for the com-
pleteness of S (p) are sufficient, namely, p (x) should have positive leading
coefficient and ged (p (1), p (2), ...) = 1. This was extended to p (x) e R [x]
by Graham [Gr (64) b]. Of course, the conditions show in fact that S (p)
is strongly complete in this case. n

It also follows from Cassels’ arguments that if f (x) = Y ax* is

k=0

a monic polynomial defining a P-V number then any sequence S = (sy, 55, ...)



— 55 —

satisfying the linear recurrence Y a,s,44, ¢ >0, is not strongly complete.
k=0
This includes, for example, the case s, = F,, the »® Fibonacci number,
definedby Fy, = 0, F, = |, F,,, = F,,, + F,, n >>0, as well as sequences
RS S .

formed by taking bounded repetitions of the F,, i.e., (Fy, ..., F1, Fy, ..., F,, ...).
However, if each term of this sequence is repeated often enough (depending
on the term) then it is strongly complete. In particular, it has been shown
by the authors [Er-Gr (72) b] that the sequence

my my,
S* = A, fr———
(Fiyees Fyy ooy Fry ooy Foy )
1+5 . .

where m,/¢" decreases and ¢ = — is strongly complete if and
only if

Y ml" =

n=1

In any case S* is not strongly complete if

o0

Y ml¢t < oo .
n=1

1t is certainly true that similar results must hold for other sequences
satisfying linear recurrences although this seems to be a complex subject
which is still relatively untouched.

For a complete sequence S, the threshhold of completeness 6, is defined
to be the least integer 0 such that m > 0 implies m € P (S). Very little is
known about 6, even for the relatively simple sequences S (p) = (p (1),
p(2),..) with p (x) € Q [x]. The values of 6, for S (p) with p(x)
= x" we know [Spr(48)a}, [Gr(64)b], [Lin (70)], [Nel (76)] only for
n < 5. Theyare: 05,y = 1, O5(x2y = 128, Og(,3y = 12758, 05,4y = 5134240,
Os(xsy = 67898771. It seems highly likely that Og(.n) > Os(xn+1) can occur
for infinitely many n. Good candidates should be n = 2° for large ¢ (or
even ¢ > 3?) because of the highly restricted values of m* modulo 2'*1.

For a sequence S = (sy, 55, ...), let O,(n) denote the threshhold of
completeness for the truncated sequence (s,, S,1 1, Sut2, ---). Even for very
simple sequences, the behavior of 8, (n) can be very complex. For example,

n . .
5— oscillates in a
n

0
for S=Sx*=(1,4,9,..,n%..), the function



— 56 —

complicated way between 4 and 5, tending to 5 as n — oo for exactly
1487 points between any two consecutive powers of 4 (see [Gr (71)]).
In fact, for this case 6, (n) is known for almost all values of n (for example,
it is always even except for the unique value 8, (3) = 223 [Gr (00)]) although
the exact determination for all values of n seems very difficult.

For sequences S = (sy, 5, ...) with reasonably regular growth, 0, (n)/s,
often seems to tend to a limit. For example, for the sequence P = (py, p,, ...)
of primes, Kleve [Klg (75)] has conjectured on the basis of computational
evidence that 6, (n)/p, — 3 (which would imply the Goldbach conjecture.)
It can be shown by probabilistic methods that for any « >> 2 there is a

sequence S = (sq, 85, ...) with lim OSs(n)
give a construction for each «.

If S is perturbed slightly, its subcompleteness properties are often not
affected too severely. For example, if S* = (s7,s%,...) with s* = p(n)
+ vy (n) where p(x)eZ[x] and y(n) = O (n' %) for ¢ > 0 then Burr
[Burr (xx)] has shown that S* is subcomplete. It may be that this remains
true under the weaker hypothesis that y (n) = o (n) or even y (1) = O (n).
It can definitely fail if we only require y (1) = o (n!**) for any fixed ¢ > 0.
In fact, it can be shown that for any sequence 4 = (ay, a,, ...) and any
function f (n) with Y 1/f (n) < oo, there is a sequence 4" = (aj, a3, ...)

n=1

= o . It would be interesting to

with |a, — a,| < f (n) for n sufficiently large which is not subcomplete.

Sp+1

It is not known if there is a sequence S = (s4, 5,, ...) with lim =2

s’l
so that P (S’) has density one for every cofinite subsequence S’ of S. It is

known [Burr (71)] that for any ¢ > 0, if Sn+1 > L +2\/ > + ¢ for large n
sn

then § cannot be strongly complete. On the other hand, the constant
1+{5
\/ > is best possible as the following result shows.
Let F*=(f%, f},..) denote the sequence defined by f* =F,
— (—1)" where F, is the n™ Fibonacci number. Then it has been shown

by Graham [Gr (64) g] that F* enjoys the following unusual combination
of properties:

() F* remains complete after any finite set of elements is deleted from it
i.e., F* is strongly complete.

(ii) F* is no longer complete after any infinite set is deleted from it.
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Is it true that any sequence S = (s, s,, ...) with !

Sy 1+./5
both (i) and (i) must have lim "% = %

n Sn
Seey 1+ 5 s . . .
20 > — then (ii) is automatically satisfied. It is not hard to con-

> 1 + ¢ satisfying

n

? It is easy to see that if

sll
=1, lim sup “*! = o0)

n

. . o o Snt1
struct very irregular sequences (i.c., lim inf =

which satisfy (i) and (ii).

The finite version of this problem is very poorly understood at present.
Specifically, for a given sequence S, let C (n) and N (n) denote the following
statements:

C(n): If any n elements are removed from S to form S’ then S’ is com-
plete;

N (n): If any n elements are removed from S to form S’ then S’ is not
complete.

Question: For what values of m < n are there sequences S which satisfy
both C (m) and N (n)?

For example, T = (1, 2,4, ..., 2" ..) satisfies C(0) and N (1), while F
= (F,F,, F;,..) =(1,1,2,3,5,8, ...) satisfies C (1) and N (2). It is not
known if there is a sequence satisfying C (2) and N (3).

Let S(t, o) = (54, 53, ...) with s, = [ta"]. For what values of ¢ and «
is S (¢, «) complete? Even in the range 0 < t < 1, 1 < o < 2, the behavior
is surprisingly complex. For example, it is known [Gr (64) f ] that for any k
there exists # € (0, 1) so that { o : §(#, o) is complete } consists of more
than k disjoint line segments. It seems likely that S (¢, «) is complete for

1+
all < a< # and all ¢ > 0. There seems to be little hope of proving

3 n
this at present though since we do not even know that [<§> } is odd (or

even) infinitely often.
It is possible to consider the question of completeness for sequences of
rationals. For example, it is known [Gr (63) b] that the sequence

1
S = (54, 83, ...) with s, = n + — is strongly complete. Is it true that if
n
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p(x)eQ(x) then the sequence A = (@, a,,...) with a, = p(n) + 1/n
is also strongly complete? Which rational functions r (x)e Z (x) force
(r (1), 7 (), ...) to be complete?

Suppose « and B are positive reals with o/ irrational and let S denote
the sequence ([a], [B], [2¢], [28], ..., (2%, [2"5), ...). Is .S complete? What
if 2 is replaced by y where 1 <y < 27

Let us call a sequence S = (sy, §;, ...) of rationals Q-complete if every
sufficiently large rational belongs to P (S). For example, if every sufficiently
large prime and every sufficiently large square belongs to S then S~!
= (1/s,, 1/s,, ...) is Q-complete [Gr (64) a] (in fact, all positive rationals

belong to P(S™')). It was shown in [Er-Ste (63)] that if ) sl = 0
n=1 n

then there exist b, > s, such that the sequence (1/by, 1/b,, ...) is Q-com-

plete.

Suppose S = (sy, 55, ...) is an increasing sequence satisfying s,.,/s,
> ¢ > 1 for some c. Is it possible for P (S ~!) to contain all the rationals in
some interval (o, §), « < B? It has been conjectured by Bleicher and Erdds
that the answer is no.

We close this section with a few problems involving sums of subsets
which have a somewhat different flavor.

Let a; < ... < g, <<n be a sequence of integers and form all sums

v
Y. a;. Can one have cn? distinct numbers in this set for some ¢ > 0?
i=u
This does not happen for the choice a; = i. What happens if we drop the
monotonicity restriction but just insist that the a; be distinct? Perhaps some
permutation of {1,2,..,n} has cn? such “interval” sums. How many
v
consecutive integers exceeding # can we represent as  », a;? Is it true that
i=u
for any ¢ > 0, we can reach cn? For example, by taking a; = i, we can
ususally go to 2n (we cannot get a power of 2 by such a sum). However,
by leaving out some of the integers we may get past the powers of 2.
Suppose 1 <a; < .. < g, <n is a set of integers with the property
v
that all sums of consecutive blocks Y a; are distinct. Erdos and Harzheim
i=u
have asked how large can k& be? Must we have k = o (n)? What if we
remove the monotonicity constraint and/or the distinctness constraint?
v

Also, what is the least m which is not of the form )’ ;? Can it be much
i=u

larger than »? We can show that
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1
— <c.
x<a;<x2 d;

1
Is it true that )’ — is bounded, independent of n?
T 4;

13

Is there a sequence 1 < a; < @, < ... so that the number of representa-
tions of n as a sum of consecutive a;’s is always positive? Can it tend to
infinity with n?

Erdds and Moser [Mo (63)] considered the case where the a; are the
primes. They conjectured that the lim sup of the number of representations
is infinite and also that the density of integers which have exactly k rep-
resentations exists. We do not even know that the upper density of the
integers with at least one such representation is positive.

Andrews [An (75)] has recently studied the following related problem of
MacMahon. Let a; < a, < ... be an infinite sequence where a, = k and
a;;+4 is the least integer which is not a sum of consecutive earlier a;’s.
What can be said about the density of the a;’s?

Let f (n) denote the least integer so that one can divide the set of
integers { 1,2, ...,n} into f (n) classes so that n cannot be expressed as a
sum of distinct elements from the same class. It can be shown that £ (n) > o
but we have no idea how fast.

How many integers less than n/k can one give so that » is not a sum
of a subset of these integers (where & is fixed and n is large)? Does this
depend on # in an irregular way?

For the sequence 0 < a; < ... < q,, let F,(¢) denote the number of

n

solutions of ) ea; =1, & = 0 or 1. Erdés and Moser (see [Kat (66)])

i=1
c2"
proved that F,(r) < —5; (logn)®'?; they conjectured that the factor
n

(log n)3/? could be omitted and this was proved by Sarkozy and Szemerédi
[Sar-Sz (65)]. Stanley [Stan (xx)] recently showed that max F, (¢) is assumed

. . 1
if the a;s form an arithmetic progression and ¢ = 3 Y a; (see also
i=1

[Lint (67)]).
Finally, suppose o, < ... < o, < x is a sequence of real numbers
k
with k maximal so that any two sums Y &0, ¢ = 0 or 1, differ by at

i=1

1
least 1. Is it true that k& << loﬁzc + O (1)? This generalizes the old (and
og
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still unsolved) conjecture of Erdés which asks the same question when
the «; are integers. The best result currently available for the integer problem,
due to Erdos and Moser, is that

log x log log x
<
log 2 2 log 2

On the other hand, Conway and Guy [Con-Gu (69)] have shown that for
n > 21, it is possible to find #n + 2 numbers < 2" with all distinct subset
sums, which is one greater than obtained by just choosing the numbers
1,2, 4,..,2%..,2" (see [Er+3(64)], [Gor-Ru(60)], [Er-Sz(76)b] for
related results).

It was conjectured by Erdés and proved by C. Ryavec that if
1 <a; <a, < ..< a,is a set of integers with all subset sums distinct (i.e.,

n

+0(D).

1
| P(4)| = 2" then ) — < 2. This was recently strengthened by Hanson,

i=1 a4 ns 1
Steele and Stenger [Hanson-St-St (77)] who showed 3, (—) < 1=
for all real s > 0. i=1\% -

7. IRRATIONALITY AND TRANSCENDENCE

Liouville was the first to prove the existence of transcendental numbers.
Looking back from our position of relative “wisdom” it now seems strange
that Euler did not discover them. Cantor then proved that the algebraic
numbers are denumerable and the reals are not—one of the great new
insights which very few humans had the ability and luck to experience first
hand (see the famous Cantor-Dedekind correspondence [Can-Ded (37)],
[Cav (62)] which should surely be translated into English). The first proof
of a well known constant to be transcendental was due to Hermite who
proved that e is transcendental. This was followed shortly thereafter by
Lindemann’s proof of the transcendence of # in 1882. Very much is known
now, due to the fundamental work of people such as Siegel, Kusmin,
Gelfond, Schneider, Baker, Schanuel, Mahler, Waldschmidt, Sprindzuk
and many others (if we omit people this does not mean that we think they
are less good than the ones mentioned). However, there are still surprising
gaps in our knowledge, e.g., as far as we know e + 7, Euler’s constant y
and { 2n+1), n >2, could all be rational. Very recently, an ingenious
argument (see [Poo (79)]) using only continued fraction and binomial
coefficient identities has been given by Apéry which shows that { (3) is
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irrational. We will discuss here only special series which do not connect
up with the general theory at all but which seem attractive to us and where
often clever special methods are needed which usually are not available

in general.
o0

It has been known for some time (see [Er(75)]) that the sum Z o

is transcendental if n; < n, < ... is a sequence which increases rapldly
enough, e.g., lim sup #,/k' = oo for every ¢ is sufficient. As far as we know
k

the weaker condition
lim sup n/k = o
k
suffices. On the other hand, we do not know any algebraic number for
which
lim sup (#. ¢ —n) = ®©
k

but one would certainly expect that \/ 2 is such a number. In fact, perhaps

all algebraic irrationals are normal. There seems to be some hope of proving
o0

that if n, > ck? then Y > is not the root of any quadratic polynomial.
k=1

As usual, let d (n) and v (n) denote the number of divisors of n and the

number of prime factors of n, respectively. It is known [Er (48) a] that

d(n) ()

v
> T is irrational but it is very annoying that at present ), o cannot
n n

be proved irrational. This leads to several interesting conjectures, e.g.,
are there infinitely many » so that for some ¢ and every i,

v(n+i) <ci?

We just know too little about sieves to be able to handle such a question
(“we” here means not just us but the collective wisdom (?) of our poor
struggling human race).

1 1
1t is not too hard to prove that Z 25 and Z are irrational but

20()
¢()

and 2 — 1s probably hopeless to prove at

n

present (see [Er (57)]).
A few other results of this type (see [Er (58)], [Er (68)], [Op (68)],

[Op (71)]: () z — s irrational as is Z = for every k, where p, denotes
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the n'® prime; on the other hand the irrationality of Z%is probably

3
hopeless; it is known [Er-Pom (78)] that ) 2~: is irrational where ¢, = 1

if P(n+1) > P(n) and 0 if P (n+1) < P (n), and P (n) denotes the largest
prime factor of n.

.. o (n), . . _ .
() Y T is irrational for £k = 1 and 2 but this is not known for any
o on!

k > 2, where g, (n) denotes the sum of the k™ powers of the divisors of #;
(iii) Y o ! 1= Y d;l) is known to be irrational; however, neither
! ! k be irrational. Perh S L

;27_—3 nor ;n! — 2re known to be irrational. Perhaps k; 1
is irrational for any n, < n, < ... .

d(n)
a; ...a,
proved (by Erdos and Straus [Er-Str (71) b}, [Er-Str (74))) if a, > a,_,
is assumed. Perhaps there is a constant ¢ so that for infinitely
many #,

Probably is irrational if g, —» oo but this has only been

dn+i) <ci foral i>1.
This inequality would help in the irrationality proof but if true it will be
infinitely hard to prove (see [Er (75)], [Str-Sub (xx)]).

The sum ) ;T" should be irrational if -* — co. Tt can be shown that if
n " n

ay . . . .
@,1 — @, - o then Y EZ— is irrational. In fact, we know of no series
n
n

a, . . . .
Y in being rational for which

lim sup (g,,;—a,) = ®©

an . . .
but such series probably exist. The sum ) o is known to be irrational
under the stronger hypothesis that

a, >cn \/log nloglogn.

The sum Y, % where g ranges over the squarefree numbers, should be
q
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irrational but we do not see a proof at present. In considering this question
we were led to the following problems. Does the equation

t
n a

?=Z§‘;’;,t>1,

k=1

have a solution for infinitely many »n? For all n? Is there a rational x for

which
ak

=
i
MMB
B“

has two solutions?

1
If @,/>" > oo then it is not hard to show that ¥ — is irrational; the
n a"

following related concept is of some interest. Let us call a sequence a,
< a, < ..., an irrationality sequence if for all integer sequences { ¢, } with
t, > 1, the sum

1

L
is irrational. For example, the sequence a, = 22" is an irrationality sequence
whereas g, = n! is not. It would be nice to find a slowly increasing sequence
with this property. If a, is an irrationality sequence then a}/” — co. If
the g, do not increase too rapidly then for every sufficiently small « > 0
there is a suitable choice of the ¢, so that

3 1
n tnan
For example, this happens if a, < ¢" for all n.
We might call a,, a,, ... an irrationality sequence if for every sequence

1
b, with b,/a, > 1, Y b is irrational. With this definition, we do not even

n n

know if @, = 2*" is an irrationality sequence. Probably an irrationality
sequence of this type must also satisfy al/” > 0.
Another possibility would be to call g, an irrationality sequence if for

every sequence b, with [b,| < C, 3. is always irrational. In this
n

n n

case, 2°" is an irrationality sequence although we do not know about 2"
or n! Is there an irrationality sequence of this type with a, < n*? A related

1
result is the theorem of Erdés [Er (75)]: If lim sup a,/*" = o0 and } —
n n a"

is rational then for every ¢ > O there are infinitely many m with a,, < m'*2.
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We asked: If a, — oo (fast but not too fast !)) is it true that not both

1 1
Y —and ), T a can be rational? D. Cantor observed that this holds
n a’l n a

n

n
for aq, = <2>; up to now this is the most rapidly growing sequence which

has this rationality property.
If 1 is replaced by a larger constant then higher degree polynomials

can be used. For example, if p (x) = x> + 6x* + 5x then both T)
=1 pin

and ) —l—r are rational (since both p (n) and p (n) + 8 completely
n=1p(n) +38
split over the integers). Similar examples are known using polynomials
with degrees as large as 10 (see [Har-Wri (60)]). Whether there is a poly-
nomial f (x) of degree exceeding 10 so that for some m, both f (x) and
f (x) + m completely split over the integers is not known.
The following pretty conjecture is due to Stolarsky:

1
n=1an+t

cannot be rational for every positive integer ¢. Unfortunately, we could get
nowhere with this conjecture.

It is not too hard to show that if @, — oo rapidly enough then )

. K Or+y

is irrational; in fact, ;/*" > 1 + & should be enough. It would be interesting
to know what the strongest theorem of this type is. Is it true that if

an+1
2

1 .
- 1 then ) S is irrational unless a,., = a> —a, + 1 for n >n,
n n

(see [Er (68)], [Er-Str (63)])?

It has been noted that for the sequence of Fibonacci numbers F, defined
by ¥, =0, F, =1, F,,, = F,.y + F,, n >0, we have [Goo (74)],
[Hog-Bi (76)]

SERRENG

n=0 F 2n 2
However, nothing is known about the character of the related sums
> 1 1

or
n=1 F2n+1 n=0 L2n

1) Half-fast ?
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Q

where L, = F,_; + F,;y. Is it true that ) — is irrational for any
k=1 4 ny

Nyeyy
ny

. . n
sequence n; < n, < ... with > c¢ > 17 Is it enough to have Ik — 0?

1
Also, what about Y — ?

n=14%n

Let Q be a set of primes (possibly infinite) and let ¢; < a, < a; < ...
denote the set of integers all of whose prime factors belong to Q. The sum

1

ao1lem (a4, ..., a,)

turns out to be irrational if Q is infinite. What happens for finite Q (with
more than one element)?
Erdos and Straus [Er-Str (c0)] proved that if one takes all sequences of

1
integers a,, ay, ..., with Y — < oo, then the set
K A

{(x,y):x Z_l-y=2 1}

2
P v 1+ a

contains an open set. Is the same true in three (or more) dimensions, e.g.,
taking all (x, y, z) with
1 1

x=% ,y=Yi,z=%

?
t v 1+a r 2+ a

Irrationality often could be deduced if we knew more about diophantine
equations. For example, here is a typical (though somewhat artificial)
question. Set

A, =lem(1,...,n)

1
and put 4,= ( J[p)A4,Is Y i irrational ? This would follow

prime n n
p=n

immediately if we could show that

1

q* —p* <q'~
has infinitely many solutions in primes p and g.

i=1

oo n -1
It seems that series like Y. (H (n + i)) are very hard to treat,

n=1
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though they surely are irrational. However, it is known [Hansen 751,
for example, that
1

1 (2n
(7]
(-0t 14 (145
ngl <2"> _§+w10g( 2 >,
n

and so, are transcendental. Let f (1) —» oo as n — oc. Is it true that

i( I1 (n+i)>_1

n=1 \1=i=f(n)

2n
+35—/2

W =

z

n

is irrational? The answer is almost surely in the affirmative if f(nis
assumed to be nondecreasing but at present we lack methods to decide
such questions.

8. DIOPHANTINE PROBLEMS

In this section we will discuss a variety of questions which can be loosely
classified under the category of “diophantine” problems. We will not dwell
on the classical problems here; there are many excellent books available
on the subject. Rather, we will mainly discuss special or unconventional
diophantine problems which none the less appear to be not without interest.

First, let us mention that several old problems have recently finally
been settled. The first of these is the conjecture of Catalan, which asserts that
8 and 9 are the only consecutive powers. Tijdeman [Ti (76)] proved that
there do not exist two consecutive powers exceeding a large but computable
number and it seems likely that Catalan’s conjecture will be completely
proved in the near future. If 4 = { 4, < a, < ... } denotes the set of powers
then Choodnowski further claims to have proved that there is a computable
function f (n) tending to infinity with # so that a,,, — a, > f (n). There
seems little doubt that f (1) > ¢;n" but this seems hopeless at present.

The second old problem which finally succumbed (to repeated attacks
by Erdés and Selfridge [Er-Se (75)], [Er (55)]) was the conjecture that
the product of consecutive integers is never a power. It is not difficult
to prove that for any b, there are only finitely many sequences
0<a <a, <..<awitha;,; — a; < b so that a,a, ... a,is a power. It
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is known that the related binomial coefficient <Z> is never a power for k >4

n
and n > 2k. Of course <2> is a square infinitely often; Tijdeman’s methods

will probably give <g> #x', 1 >2 and <Z) = x! implies n =50, ] =2

(this is known to be the only solution for / = 2).

In the same spirit one could ask when the product of two or more
disjoint blocks of consecutive integers can be a power. For example, if
Ay, ..., A, are disjoint intervals each consisting of at least 4 integers then

perhaps the product [] ][] g is a nonzero square in only a finite
k=1 ape Ay

number of cases. Pomerance has pointed out that the product of the four
blocks of 3 consecutive integers (2"~ —1)2""1 (2" 1+ 1), 2"—1) 2" (2" + 1),
@7 1-2)(2* =1 22! and (2*"—2)(2*"—-1)2%" is the square of
23n (22n—2 — 1) (22n—1 — 1) (22n__ 1)

We now mention a few problems on the prime factors of consecutive
integers (also see [Er (75) a*] and [Er-Str (77)]). Set

A, k) = [ p*
7l

where, as usual, p denotes a prime. Mahler [see [Rid (57)]) proved that for
every fixed k and /,

1
(1) [T A(n+i,k) < n'*e
i=1

for each ¢ > 0 provided n > n, (¢, k, I). On the other hand it is easy to see
that for a certain ¢ > 0

2 Am,3)An+1,3) >cn log n

for infinitely many ». The estimate in (1) should be improved but this will
almost certainly be difficult. On the other hand, it should not be too hard
to improve (2), e.g.,

lim sup A(n,3)A(n+1,3)/n log n > .

However, the determination of the exact maximal order of
A, 3) A(nt+1,3) will no doubt be very difficult.
Let us set
fnky= min A(n,j).

l=j=k
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It is easy to see by an averaging process that
fn k) <ck.

An old conjecture of Erdds asserts that for every ¢ > O there is a k, (¢)
so that for k > k, (g)

max f (n,k)/k >0 as k> .
l=n<ow
It would be of great interest to determine the exact order (in k) of
max f (n, k)—we do not even have a plausible conjecture. It is not

l=n<w
hard to see that it tends to infinity with k.
Let B, (n) denote the quantity

B,(n) = n .
pil:

Erdss asked Mahler more than 2.5 x 10° years ago whether there are
infinitely many integers n, # + 1 with

3) By(n) =n, B,(n+1) =n +1.

Mabhler immediately observed that the answer is yes, since x2 — 8% = 1
has infinitely many solutions. However, the system

B,(n) =n, B(n+1) =n+1, B,(n+2) =n+ 2.

almost certainly has no solution. Is it true that all (or all but a finite number
of) the solutions of (3) come from Pellian equations and that the number of
n < x satisfying (3) is at most (log x)<?
Is it true that

B,(n) =n, B;(n+1) =n+17

has no solution? Is n = 8 the only solution for
B;(n) =n, B,(n+1) =n+17

(Also, see [Gol (70)] for related results).
Set

k
G(n,k) = [] B,(n+1i).
i=1

Perhaps
G(n, k) < ¢n®
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but we cannot even disprove that infinitely often

k
G(n, k) = ¢, [ (n+i)
i=1
for every k. It seems very likely that
G(n, k) <n?t®

for every k and & > 0. It would be interesting to obtain nontrivial upper
k

and lower bounds for [] B, (n+i) for r > 2. Is it true that
i=1

i
k

lim sup [[ B,(n+i)/n'** -
n i=1
for every r and & > 17 This is not even clear for r = 3.

Denote by P (n) the largest prime factor of n. Classical results state
that if f (n) is a polynomial which is not a power of a linear polynomial
then P (f (m) - o as n — oo. In particular, it is known [Mah (35)] (also
see [Kot (73)]) that

P(n(n+1)) >c log log n.

No doubt, this can be substantially improved. There are heuristic reasons
for believing that the right order of magnitude is (log #)2. Schinzel [Sch (67)a]
observed that for infinitely many »

P (I’l (n + 1)) < nc/log log logn X

Is it true that for every n > n, (¢) there are two (or more generally k)
consecutive integers less than n, all of whose prime factors are less than
n°? The answer should be affirmative but the problem seems very hard.
Similarly, one can ask if there are infinitely many # so that

Pi)<+/n, Ph+1) </n+l
or more generally,
Pn+id) <n'™®, 1 <i<k.

We know very little about this. Pomerance has pointed out that
P)>n "2 P(n41) > (nt1)e '

has solutions by density considerations.



— 70 —

In a similar vein, is it true that every n > n, (¢) can be written in the
form a + b with
P(a) <n®, P(b) <n®?

It is surprising how unexpectedly difficult the question is.
Erdés and Pomerance [Er-Pom (78)] showed that if f (6) denotes
the upper density of the set of n with

n®<PmPn+1) <n’

then f () —> 0 as 6 —» 0. Further, they show that P(n) < P(n+1)
>P(n+2), P(n)>Pn+1)<P®m+t2)and P) < P(nt+1) < P(n+2)
each have infinitely many solutions but they cannot prove the same for
P(n) > P(n+1) > P(n+2). They conjecture that the set of n with P (n)
> P (n+1) has density 1/2 but can only prove that it and its complement
each have positive upper density.

If it were known that P (n (n+ D)/log n - oo as n — oo then it would
follow that the equation

()] nt=Jla!,n>a >a,>...
i

could have only finitely many nontrivial solutions (see [Er (75) a*]). By
nontrivial here we mean that @, <{n — 2 since otherwise we can set n
= g,la,!... Hickerson conjectures that the largest nontrivial solution to (4)
is
16! = 1415121
The equation

(5 a;lay!...a! = )*
has been studied recently in [Er-Gr (76)]. Define F; by
F,={m:forsomed c{1,2,..,m} withme 4
and | 4| <k, [] a!= y?for some integer y }

acA
and set

Dy = F, — Fy4
Of course, if p is prime then p ¢ D, for any k. If for a set S = Z* we let
S (n) denote | S~ {1,2,...,n}|, then it is known that:
@) D,={n*:n>1};
(i) D3 () = o (D4 (m);
(i) Ifpe{2,3,5 7, 11} is a proper divisor of n then n € Fs;
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(iv) For almost all primes p, 13p ¢ F;
(v) The least element in Dy is 527 = 17 - 31;
(vi) D, = o for k > 6.

We still do not know the order of growth of D, (n), for example. It
seems likely that D¢ (n) > cn but this isn’t known. For other results and
questions of this type, the reader can consult [Er (75) a*], [Ec+3 (xx)],
[Ec-Eg (72)].

It was conjectured by Grimm [Gri (69)] that if n + 1,...,n + k are
consecutive composite numbers then there is a set of k distinct primes p,
so that p; | n + i, 1 <i <k.

This conjecture is certainly very deep since as observed by Erdés and
Selfridge, it would imply that there is always a prime between any two
consecutive squares. The strongest results in this direction are the results
of Ramachandra, Shorey and Tijdeman [Ram-Sh-Ti (75)]. They show that
Grimm’s conjecture holds for n > n, provided k < ¢ (log n/log log n)3.

Is it true that <2nn> is never squarefree if n > 4? It is annoying that this
problem is difficult. More generally, denote by f (n) the largest integer so
that for some prime p, p’™ divides <?;1n> The quantity f(n) should tend to
o0 as # — o0 but this is not known. It is known that # = 23 is the largest
value of n for which ail <Z) are squarefree for 0 < k < #n. On the other hand,

we cannot even disprove f (n) > ¢ log n.
It is known [Er+3 (75)] that for any two primes p and ¢, there are

2n
infinitely many » for which (( ), pq> = 1. However, for three primes we
n

2n
know almost nothing. For example, is << 2>, 105) = 1 infinitely often?
Computation of V. Vyssotsky has shown that the least odd prime factor of
2
( n> is 13 for n = 3160 and at most 11 for 3160 < n < 10°°. This has been
n

extended to 5.3 x 10!°° by Kimble [Ki (79)]. If we set

1
fmy =% -

wr()?

p=n
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then we cannot decide if f (n) is unbounded. We have shown [Er+3 (75)]
that

limlzx:f(n)= >

X =00

and
N A 2
lim - 37 f2(n) = 7
x—m X n-1
so that for all but o (n) integers m <(n, f (m) = y, + o (1).
It seems likely that the density of integers n for which <Z> is squarefree
for at least r values of k, 1 <Ck <{n — 1, has a density ¢, > 0 and that

Y ¢, = 1. We can prove that for k fixed and large, the density of
r=0

n
such that <k> is squarefree is less than g, where g, — 0 as k —» 0. Also,

n
there exist infinitely many » such that <k> , 1 <k <mn— 1, is never squa-
refree. Probably their density is positive.
n
For given n, let s (n) denote the largest integer such that for some k, <k>

is divisible by the s (n)™ power of a prime. It is easy to see that s (n) -
as n — co. In fact it is not hard to show that s (n) > ¢ log n, which is the
right order of magnitude. However, if S(n) denotes the largest integer

so that for all k, 1 <k < n, (Z) is divisible by the S (n)™ power of some

prime, then it is quite likely that lim sup S (n) = co although this is not
known at present.
It is probably true that

P <<Z>) > max {n -k, k'*¢)

but this seems very deep (cf. [Ram (70)], [Ram (71)]). It is not hard to

prove
n
p ((k)) > ck log k.
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For k'**® < n it should be true that

ROES

Let us abbreviate [] (u+i) by n (4, v). An integer n is called bad

if it belongs to some interval u <(n < v so that the greatest prime factor
P(n (u, v)) occurs in = (u,v) with an exponent greater than 1 (see [Er-
Gr (76)] for applications of this concept). Let B (x) denote the number
of bad integers not exceeding x. Is it true that B (x) is asymptotic to B’ (x),
the number of integers n < x for which P (n)* | n? It can be shown that

x
exp ((c+0(1)) (log x loglog x)!/?)

B (x) =

We only know that B (x) > x' ¢ for any & > 0. An integer  is called very
bad if for some u and v, with u <n < v, n (4, v) is powerful, i.e., p | 7 (u, v)
implies p? |n (u, v). The number of very bad numbers less than x should
be less than cx!/? and, in fact, probably is asymptotic to the number of
powerful numbers less than x but this is not known.

As we noted earlier, n (n+ 1) is powerful for infinitely many n. Erdés
and Selfridge have conjectured that the product of more than two conse-
cutive numbers is never powerful.

If P(n (u,v))* | @ (1, v) then v — u must be relatively small. It follows
from results of Ramachandra that it is at most v!/2~¢ but no doubt it is in
fact bounded by v° for every ¢ > 0. Certainly it can be arbitrarily large
although this has not been proved. Is it true that for every k there are
infinitely many values of p such that

P <ilj)(p2+i)> =p?

If p(x) denotes the least prime factor of x then Ecklund [Ec (69)]

proved that
n n
p < —for k>1
k 2

7
3>> = 5, thus settling a conjecture

of Erdos and Selfridge. They also conjectured that

with the unique exception of p <<
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n n 2.
p<<k>> <kforn>k,
they have proved that
p((" cn
<<k>> N

F(n) = max (m+p(m).
m;&n:r’;me

Define F (n) by

Is F(n) > nforn > ny? Does F(n) —n— o0 asn — o0 ?

n
Can <k> be the product of consecutive primes infinitely often? For

21
( > =2-3-5-7.
2

n
A proof that this cannot happen infinitely often for <2> seems hopeless;

example,

’

probably this can never happen for <Z> if3<k<<n—3.

n
Erdds once conjectured that <k> always has a divisor of the form n — i

for some i < k. This was disproved by Schinzel and Erdds (see [Sch (58)]
where further problems of this type are stated). Is it true that there is an

n .. .
absolute constant ¢ so that <k> always has a divisor in (cn, n)?

Can one classify all solutions of

k1 k2

[T (my+i) = [T (my+d

i=1 i=1

where 1 < k; < k, and m; + k; <<m,? Perhaps there are only finitely
many solutions. More generally, if k; > 2 then for fixed g and b

k1 ko
i=1 i=1

should have only a finite number of solutions. What if one just requires

k1 kg
that ] (m;+i) and [] (m,+i) have the same prime factors (say,
i=1 i=1

with k, =k,)?
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Erdos and Straus recently raised the following question: Is it true that
for every n there is a k so that

k k
[MT@+d| ] p+k+i)?
i=1 i=1

For example, for n = 2 one can choose k = 4:

3-4-5-6]7-8-9-10.

No example is known for » > 10.
Write

6) n! =m+iy) (n+iy)...(n+i), 0 <iy < ... <i,
where k is variable. Erdds and Selfridge [Er-Se (xx)] have shown that
min i, = n + cnflogn

which is in fact the right order of magnitude. However, the exact value
of ¢ is not known. We know that the largest value of &k in (6) is

2n log 2 n
n————+o0 .
log n logn

n
t(n)=max{a1:n! = [] a;, a1<a2<...<an}.

Define ¢ (n) by

i=1

It has recently be shown by Erdés, Selfridge and Straus (unpublished)
that

.t 1
lim — = -
n— oo n e
n n
Can t{p) = - — P ? Similar results for the case that the a; are prime
e logn

powers have been obtained by Alladi and Grinstead [Al-Gri (77)].
It can be shown that the least value A (n) of ¢ for which n! can be writ-
ten as
n! =aa,.. q

where a, <n, 1 <k <, satisfies

n n
Am) =n — +o0 >
logn log n
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(A proof can be based on a “greedy” decomposition of n!, i.e., try to use
n as often as possible, then try n — 1 as often as possible, etc.). It is not
known how long this remains valid if we relax the constraints on the a.
For example, suppose we only require a, <n f (n). In particular, what is
the situation when f (1) = n? In this case is it true that

A(n) n n . no
n) = - — 0 ?
2 2logn log n

Another question: Write

n!=aa,..q,, a, <..<a,
to minimize
a, — a4

(for fixed ¢ or variable 7). We do not even know that this cannot be one
infinitely often.
Let ¢, (n) denote the least integer m for which

k
[T (m+i) =0 (mod n).
i=1

Erdds conjectured and R. R. Hall proved that

1 X
=2 t,(m) -0
X n=1

but this has

(log x)*
X

1
as x — 00. Probably the factor - can be replaced by
X

not yet been proved.
An old conjecture of Erdds asserts that if x + n <y then

lem(x+1,..,x+n) #lem(y +1, ...,y +n).

It follows from the Thue-Siegel theorem that for # fixed, lem (x +1, ..., x+ n)
= lem (y+1, ..., y+n) has only finitely many solutions in x and V.
Can one show that for every k there is an n so that

2

2
> but occurrences of n dividing < n>
n

(n—1)

k
i=0

2
Of course, (n+1) always divides< "
n
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are quite rare. Are there only finitely many solutions to

nin) = ()

where the m; and #; are distinct?
An old conjecture states that the only solutions of

n!=x*-1
are n = 4, 5,7. This is almost certainly true but it is intractable at present.
Erdés and Oblath [Er-Ob (37)] proved that
n! =x"+y (x,y) =1,k >2

has no solutions if & # 4; Pollack and Shapiro [Pol-Sh (73)] showed that
it also has no solutions if ¥ = 4. It would be interesting to be able to drop
the condition (x, y) = 1 but unfortunately, the known methods break
down. It is annoying that we cannot even show that for all k there is an 7,
so that in the prime decomposition of n,!,

n ! =232  pir,
all the o;, 1 <{i <k, are even.

!

It is easy to show that if ' is an integer then we must have

a;la,!
a; +a, <n+clogn

(although the best value of ¢ is not known). For a fixed %, define g, (n)
to be the largest integer so that for some a; with

ntg.n)=a +..+a,

n!

is an integer .
a,!...a;!

Again, it is easy to show that g, (n) < ¢, log n although the best value of
¢, is unknown. Can one show that

Y gx(m)/x log x —» ¢, ?
n=1
In fact, it is no doubt true that
gr(n) = ¢, log x + o (log x)

for almost all n < x but we have not proved this.
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If we disregard the small primes then the situation probably changes.
For example, is it true that we can find a4, + a, > n + d, logn with
d, —» oo as r - oo so that

n ., 1n n
n!2"-3" ..p,
a,la,!

is an integer?

The following conjecture (which arose in connection with certain
generalizations of van der Waerden’s theorem on arithmetic progressions)
has attracted some attention during the past 10 years.

Conjecture (Graham [Gr (70)]). For any set 4 of n positive integers,

a
(7N max —>n
a,a’'ed (aa a )

We can assume without loss of generality that g.c.d. {a:aed} = 1.
It was then furthermore conjectured that the only sets satisfying (7) with
equality are:

G {1,2.,n};
@) {L/1,L/2,..,L/n} where L =1lecm {1,2,..,n};
(i) {2,3,4,6}.

It is known at present that (7) holds when:

(a) All a e A are squarefree. In this case (7) is equivalent to the set-theoretic
result of Marica and Schonheim [Mar-Sch (69)] that for any family of
distinct sets A, ..., 4,, there are at least » distinct differences
A; — A;. This was subsequently generalized in several ways (see [Mar
(711, [Er-Sc(69)]). In particular, Daykin and Lovasz [Day-Lo (76)]
proved that the number of values taken by any nontrivial Boolean
function is not less than the number of sets over which it is evaluated.

(b) min a is prime [Win (70)];

acA
(c) nis prime [Sz (3)];
(d) n — 1 is prime [VE (77)];

(e) For some prime p > n, p ] a for some ae A [Vé (77)];

n—1
(f) For some prime p > 5 P | a for some a e A [Boy (78)];
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(&) n = p* for a prime p [Boy (78)];

1
(h) Some a € A4 is prime where a # 3 (@’ +a"), a', a” distinct elements of A
[Weins (77)];
(i) Some ae 4 is prime [Che (xx)], [Pom (78)];

(j) min ais p, p* or p* [Pom (78)];
acd

(k) n <92 [Che (xx)].

One approach to proving (7) would be to show that the set of values

a

{ﬁ ta,a eA} has at least » elements. Frdos and Szemerédi noted
a,a

that this is not true by constructing examples for which the set of values

has less than n'~¢ elements. However, they showed it must have at least

n¢" elements for some ¢’ > 0.

P. Frankl asked if the equation
Y (n+i)! = k2
i=0
has only finitely many solutions. He showed that by prime number theory

it follows that r > c¢n/log n. Burr and Erdds then asked whether

Zai! =2m, al <a2<...
13

has only finitely many solutions. The largest one seemed to be
27 =21 431 +5¢1,

This was proved to be the largest solution by Frankl [Frank (76)] and
independently, by S. Lin. In fact, Lin [Lin (76)] showed somewhat unexpec-
tedly that the largest power of 2 which can divide a sum of distinct factorials
containing 2 is 2%°*, More generally, if

r [ l(a1!+a2!+...+ak!), a; <. <a,

is there a bound f (ay, p) for « (where, as usual, p* | | n means that p*
is the largest power of p dividing n). Conceivably, the answer could depend
on a; and p. Is there a p and an infinite sequence ¢, < @, < ... so that

k
Pak” Y, a;!
i=1
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and o, —» oo as k — o0 ? Lin also showed that the only solutions to

Zai! = 3k
are: l
1V =3, 11 42! =3, 11 42! 431 =32, 11 +2! +4! =33,
1! 4+21 431 +6! = 3%,
Is it true that the equation
(p=1D!+a?t = p*

has only a finite number of solutions (where p is prime). No doubt (p—1) !
+ a?~', a > 1, is rarely a power although 6 ! + 26 = 282 and there may
be other solutions.

Is it true that

=Y g3, =00r1,
has only finitely many solutions? 4 = 3 + 1 and 256 = 3° + 32 + 3 + 1
seem to be the only ones. For the analogous question in which only g;
= 1 or 2 is allowed, is 15 the largest value of # in this case?

Finally, we mention a conjecture of D. J. Newman which illustrates
our general ignorance in these matters. If w(n) denotes the number of
solutions of

n =243 423,

is it true that w (n) is bounded?

9. MISCELLANEOUS PROBLEMS

In this section we will discuss a number of problems which for the most
part are even more unconventional than those mentioned up to now. To
begin with, we consider some unconventional iteration problems. With
¢ (n) = ¢, (n) denoting the ordinary Euler ¢-function, define ¢, (1) to be
¢ (¢r_1 () for k > 2. The function f (1) defined by

f() =min{k:¢,(n) =1}
was first investigated by Pillai [Pil (33)]. He proved

logn logn

< <
log 3 @ log 2
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for n large. H. N. Shapiro [Shap (43)], [Shap (50)] proved that f (n) is
essentially multiplicative. An old (and still unresolved) problem of Erdos
asks whether or not f (n)/log n has a distribution function. Is it possible
that f (n)/log n is almost always constant? What can be said about the
largest prime factor P (¢, (n)) of ¢, (n), e.g., where k = log log n? Pre-
sumably we can have k — oo as slowly as we please and have for any
¢ > 0 and almost all n, P (¢, (n)) = o (n).

A curious problem of Finucane asks: How many iterations of n — ¢ (n)
+ 1 are needed before a prime is reached? Can it happen that infinitely -
many n reach the same prime p? What is the density of # which reach p?

One can modify the problem and consider the transformation n — o (n)
— 1. Is it true that iterates of this always eventually reach a prime? If so,
how soon? Of course, nothing can be proved here but one does seem to
reach a prime surprisingly soon. Weintraub [Weint (78)] has found that for
n < 10°, a prime is always reached in fewer than 50 iterations.

If 6, (n) = o (n) and o, (n) = o (04—, (W) for k >2, is lim o, (n)'/*
= 00? k

Let g(m) =n+ ¢ () =g,(m and g, (n) = g (g,—, (0) for k >2.
For which n is g, ., (n) = 2 g, (n) for all (large) £? The known solutions to
Gr+2 (M) = 2 g, (n) are n = 10 and n = 94. Selfridge and Weintraub both
found solutions to g, ;¢ () = 9¢, (») (all n found were even) and Weintraub
also discovered

Grs2s (3114) = 7299, (3114), k> 6.

We know of no general rules for forming such examples.

In the 1950’s van Wijngaarden raised the following problem: Set o, (1)
=ag(n), o6,(n) = 6 (0p—, (m), k >2. Is it true that there is essentially
only one sequence { o, (n) }, i.e., for every m and n, o, (m) = o;(n) for
some i and j. Selfridge informs us that numerical evidence seems to suggest
that this is incorrect. It seems unlikely that anything can be proved about
this in the near future.

In view of this situation, Erdoés considered iterates of the function
S (n) = n + v (n) where v (n) denotes the number of prime factors of n.
Here it is overwhelmingly probable that there is essentially only one sequence
{ fi ) }. This would follow immediately if one could prove that v (n)
has infinitely many “barriers”, i.e., integers n so that for all m < n,
m + v (m) < n. This could be attacked by sieve methods but at present these
methods are not strong enough. In fact, it does not even seem to be possible
to prove the much weaker assertion that for some & > 0, there are infinitely
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many n such that m + gv (m) < n for all m < n. For earlier work on
similar questions, see [Stol (76) b] (especially the references).

Very recently, C. Spiro [Spi(77)] independently raised the following
related question. If we iterate the function A (n) = n + d(n), ie., Ay (n)
=h®), h () = h(h_, (m), k >2 (where as usual d(n) denotes the
number of divisors of #) then is there essentially only one sequence { A, (n) }?
The answer seems certain to be yes, although here the existence of barriers
is much more doubtful. Erd6s and Selfridge convinced themselves that if
there is a barrier exceeding 24 then it must be extremely large. Spiro also
conjectured that if g =n—-—dm =g, M), ¢g.®M = g._1 () +
(—1)*d(gy-1 (), k >2, then {g,(n)} must cycle. Of course, these
questions can also be asked about many other functions besides d ().

Consider the k consecutive values ¢ (u+1), ¢ (u+2),..., ¢ W+k)
where k <<u + k < n. If we order these k numbers by size then it was
proved by Erdos (see [Er (36) a]) that for k& small, all possible k! permuta-
tions occur and, in fact, every permutation has a density. The same result
also holds for ¢ (m), d (m), v (m) and in fact for all decent additive or
multiplicative functions. For k& < ¢, log log log n, all permutations occur
but this is not true for k > ¢, log log log n. It seems likely that with a
little effort one could prove that this holds for & = clogloglogn +
o (log log log n) (or perhaps even with an error term of O (1)). What is the
permutation which first fails to appear? Is it ¢ (u+1) > ¢ (u+2) > ...
> ¢ (u+k)? Is it true that the “natural” order, i.e., the order of ¢ (1),
¢ (2), ..., ¢ (k) is the most likely.

Denote by g (x) the number of n < x for which ¢ (m) = #n is solvable.
The fact that ¢ (x) = o (x) was first proved by Pillai [Pil (29)] (also see
[Er (35) c]). The sharpest results currently known (due to Erdés and Hall
[Er-Ha (76)]) are:

X X

exp (c(logloglog x)%) < ¢ (x) <
log x log x

exp (c\/log log x)

Does g (2x)/ g (x) — 2? An asymptotic formula for ¢ (x) may not exist.
Let ¢’ (x) denote the number of distinct integers in the set

{dm):m<x}.

g (x)

Of course, ¢’ (x) < g (x). Does lim ( )exist? Does it exceed 17
x 94X

It was shown [Er (73)] several years ago that the density of integers
not of the form o (n) — » is positive. It is very annoying that we cannot
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show that o (m) = ¢ () has infinitely many solutions, especially since
o (m) = T and ¢ (n) = T are both likely to be solvable when 7 has many
prime factors.

It was asked by Erdds and Sierpiniski whether there are infinitely many
integers not of the form n — ¢ (n). If the Goldbach conjecture is valid then
every odd number is of this form. What is the situation for even numbers?

With d (n) denoting the number of divisors of n, it can be shown that
d((n+1) )]

the set of limit points of
d(nl)

contains {1 + 1/k, k = 1, 2, b

d 2)!
This also belongs to the set of limit points of the quantities ((:;(;'))) .
n!

However, we cannot show that there aren’t additional limit points as well.
It is easy to show that

d !
((n+[/mDY
d(n!)
and, in fact, the term \/ n can be replaced by n* ~° for a suitable (small)
& > 0. No doubt it is true that

d((n+[(og n)] Nid(n!) - oo
for large a. Probably
d((n +[log n]) N/d (n?)
is everywhere dense in (I, o0) but of course we cannot prove this. More
generally, is it true that if 1, <7, <..,?, - o0 and 7, < log n then

d((n+t,) )/d (n)
is everywhere dense?
The following problems were recently raised by Hofstadter [Hofs (77)].

(i) Define f (n) as follows:

fO=52 =1,
S =f(n—fm-1) +f(n=f(n-2), n>2.
Does f (n) miss infinitely many integers? What is its behavior in
general ?

(ii) Define a sequence A4 of integers ay, a,, ... by starting with a, = 1,
a, = 2 and thereafter choosing g, to be the least integer exceeding
a;-; which can be represented as the sum of at least two consecutive
terms of the sequence. Thus, 4 begins 1,2, 3, 5, 6, 8, 10, 11, ... . What
is the asymptotic behavior of A4?
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(iii) Define a sequence B of integers by, b,, ... as follows. Begin by taking
b, = 1, b, = 2. In general, if by, ..., b, have been defined, form all
possible expressions b;b; — 1, i # j, and append these to the sequence.
B starts with 2, 3, 5,9, 14, 17, 26, 27, 33, 41, ... . Is it true that B has
asymptotic density 1?

Is there a sequence 1 < d; < d, < ... with density one so that all the

v
products [] d; are distinct?

i=u
Leta, < a, < ... < a, < x be a sequence of integers so that the products
a;a; are all distinct and let f (x) denote the maximum value of k for which
this is possible. It has been shown by Erdds [Er (69) b] that there are positive
constants ¢;, ¢, such that

(*) n(x) + ¢x34(log x)*? < f (x) < m(x) + cx>*/(log x)*/% .
It is certain that there is a ¢ for which

f ) =) + (c+0(1))x**/(logx)*

but this has never been proved.

There are numerous problems of this type dealt with in the literature, so
we do not pursue these any further except to mention a surprising develop-
ment due to R. Alexander which recently occurred. It has often been
observed that many extremal problems in number theory can be formulated
just as well for reals instead of only integers. However, these more general
formulations have only rarely been successfully attacked. For example,
suppose F (x) is defined to be the largest integer m for which there exists a
sequence of reals 1 <oy < oy < ..., < x so that for all choices of
indices i, j, 1, S,

‘aiocj —cx,,ocsl >1.

It was suspected for a while that F (x) would also satisfy (*). However, no
one was even able to prove that F(x) = o (x). The reason for this lack of
success is now apparent from Alexander’s proof that F (x) > x/8e. Alexan-

der’s ingenious construction uses perfect difference sets and is described in
[Er (xx) a*].

cx
Can we find i integers aq; < a, < ... < x so that every m < x
og X
can be written as m = a; + 2/ for some i and j ? Ruzsa [Ru (72)] has shown
cx loglog x )
that — —= =" such integers can be found.

log x
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Is it true that for every n and d there is a k for which

Pn+1 + ..o+ DPu+r = 0 (mOd d)’

where p, denotes the ™ prime?
We can show (assuming the prime k-tuple conjecture) that there is a set

X
A = {a; <a, <..}sothatlim sup ) — 1 and for infinitely many n,

N 7 (x

all the integers » — a;, 0 < a; < n, are primes. Does this remain true if
A(x

lim inf (( )) > 0 is assumed ? It is known [Coh-Se (75)] that for infinitely
< T(x

many n, n + 2* is always composite and that infinitely many odd integers
are not of the form p + 2*. All such proofs which we know of work because
there is already a finite set of primes which force these numbers to be com-
posite. Isit possible to prove theorems of the following type: Ifa;, < a, < ...
tends to infinity rapidly enough and does not cover all residue classes
(mod p) for any prime p then for some n, #n + a; is prime for all i ? In the
other direction—if the @, do not increase too rapidly then is it true for
some n, n + a; represents all (or almost all) large numbers provided no
covering congruence intervenes.

Suppose for a fixed integer n we define a sequence a, ay, ..., a,, by
letting @, = 1 and for k& > 2, defining g, to be the least integer exceeding
a_, for which all prime factors of n — @, > 0 are greater than a,. Is it
true that for n sufficiently large, not all the quantities » — a, can be prime?
Preliminary calculations made by Selfridge indicate that this is the case
but no proof is in sight.

The following very nice problem is due to Ostmann. Are there two
infinite sets 4 and B so that the sum 4 + B differs from the set of primes
by only finitely many elements? Straus modified the problem by asking
how dense 4 + B can be if we assume all the elements of 4 + B are just
pairwise relatively prime. A related old problem: If S has positive lower
density, do there always exist infinite sets 4 and B such that 4 + B = §?

For integers n and ¢, define g (n, ) by

g(n,t) = max G(ay,...,a,)

a;
where 0 < a; < ... < a, <t, ged (ay, ..., a,) = 1 and G (ay, ..., a,) denotes
n
the greatest integer which cannot be expressed as ), x.a, for any choice
k=1

of nonnegative integers x;. The function G was introduced by Frobenius
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and has been the subject of several dozen papers during the past 10-20 years
(see [Er-Gr (72) a], [Bra-Sh (62)], [Jo (60)], [By (74)], [By (75)], [Selm (77)],
[Selm-Be (78)], [R& (78)]). A recent result of the authors [Er-Gr (72) a]
proved

a

G(ay,.ra,) < 2a,_, [ ":I -a,.

n

It follows from this that
g(n, ) < 2n.

On the other hand, it is not hard to construct examples showing that

2

g(n,t) > 1—5tforn>2.

1t is known [Bra (42)] that

g2, =0¢-1)(@-2) -1

—7)2
g(3,t)=|:(t 2):|—1.

and [Lew (72)]

Is it true that
2

t
nt)~ ——?
gm0~ —
Selmer [Selm (77)] very recently has shown under the additional require-
ment a; > n that

a
G(al) eeey an) < 2an—1 I:—_l:l —4ag.
n

For what choice of k positive integers a; < a, < ... < @, <n is the
number of integers not of the form )’ ¢;a; maximal, where the ¢; range

i
over all nonnegative integers? Is the choice a; = n — i optimal for this?

A related question: For n # p% what is the largest integer not of the

n—1

form ) ¢, (;) where the c; are nonnegative integers?
i=1

The function 4 (k, m) was introduced by D. H. and Emma Lehmer
[Leh-Leh (62)] some 15 years ago as follows. For a sufficiently large prime p,
let r = r(k, m, p) denote the least positive integer such that

r,r+1,..,r4+m-—1
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are all k™ power residues modulo p. Define

Ak, m) = lim sup r(k, m, p).

P

It is known that
A(2,2) =9, A(3,2) =177, A(4,2) = 1224,
A(5,2) = 7888, A(6,2) = 202124, A(7,2) = 1649375
A(3,3) = 23532,
Ak, 3)

oo for all even k,
and

A(k,4) = oo for all k

(see [Du (65)], [Mil (65)], [Bri-Leh-Leh (64)], [Leh-Leh-Mi (63)], [Leh + 3 (62)],
[Gr (64) c]. Is it true that A (k, 2) < oo for all k and A (k,3) < oo for
all odd £? If so what are estimates for their values?

Consider a sequence 1 <a; < a, < ... < g, <x and look at the
partial products a,, a,a,, ..., a,a, ... a,. How many of these products (as
a function of x) can be squares? It is trivially o (x) but probably there can
be many more than x'/2. Perhaps for any ¢ > 0 there can actually be more
than x1¢,

How large can 4 = {ay, ..., 4.} < [l,n] be so that no sum a; + g;
is a square? The integers in [1, n] which are = 1 (mod 3) show that k can
be as large as n/3. However, k can actually be significantly larger than this
(see Added in proof p. 107).

If we form a graph G with positive integers as its vertices and edges
{i,j}ifi + jis a square then Erdds and D. Silverman asked: Is the chroma-
tic number of G equal to N,? What if i + j is required to be a k" power?

Let a; < a, < ... be an infinite sequence of integers and denote by
A (x) the number of indices i for which lem (a;, a;4 ;) < x. It seems likely
that 4 (x) = O (x'/?). It is easy to give a sequence with lim sup ‘i_l(/’? =
A (x)

How large can lim inf Y

be (see [Er-Sz (xx)a])?

A related old problem of Erdds asks for the largest value of k for which
there exists a sequence a; < ... < g, so that lem (a;, a;) < x for all i and ;.
It is conjectured that this maximum value is attained by choosing the
sequence consisting of the integers in [1,\/n/2] together with the even

integers in [\/ fTZ, \/ :7;1?
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Is it true that if a; < a, < ... is a sequence of integers satisfying

1 1
[ — = 0
IOgIOgX a; <x ai

I R v
— [y ?
a;<x a; l<a;<aj=x lem (ai’ aj) *

Let m and n be positive integers and consider the two sets {k (m—k) :

then

1 <k <%} and {l m-D:1<IKL g} . Can one estimate the number of

integers common to both? Is this number unbounded ? It should certainly
be less than (mn)® for every ¢ > 0 if mn is sufficiently large.

Let a, < a, < ... be an infinite sequence of integers and let d, (1)
denote the number of a; which are divisors of n. Erdds and Sarkdzy
[Er-Sa (xx)] proved

i dy(n)
im sup max =

n—roo n<x

ai<xai

The proof is surprisingly tricky. Probably it is true that

1 -k
lim sup max dA(n)< > —> = 00

n—o i<x a;
for every k but we cannot prove this.

Let x4, x;, ..., x, be n distinct integers. We conjecture that the total
number of integers of the form x; + x; and x,x;, 1 <i < j <n, is greater
than n*>~°. Szemerédi [Sz (+)] has very recently proved that the number
exceeds n'*¢ for some ¢ > 0.

Erd6s and Szemerédi observed that it follows from a theorem of Freiman
[Fre (73)] that this number must grow faster than cn for any c; the first n
integers show that it is bounded above by n?/(log n)* for some o > 0.
In fact, it has recently been proved [Er-Sz (xx) b] that it is bounded above
by n?/eoen/loeloen Perhaps this is essentially the right order of magnitude.

n

The same question can be asked for all 2" sums ) e,x; and products
i=1
&y

n
IT xfi & = 0 or 1. In this case we expect to have more than n° integers
i=1

for any ¢ provided n > n(c). Examples can be constructed which only
generate n°'°¢" sums and products.
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Is it true that for every ¢ > 1/2, if p is a sufficiently large prime then the
interval (u, u+ p°) contains two integers a and b satisfying ab = 1 (mod p)?
A theorem of Heilbronn [He (c0)] guarantees this for ¢ sufficiently close to 1.

Denote by ¢, the density of integers having a divisor in (n, 2n).
It was shown long ago [Er(35)a] that ¢, < (logn)~® and Tenenbaum
[Ten (75/76)] has more recently shown that g, = (log n)~ (12U where
a =1 — (1+loglog2)/log 2 = 0.08607...; however no asymptotic formula
for ¢, is currently available. If ¢, denotes the density of integers having
exactly one divisor in (n, 2n), is it true that e,/e, — 07 Is there a § so that
for every x > n there is an me(x, x+(log n)") which has a divisor in
(n, 2n)?

An old conjecture of Erdés asserts: Almost all integers n have two
divisors dy and d, with d; < d, < 2d,. A stronger form of this conjecture is
the following: Let 7 () denote the number of divisors of »n and let t* (n)
denote the number of integers k for which # has a divisor d with 2 < d
< 2¥%1 s it true that for all &€ > 0, t* (n) < et (n) for almost all n? At

present there is no good inequality known for ) % (n). A very recent
n=1
problem of Erd6s and Hall asks to show that r (1), the number of pairs of
divisors dy, d, of n satisfying d, < d, < 2d,, satisfies for every ¢ > 0,
r (n) < et (n) for almost all n.
How large must y = y (¢, n) be so that the number of integers in
(x, x+ y) having a divisor in (n, 2#n) is less than gy ?
k
Let n, denote the smallest integer for which []| (n,—i) has no prime
i=1
factor in (k, 2k). We can prove n, > k'™ but no doubt much more is true.
Let 1 =a <a,<..<ag, =n—1 be the integers relatively

prime to » and let F (n) denote max (a,. ; —a,). Erdds [Er (62) b] has shown
k

that almost all n satisfy

nloglogn

F(n) = (1+0(1) —
( ) ¢ (n)

Of course, F (n) can be much larger than this for some n. It is true that if

G (n)/F (n) —» co then for almost all # every interval of length G (1) contains

(1+0 (1) G () — ~
¢ (n)

a;’s. An old conjecture of Erdos asserts:

é(n)—1 n2
Z (ape1—a)? <c
k=1

¢ (n)
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for an absolute constant c. It is surprising this is still open. Hooley [Hoo (62)],
[Hoo (65) a], [Hoo (65) b] has proved somewhat weaker results. It shouldn’t
be difficult to prove

x p(n)—1
) ( > (“k+1_ak)2) <ex?.
n=1 k=1
It is known [Er (37)] that the density of integers n with v (n) > log log n
is 1/2 (where v (n) denotes the number of distinct prime factors of n). It
is easy to see by the Chinese remainder theorem that there are at least
log x L . : :
t=(l+o (1)) —————; consecutive integers n + i, 1 <i<t, with
(log log x)
v (n+i) > loglog x. However, we have no upper bound for this, i.e.,

log x
as far as we know ——g—2 could be (log x)* or even more.
(log log x)
Recently, Pomerance [Pom (xx) b] disproved a conjecture of Erdds and
Straus by showing that for infinitely many n and every i < n,

M Pﬁ > Pn+iPn—i

where p, denotes the k'™ prime. In fact, he proves this holds for any increas-
ing sequence a, with a,/" —» 1. No doubt the density of # satisfying (1) is

zero but this has not yet been proved. Pomerance also conjectured

1
lim sup — <p3.— max p,.+,-p,.-,-> >0;
he can only prove

1
lim sup ——— ( p2— max p,.;p,_; > 1.
p(]og n)z <p p +p >/

n n

If f (n) denotes min (p,,;+ p,_;), is it true that

lim sup (f (n)—2p,) = o ?

Pomerance has proved that the lim sup is at least 2. He has also recently
proved the nice (but unrelated) result that if the counting function A4 (x)
of a set A = Z* satisfies 4 (x) = o (x) then 4 (n) divides n for infinitely
many #. In particular, this implies that = (1) divides » infinitely often
(see [Mz (77))).

Let g, < g, < ... be a sequence of primes satisfying

dn+1 — 4n > dn — 9n-1 -



_ 9] —
In [Ric (76)], Richter proves that

lim inf 2% > 0.

n N
Is it true that the limit is actually infinite ?

Let s, denote the smallest prime = 1 (mod n) and let m, denote the
smallest integer with ¢ (m,) = 0 (mod n). Is it true that for almost all
n, s, > m,? Does s,/m, — co for almost all n? Are there infinitely many

primes p such that p — 1 is the only n for which m, = p?
k

Let g (n, k) be the smallest prime which does not divide H (n+i).
Is it true that infinitely often

g(n,logn) > (2+¢)logn?

Denote by 4, the least common multiple of the integers { 1,2, ..., n}
and let p, denote the k™ prime. Almost certainly

Appi1-1 < DAy,

must hold for every k but the proof of this is certainly beyond our ability,
in fact, for two reasons (at least). First of all there could be many squares
of primes g* with p, < g% < p, .. The proof that one could not have two
such ¢ would follow from p,,, — p, < pi/?. The small primes also cause
intractable trouble. In fact, if 4, denotes the least common multiple of the
numbers p* < n with o > 2 then

seems extremely unlikely to us.

Given u, let v = f (u) be the largest integer such that no me (u, v)
is composed entirely of primes dividing wv. Estimate f (u).

The following question arose in work of Eggleton, Erdds and Selfridge
[Eg-Er-Se (xx)]. Define aq, ay, a,, ... by: ay = n, a; = 1, a, is the least
integer exceeding g,_, for which (n—a, n—a;) = 1, 1 <i < k. Set

1
g(")=Z;=ZI+ZZ

wherein ), p (n— a;) > a; (where p (¢) denotes the least prime factor of £).
Does g (1) - 0 ? Does Y ; — o0 ? Does ), — 0 ?

Setn + i = a;b;, 1 <i<t, where all prime factors of a; are less than ¢
and all prime factors of b, are greater than or equal to ¢. Denote by f (n, t)
the number of distinct a;’s. Is there an ¢ > 0 so that
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min f (n, )/t > ¢?
We can only show '

t
Fn> .
log ¢

With p (n) denoting the least prime factor of #, it is €asy to see that

p(n) x'/?
— = )y ——.
R O Y
n * prime
Is it true that
v p(n) o o
n

where n ranges over all integers in [x, x+cx'/? (log x)?]?

Given c, is it true that for n > n, (c) there is always a composite number
m > n + ¢ for which m — p (m) < n?

With p, denoting the k™ prime, let d, = p,,,; — p.. No doubt for r
consecutive d;’s, all possible orderings occur (asymptotically with equal
probability 7). However, we cannot even exclude the possibility that from a
certain point on,

dp >dpiys dpyy >dpyy .

The sets of integers n for which ¢ (n+1) > ¢ (n), 6 (n+1) > ¢ (n) and
d(n+1) > d(n) all have density 1/2. However, the problem of whether the
density of {n :P(n+1) > P(n)} is 1/2 (where P (n) is the largest prime
factor of n) seems very hard (see [Er-Pom (78)]).

a
Let a, < a, < ... satisfy —* >¢ > 1 for all k. It has very recently
ag

been shown that there is an irrational o so that { ga—[aq]: k = 1,2, ... }
is not everywhere dense (settling an old conjecture of Erdos). In fact every
interval contains ¢ (the cardinality of the continuum) such o’s. A theorem of
Erdés and Taylor [Er-Ta (57)] states that the set of a’s for which
{aqo — [g]: k = 1,2, ...} is not uniformly distributed has Hausdorff
dimension 1.

For the real number x, let || x || denote the distance from x to the
nearest integer. For points P and @ in the plane, we denote the (Euclidean)
distance between P and Q by d (P, Q). Finally, for fixed X > 0 and 6
€(0, 1/2), let N (X, 6) denote the maximum number of points Py, P,, ..., P,
which can be chosen in a circle of radius X so that

[|dP,P)|| =6 for 1<i<j<n.
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Erd6s conjectured that for any 6 € (0, 1/2),
N(X,0) = o(X),
and, on the other hand, there is a d; > O so that

lim N (X, 8y) = oo .

The first conjecture was proved by Sarkozy [Sar (xx) a] who showed

4 x10% X

NX,0) <
X, 9) 6° loglogX

for X sufficiently large. The second conjecture was proved by Graham
[Gr (o0)] who showed

1
N(X,1/10) > log X .

This was substantially improved by Sarkozy [Sar (xx) b] who showed
that for an absolute constant c,

N (X, 1/10) > X°.
In fact, Sarkdzy shows that for all ¢ > 0, if 5 < (¢) then
N(X,8) > x'/>~=

for X sufficiently large. There is still a fairly wide gap between the upper
and lower bounds. Is it true that for any ¢ > 0,

N(X,8) < x1/2+e
for X sufficiently large? Unfortunately, we do not even see how to show

N(X,8) < Xx'~¢
for a positive &.

A problem on sieves: Can one split the primes less than » into two
classes { ¢; }, { ¢/ } so that for suitable choices of a; and a;, every integer x
less than n satisfies x = a, mod ¢; and x = a; mod g;?

For a given n, let 1 < d; < d, < ... be the divisors of » and consider
the sums d,,d, +d,,d; +d,+ds,... . How many new sums do we get
from n, i.e., sums not occurring for m < n? When does N first occur as a
sum ? In particular, if / (N) denotes the least value of n for which N occurs,
is it true that £ (N) = o (N)? (or perhaps just for almost all N ?)

Suppose n = d, + ... + d, where the d; are distinct proper divisors
of » but this is not true for any proper divisor of #. Must the sum of the
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reciprocals of all such n converge? Similarly, the same question can be
asked for those » which do not have distinct sums of sets of divisors (but
any proper divisor of n does). & (n)

An integer n has been called weird [Ben-Er (74)] if >2 and

n
n #d; + ... + d, where the d; are distinct proper divisors of n. Are there
any odd weird numbers? Are there infinitely many primizive weird numbers,
i.e., so that no proper divisor of n is weird?

The following two problems are due to Ulam. Starting with a given set
of primes Q = { ¢y, ..., ¢, }, form the set Q' by adjoining to Q all primes
formed by adding any three distinct elements of Q. Now repeat this opera-
tion on @', etc. Will the sizes of the generated sets become unbounded
provided Q is suitably chosen? What about 0 = {3, 5,7, 11 }?

Starting with a set of primes Q = { g, ws 4 } form the sequence
0* = (41, 95, ...) by letting g,,, be the smallest prime of the form
9 ¥ ¢: — 1, 1 <i<mn, for n>m. For example, if Q = {3, 5 1,
o* ={3,517,11, 13, 17, ... }- Is there a choice of Q so that O* is infinite ?
What about @ = {3,5}?

Segal [Seg (77)] has recently formulated the following problem. Is
there a permutation ay, a,, ... of the positive integers so that a + ap,,
is always prime? In particular, C. Watts [Wat (77)] asked whether the
“greedy” algorithm always generates such a permutation. In other words,
if we define

91 = 1, gprqy = min { x : g, + x is prime and x #gpi<n}

then do all positive integers occur as g,’s? Do all primes occur as a sum?
Odlyzko [Odl ()] has constructed a permutation which settles the first
problem, i.e., so that a, + a,,, is always prime. Whether the greedy
algorithm also does this seems very difficult to decide. It has been shown
that all integers up to 9990 occur as g,. .. Segal has also asked whether this
can be done for the set { 1,2, ..., n }. It seems likely that it can but this
is currently not known.

Form the infinite sequence b, b,, ... by setting b, = 1 and defining
b, to be the least integer which is not an interval sum of by, ..., b, (e,
b,i.1 # Y b). Thus, the sequence starts

U=i=yp

1,2,4,5,8,10, 14,15, 16, 21, 22, 23, 25, 26, 28, ... .

How does the sequence grow? More generally, suppose a; < a, < ... is
a sequence so that no a, is a sum of consecutive a,’s. Must the density of
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the a;’s be zero? What about the lower density? Can one say more? (See
also the related question in section 6).

An old question of Graham [Gr (71)] asks if for any set { aj, ..., a,}
of nonzero residues modulo a given prime p, there is always a rearrangement

m

(ai,» @iy, ..., @;) so that all the partial sums ) a;, are distinct modulo p?
k=1

A recent related result of Erdos and Szemerédi [Er-Sz (76) a] states
that if a,, a,, ..., a, are p nonzero residues modulo a prime p such that there
is only one value of k for which a; + a;, + ... + a;, = 0 (mod p) with
iy < i, < ... < i then the g; assume at most two distinct values modulo p.
The proof is unexpectedly complicated.

Is it true that if a4, ..., @, are distinct residues modulo p then the pair
sums ga; + a;, i #j, represent at least 2k — 3 distinct residue classes
modulo p (or all of Z, if p < 2k—3)? It is surprising this old question of
Erdos and Heilbronn [Er-He (64)] is still open.

Very recently White [Wh (78)] proved that if aq,...,q, are distinct
elements of a (not necessarily Abelian) group and no subset sum of the
a;s is O (the identity of the group) then these subset sums represent at
least 2k — 1 distinct elements of the group. Furthermore, this bound is
attained only if k£ <C3 or the a, generate a dihedral group.

It has been known since prehistoric times that if a,, ..., @, are residues
modulo n then some sum q; + ..+ q; , i; < .. <, is 0 (mod n).
This has been generalized to finite semigroups by Gillam, Hall and Williams
[Gi-Ha-Wi (75)], where now some sum is required to be an idempotent
of the semigroup. For many more problems and results of this type see
[Man (65)], [Er-Gi-Zi (61)], [Sz (70)], [Did (75)], [Did-Ma (73)], [Ol (68)],
[O1(69)], [OL (75)].

Selfridge [Self (76)] conjectures that a maximum set A of distinct residues
modulo p having the property that no subset of 4 sums to 0 (mod p) is
given by { —2,1,3,4,5,..,¢} for an appropriate #. For nonprime p
the situation seems to be less clear. Devitt and Lam [Dev-La (74)] have
determined the maximum values a (m) for all values of the modulus 2 up
to 50, e.g., a(42) = 9, a(43) = 8, a(44) = 9. They ask: Is a (m) almost
always nondecreasing? Is a(m) = [(—1+./8m+9)/2] infinitely often?
For which m is there a set 4 < Z,, with | A | = a(m) such that no element
of A is relatively prime to m? For example, a (12) = 4 and this is realized
by 4=1{3,4,610} or 4 = {4,6,9,10}.

Suppose f:Z —Z is a polynomial of degree at least 2 and let
S ={f(1),f(Q2),..}. Is it true that there can never exist a direct sum
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decomposition Z = S + T, i.e., for no set T can every z € Z have a unique
representation as 5 + £, se€ S, te T (see [Sek (59)])?
Consider the set S, of distinct residues of the form & ! (mod p), 1 <k < p

1
where p is prime. Is it true that | S, |[p = 1 — = + o(1)?
e

It is easy to see that 2" £ 1 (mod n) for n > 1. An old conjecture of
Graham asserts that for all k # 1, there are infinitely many » so that
2" = k (mod n). This is known to be true (see [Gr-Leh-Leh (xx)]) if k& = 2},
i>1,and k = — 1. D. H. and Emma Lehmer [Leh-Leh (71)] have found
solutions with n < 5.10° for all k # 1 with | k | < 100. In particular, they
very recently finally found the (stubborn) smallest (and still only known)
value of n > 1 for which 2" = 3 (mod n). It is n = 4700063497 =
19-47-5263229.

The following attractive conjecture is due to D. J. Newman. Let
X1, X3, X3, ... be real numbers in the closed interval [0, 1]. Is it true that
there are infinitely many m and n such that

Xmtn — Xm < —= 17
| + | oS n\/s
This is known to be false (see Added in proof p. 107).

It is surprising that the following problem offers difficulty. For given
integers ay, ..., a,, by, ..., b,, let T be the transformation which replace thes
integer x by the r integers (possibly not all distinct) a;x + b;, 1 <i <r.

1
Show that if ' — > | then for some bound B, it is not possible to start
i O
with 1 and apply T repeatedly until all the resulting integers are distinct
and greater than B.

Finally, we mention a very unconventional problem. Define the sequence
of integers (ay, a5, ...) by a;, = 1 and
ayey = [/2(a,+1/2)], n>1.
Thus, the sequence begins
1,2,3,4,6,9,13,19,27,38, ... .

It has been shown [Gr-Po (70)] that if d, denotes the difference
Arni1 — 2a3,-1, n > 1, then d, is just the n™ digit in the binary expansion of
\/ 2 = 1.01101000... . Tt seems clear that there must be similar results for
\/ m and other algebraic numbers but we have no idea what they are.
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10. REMARKS ON AN EARLIER PAPER

In this final section we will attempt to give an update of some of the
problems in the earlier paper “Quelques problémes de la théorie des
nombres” by Erdos [Er (63)*] which appeared in L’Enseignement Mathé-
matique in 1963. Some of these questions have alrecady been mentioned in
preceding sections; in this case we will refer the reader to the appropriate
section.

To begin with, Problem 3 stated: If | < a; < ... < g, < x is a sequence
of integers such that no «; divides the product of all the others then k&
< 7 (x), the number of primes not exceeding x ([Er (43)], [Sco (4.

We have the following related result. Let 1 < a; < .. < g, < x and
k

assume that all the power products [| af%, «; >0, are distinct. Then
i=1

k <7 (x). The proof follows easily by a counting argument. For further
results in this direction, see [Er (70)].

Problem 4 stated that for any set of 16 consecutive integers, one of them
is relatively prime to all the others. Furthermore, 16 is best possible since
for any k& > 16, there is a set of k consecutive integers such that no one
of them is relatively prime to all the others. The following related questions
were raised in [Er-Se (71) a]. Is it true that for each r there exists &k (#)
so that for any set of at least k (r) consecutive integers, one of them has at
least r prime factors in common with the product of all the others? One
could also require that it have at least r prime factors in common with at
least one of the others.

Let us call an integer # good if any set of consecutive integers containing
n must always contain a number which is relatively prime to all the others
(e.g., all primes are good as is 9 and probably all squares of primes). It is
known that the lower density of the good numbers is positive but we cannot
decide if their asymptotic density exists (see [Er (65) b]). This question is
related to the ancient problem, now completely settled [Er-Se (75)], of
showing that the product of consecutive integers is never a power (see the
discussion in section 8 as well as [Eg-Se (76)], [Ec-Eg(72)], [Er(75)a*] for
further problems and results).

Problem 5 asked for the largest value of &k so that for some sequence of
integers 1 < g, < a, < ... < g, < X, no qa; divides the product of any two
other a;s. The best estimate known for max k is given by [Er (38)]:

J
n(x) + ¢;x*3/log? x < max k < n (x) + c,x*/3/log? x.
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This should be strengthened to
max k = n(x) + c3x*3/log? x + o (x*'3/log? x)

but we cannot do this at present. For related results see {Er (69) a].

Problem 6 asked for the largest value of k so that for some sequence of
integers 1 <<a; < ... < a, <x, all products aa;, i <j, are distinct. It
has been shown that

T (x) + ¢ x**/log®? x < maxk < n(x) + c,x3*/log®/?

(see [Er (38)], [Er (69) a]). No doubt, as we remarked earlier it is actually
true that

max k = n(x) + cx**/log*?x + o (x3*/log®? x).

In Problem 7, the following related question was raised. Let
1 <a; <..< g <x be integers such that all subsets of the a’s have
distinct products. What is the maximum possible value of k£? In [Er (66)],
Erdos has shown that
k <zw(x) + cx'?flogx.

From below, Erdds and Posa have proposed the following construction.
Forn > 1, let B (n) denote the least integer 7 so that there isa set { ay, ..., a, }
< {1,2,..,¢t} which has all its subset sums distinct. Thus, g (1) = I,
B(2)=2,(3) =4, = Tand p(5) = 13 (by taking { 6, 9, 11, 12, 13 }).
Then for the primes pe (x'/**1, x/*), let A contain the numbers p,
P, ..., p*, for all + > 1. Thus, 4 has all subset products distinct and so

max k> |A|~ Y n(xl/l’<">)~ Y B(m)xt/E®

n>1 (=N

1
155 (x +2x 2 4 4x 477 4 )

x 1/2
maxk—rc(x)+7z(x1/2)+o<<> )
log x

In Problem 9, it was asked whether for two sequences

Probably,

1<a <o <a, <n, 1<b; <... <b,<n,
such that all products a;b; are distinct, it is true that

xy < cn?llogn.



— 99

This has now been proved by Szemerédi and appears in [Sz (76)]. Probably

n2

max xy = (1+o0 (1))

logn

but this has not yet been proved (see [Er-Sz (76) b]).

1
Problem 13 deals with the following question: Estimate max > —
a7 P

where the a; range over all sequences 1 <a; < .. <aq, <n sucl:h that
lem (a;, a;) > n for all 7, j. Further results on this problem have now
appeared in [Er-S4-Sz (66) a], {Er-Sa-Sz (66) b], [Er-Sa-Sz (68) a].

In Problem 15, f (n) was defined to be the least positive integer such
that at least one of the integers n,n + 1, ...,n + f (n) divides the product

of the others. It can be shown that for infinitely many »

f (n) > exp ((log m)'/?79).

Further results on this problem have since appeared in [Er-Se (67)],
[Er-Se (71) b].

In Problem 16, the conjecture of Erdos that the density of squares in an
arithmetic progression must tend to zero with the length of the progression
now follows at once from the result of Szemerédi [Sz (75)] (see also
section 2) that a sequence containing no k-term arithmetic progression
must have density zero. (In fact, this already follows from Szemerédi’s
earlier result [Sz (69)] for k = 4).

Problem 19 considered the following problem. Suppose a,, a,, ... is an
infinite set of integers which contains no infinite subset B such that b } b’
for any two distinct elements b, b’ € B. Is it true that the set of elements
of the form [ ] a} where the n, are arbitrary integers, has the same property ?

This theory has been expanded greatly in the direction of set theory. The
reader is referred to the papers of Laver, Nash-Williams and Kruskal
[Krus (72)], [N-W (68)], [Lav (71)] for discussions of this development.

In Problem 20, the following question was considered. Let 1 < a,
< o < .. be a sequence of real numbers which satisfy |kai - ocjl >1
for all i, j, k with i # j. Ts it true that

1
Y. — < clogn/(loglog n)/? 7

Is it true that
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There are now many results known for such sequences (see the review paper
[Er-S4-Sz (68) a]). It was shown by Haight [Hai (xx)] that if the «; are
rationally independent and the «; have positive upper density then for all
¢ > 0 the inequality | ka; — «; | < ¢ is always solvable in integers i, j, k,
with i # j.

In Problems 20-24, a number of questions and results concerning
sequences a; < @, < ... for which no a; divides any a;, i # j, were stated.
In addition to the bibliography on this topic mentioned there (e.g., [Beh
(35)], [Er (35) a], [Er (48) b]) one can also consult [Ha-Ro (66) *], [Er (67)]
and [Er-Sa-Sz (68) b], where many new results are surveyed.

Problem 25 stated: Let a; < a, < ... be a sequence of integers such
that for n sufficiently large, the number f () of solutions of n = a,a; is
positive. Prove that lim sup f (n) = co. This has now appeared in a paper
of Erdos [Er (65)a). "

Problem 26 dealt with problems of the following type: Show that the
sums a; + a;, 1 <i <j <k, formed from the integer sequence a; < a,
< ..<a with k> 3-2"2 have at least ¢ distinct prime factors
[Er-Tu (34)}. Further problems along this line appear in [Er (76) a*].

Problem 28 considered a number of questions concerned with conditions
on a sequence of integers @, < a, < ... so that all sufficiently large integers
can be expressed as sums of subsets of the «;. This is exactly the subject
of section 6 of this paper where the reader can find many problems and
results on this topic.

Conway and Guy [Con-Gu (69)] independently settled the question
raised in Problem 31 which asked if it is possible to find » + 2 integers

1<Cay <a, < .. <@y <2

nt2
so that all sums ) &g, & = 0 or 1, are distinct. The smallest such
K=1

example they found has n» = 21. Whether n + 3 integers up to 2" exist
with all distinct subset sums is still not known. Erdos currently offers
US $500 for a proof (or disproof) that for every k, n + k such integers less
than 2" can always be found for » sufficiently large.

In Problem 31, f (x) was defined to be the maximum number of terms

a sequence of integers
1<a; <a; < ... <a<x

can have so that all sums a; + a; are distinct. It has been known for some
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time [Er-Tu(41)] that f(x) <x"? + x'* Tt is still not known if
f(x) = x"?+ 0(). (See section 5 and the book [Ha-Ro (66)*] for
further related remarks).

Problem 32 dealt with Kelly’s [Ke (57)] result that if a,, a5, ... is a
sequence of integers such that all sufficiently large integers can be written
as a; + a; (with possibly i=;) then all sufficiently large integers can in
fact be written as a sum of at most 4 distinct a;. It is still not known if 4 can
be replaced by 3. Other problems and results on this subject appear in
[Er-Gr (xx)] and in section 5 of this paper.

One question raised in Problem 33 was this. Is it possible to have a
sequence B = {b; < b, < ...} of integers with B(x) (the number of
b; < x) satisfying B (x) < cx/log x so that every sufficiently large integer
can be expressed as 2° + b ; for some 7, j ? This has now been proved by
Ruzsa [Ru (72)]. It is easy to see that ¢ must be as large as log 2. Erdos has
conjectured that

B(x) > (log 2 +¢&) x/log x

for some ¢ > 0 independent of x.
Problem 34 discussed the conjecture of Hanani thatif 4 = {4, < a, < ...}
and B = { b; < b, < ...} are two sequences such that all sufficiently

. : A(x) B(x)
large integers can be expressed as a; + b; then lim sup ———~ > |

X

This conjecture has since been disproved by Danzer [Dan (64)]. If we
assume

: A (x) B(x)
lim suyp ————> =1

then how slowly can A4 (x) and B (x) grow? In Danzer’s example, A (x)"!
> (x%)! Can we have 4 (x)™! and B (x)~' bounded above by ¢*? It has
been shown by Sarkézy and Szemerédi [Sar-Sz (xx)] that

lim inf (4 (x)B(x)—x) = o0.

Problem 35 considered a number of questions concerning essential
components, i.e., sets B so that for any set 4 with Schnirelman density
d4€(0, 1), we always have d, . p > d, (e.g., see [St6h-Wir (56)]). Many new
results are now known; for details consult [Wir (74)].

A related question concerns the set § = { x? :x = 1,2, ... } of squares,
which is known to be an essential component. It is known [Plii (57)] that if
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dy = n then dg, 4 > S It may in fact be true that for ¢ large, the truth

1
isdg 4 > = for any fixed ¢ > 0.

The following result of ErdSs [Er (62)c] (also see [Ben-Er (74)]) is
related to Problem 39. If ¢, < a, < ... is an infinite sequence such that
no a; is a sum of other a;’s then

1
— < 103.
; a;
This was later improved by Levine and O’Sullivan [Lev-O’S (77)] who
proved

Y —<5.

i &
Examples show that it is possible to have

1

Y —>2.

i 4

Problem 40 asked if for each positive integer k, there are k distinct
integers a,, ..., @, such that all sums a; + a;, i < j, are squares. For k = 5,
J. Lagrange [Lag (70)] has shown the existence of an infinity of solutions.
For k = 6, he has given a solution and has shown the existence of infinitely
many families having 14 of the 15 sums a; + a; being squares [Lag (76)],
[Nico (77)].

Problem 41 was concerned with pseudoprimes, i.e., numbers # for which

" = 2 (mod n). Very recently, Pomerance dramatically improved Lehmer’s
[Leh (49)] old bound on P (x), the number of pseudoprimes Iess
then x, which was P (x) > clogx. He shows [Pom (xx)] that P (x)
> exp ((log x)*/**) for x sufficiently large. Many papers on pseudoprimes
have appeared; the reader is referred the recent book [Rotk (72)] and the
long paper [Pom-Self-Wag (xx)] for a survey of some of this work.

Problem 42 dealt with covering congruences. For a discussion of many
new problems and results in this subject, see section 3 of this paper.

Problem 43 asked for estimates of the maximum number f (x) of
congruences z = g; (mod n;)) with n; < n, < ... < n, < x such that no
integer satisfies two of the congruences. The conjecture that f (x) = o (x)
has now been settled by Erdés and Szemerédi [Er-Sz (68)] who showed that
for a suitable ¢ > 0, f (x) < x/(log x)°.
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Problem 44 stated the following question. What is the largest possible
value of k = k (n) for which there exist integers r|, 75, ..., r, such that the
congruences

Ma-

gr; = 0 (mod n)

i=1

have no solutions for any choice of ¢; = 0 or 1? The conjecture that k ()

< c\/ n has now been settled by Szemerédi [Sz (70)] and Olson [0l (75)]
(also see [Ol (68)], [Did (75)], [Man (65)] and other references in section 9.
The following related conjecture is of some interest and may be quite
difficult. Is it true that for every ¢ > 0, there is an £ (¢) so that if ay, ..., q;, k

1
= [p], are the residues — modulo p, 1 <i <k (where p is prime), then
i

every residue modulo p is the sum of at most f(g) a;’s?

In Problem 46, there are of course still no odd perfect numbers known.
However, the four largest known perfect numbers are now (219937 —1)
219936 (see [TLI (71)] (221701 — 1) 221700 [NiC-NO (78)], (223209 — 1) 223208
[Nic-No (78)] and (2444°7 —1) 244496 [Nel-Slo (79)]. Wirsing can show that
for any rational a, the number of #n < x such that # = a is less than
cx® losloglogx/loglogx " independent of a. This follows from arguments he
uses in [Wir (59)].

In Problem 47, the conjecture of Catalan on aliquot series was considered.
This is that the sequence o, (n), k = 1,2, ..., where o, (n) = o (n) — n,
o, (n) = 64 (04— (n)), is bounded for any fixed n (and thus, periodic).
Extensive computations have recently been carried out by the Lehmers,
Guy and Selfridge (see [Gu-Se (75)], [Er (76)], [Gu+3(74)]), (who all
have strong doubts about truth of the conjecture, however).

Problem 48 dealt with simple diophantine equations involving ¢ (n),
o (n) and n. Lehmer’s old (1932) conjecture that ¢ (n) | n — 1 implies #n is
prime [Leh (32)] is still open. A related conjecture of Graham asserts that
for any k there are infinitely many » such that ¢ (r) divides n + k. This is
known to be true for infinitely many k. Pomerance [Pom (75)] has shown
that the number of composite integers n < x with ¢ (n) I n — 1 is less than
cx'/? (log x)*/*. Erdos [Er (73)] has succeeded in showing that there are
infinitely many » which are not of the form ¢ (k) — k. In fact, these #» have
positive upper density. This is still not known for k — ¢ (k). As we men-
tioned earlier, one of the most annoying problems here is to show that
o (m) = ¢ (n) has infinitely many solutions. It must be true but at present
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we have no idea how to prove it. It is still not known if ¢ (n) = ¢ (n+1)
has infinitely many solutions or even if for each & > 0, of | ¢ (n+1) ~ ¢ (n) |
< #*® has infinitely many solutions.

In Problems 49 and 51, various aspects of van der Waerden’s theorem
on arithmetic progressions were discussed. Quite a lot new has since been
discovered including Szemerédi’s powerful result that any infinite set of
integers having no k-term arithmetic progression must have density zero.
This material is covered in section 2 of this paper. The longest arithmetic
progression of primes then known was Golubev’s 12-term sequence 23143
+ 30030k, 0 < k <C 11. As mentioned in section 2, this has been improved
by Weintraub [Weint (77)] who found a 17-term arithmetic progression of
primes (see also [Kar (69)].

Problem 50 stated: If f (n) is multiplicative function (i.e., f (a, b)
= f(a) f (b) for (a,b) = 1) taking only values =+ 1, must

lim1 Y k)
n Mg=1
exist? This has been settled completely by Wirsing [Wir (67)] and con-
siderably extended by Halasz [Hala (71)].
In Problem 52, it was asked if for some constant c,

¢ (n) s n?

kgo (@sy—a)” <c b (n)
where 1 = a; < a, <..<ay, =n—1 are the integers less than n
which are relatively prime to # (and a, = —1). This is still unsettled although
Hooley [Heo (62)], [Hoo (65) a], [Hoo (65) b] has some partial results.

In Problem 54, it was conjectured that for » > 105, n — 2* cannot
be prime for all k such that 2 < 2*¥ < n. This is still not known; however,
Vaughan [Va (73)] has some modest upper bounds on the number of such
n less than x. The bounds are rather weak but at present they are all we
have. In this problem, it was weakly conjectured that if an infinite sequence
of integers a; < a, < ..., satisfies a,,, < ca,, then there are only finitely
many values of # such that n — g, is prime for all @, < n. There now are
reasons for doubting the truth of this conjecture. It may still hold if we
assume the @, do not grow too fast, e.g., @, < ck log k. However, if we only
require that a, < ck? then it might well fail (though we will never live to
see this decided). The following question is related to this material. Denote
by f (k) the largest integer so that from any k integers one can always
select f (k) of them which do not form a complete set of residues modulo p
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for any prime p. Clearly f (k) is of the order of magnitude k/log k. An
asymptotic formula would be desirable and perhaps will not be difficult
to obtain. An explicit formula is probably hopeless.

Elliott [Ellio (65)] has considered the following related problem. How
many integers 1 <{a; < ... < g, < x can be chosen so that the ¢,’s do not
form a complete residue system modulo p for any prime p. Elliott shows

k <(2+¢)x/log x;
an example of Davenport gives
k > (1+0(1)x/log x .

What is the right coefficient here? Supposc instead that the g’s form a
complete set of residues for at most one (or #) primes. Now what can be
said about max k?

The following question is related to Problem 56. Denote by f (p;)

the sum Y,

pi<pj P; — DPi

where p, denotes the k't prime. Probably

lim inf f(p) =1

Jjro

but we cannot even prove

1 n
- Z S (Pj) - 1.
n j=1
In Problem 57, the sum
1
gmn = o
Z p

2n
summed over all primes p <C #n which do not divide < >, is discussed.
n

1t is still not known if g (n) is bounded. Many related results for g (n) are
discussed in section 8 (see also [Er+3 (75)]).

In Problem 59, sequences 1 < a; < a, < ... were considered such that
all positive integers can be expressed as aa; (see [Wir (57)]). Suppose
A (x) < cx/log x for infinitely many x (where as usual A4 (x) denotes the
number of a’s < x). Is it true that A (x) > ¢’x for infinitely many x.
Assume instead that the density of integers of the form a.a; is positive.
Then it can be shown that 4 (x) > x!/2** where « depends on the density.
This bound is essentially best possible although the dependence of o on
the density may be hard to determine exactly.

In Problem 60, it was asked whether the only pairs of integers m and n
having the same prime factors so that m + 1 and n + 1 also have the
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same prime factors are given by taking m = 2*—2, n = 2¥(2¥-2). In
[Mak (68)], Makowski finds other solutions.

In Problem 61, it was asked if the sequence u; < u, < ... of integers
of the form x? + y? satisfies

Upry — th = 0(u/*) ?
This is still open.
Problem 62 dealt with the diophantine equation of Ko [Ko (40)]:

x*y = 2%,
It is surprising that all solutions to this equation have not yet been classified
(see [Mil (59)]). In particular, are there any odd solutions? The late Claude
Anderson (at Berkeley) conjectured that the related equation

xxyyzz — WW

has no nontrivial solution (i.e., with 1<x< y<z). There are still no non-
trivial solutions known to n! = a! b! (i.e., a, b < n—2) except 10! = 7! 6!,
For related results, see [Ab-Er-Ha (74)] and section 8 of this paper.

In Problem 64, it was asked if for integers a > b > ¢ > O witha + b
+ ¢ = n a sufficiently large fixed integer, all the products abc must be
distinct. J. B. Kelly [Ke (64)] showed that is certainly not the case.

In Problem 65, it was asked if there were any integers k > 24 for which
the equation x; + ... + x, = x; ... x, has a unique solution in positive
integers (up to order). It is known to have a unique solution when &
= 2,3,4,6 and 24. In [Star (71)] it was noted that this is also true for
k = 114, 174, 444 and for no other values of k < 10%. Perhaps 444 is the
largest possible value of such a k.

Problems 69-75 were concerned with numerous questions on sums
of unit fractions. Very much new material is now known. Much of this is
mentioned in section 4 of this paper.

Finally, Problem 76 asked the following. Does there exist for all ¢ > 0
and all n > n,(e) a sequence 1 <ay <..<a, <n with k > n (1—¢)
such that if two subsets of a,’s have equal products then the subsets have
equal cardinalities? This has now been solved in the negative by Ruzsa
(see [Er-Ru-Sa (73)].)
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ADDED IN PROOF

(i) (p. 13) Very recently, T. Brown and J. Buhler have shown that for
all e >0, if R < GF(3)" with | R| > & - 3" and n is sufficiently large
then R must contain three points which form an affine line in GF (3)".
While this is weaker than showing the existence of a (combinatorial)
line, it does offer a bit more evidence for the truth of the general
density conjecture.

(i) (p. 87) It was just observed by J. P. Marsias that the sum of any
two integers = 1, 5,9, 13, 14, 17, 21, 25, 26, 29, 30 (mod 32) is never

11n
a square (mod 32). Thus, £ can be chosen to be at least OB This is

best possible for the modular version of the problem since it has even
more recently been shown by J. Lagarias, A. M. Odlyzko and J. Shearer

11n
that if S < Z, and S + S contains no square of Z, then | S| < o

(iii) (p. 96) It has just been proved by Chung and Graham that if
X1, X3, X3, ... € [0, 1] then for any ¢ > 0, there is some » such that for
infinitely many,

1
ixm” ~ I < (ao—s)n
where
tg =1+ X 4 —0s35.
k=1 Fy,
and F,, denotes the m™ Fibonacci number. Furthermore, this is best
possible in that o, cannot be replaced by any larger constant (which is
—1+./5
2 )

shown by taking, for example, x, = { 7k } with 7 =
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