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INTRODUCTION

The subject of graph decompositions is a vast and sprawling
topic, one which we certainly cannot begin to cover in a paper of
this length. Indeed, recently a number of survey articles and several
books have appeared, each devoted to a particular subtopic within
this domain (e.g., see [Fi-WiJ, [Gr-Rot-SpJ,[So 1],[Do-RoJ).

What we will attempt to do in this report is twofold. First,
we will try to give a brief overall view of the landscape, mention-
ing various points of interest (to us) along the way. When possible,
we will provide the reader with references in which much more detailed
discussions can be found. Second, we will focus more closely on a
few specific topics and results, usually for which significant
progress has been made within the past few years. We will also list
throughout various problems, questions and conjectures which we feel
are interesting and/or contribute to a clearer understanding of some
of the current obstacles remaining in the subject.

Notation

By a graph 'G we will mean a (finite) set V = V(G), called the
vertices of G together with a set E = E(G) of (unordered) pairs of
vertices of G, called the edges of G.

Let H denote a family of graphs. By an H-decomposition of G we
mean a partition of E(G) into disjoint sets E(Hi) such that each of
the graphs Hi induced by the edge set E(Hi) is isomorphic to a graph
in #. Ordinarily we will just say that G has been decomposed into
Hi € H. If an H-decomposition of G exists, we denote this by writing
G € <H>.

By far the most work in graph decompositions has been carried
out on the general problem of determining for fixed families #
(usually singletons), necessary and sufficient conditions that

G € <H>. We begin by discussing several examples of this type.

Complete Graphs

For a fixed k, let H consist of the single graph K

graph on k vertices. If Kéx)

K? the complete
denotes the complete multigraph
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of multiplicity A > 1 on a set of v vertices, i.e., each pair of
vertices occurs as an edge exactly X times, then the determination
of necessary and sufficient conditions for

kM e <ix > (1)
to hold is among the oldest problems in combinatories. Such a
decomposition is easily seen to be equivalent to the existence of
a (v,k,x)-configuration, a combinatorial structure consisting of a
family of k-element subsets B of a v-element set V in which every
2-element subset of V occurs in exactly A of the B's (see [Hal] or
[Ry7}. It is not difficult to show that necessary conditions for
(1) to hold are:

A{v-1) =0 (mod k-1); (i)

Av(v-1l) = 0 (mod k(k-1)). (ii)

For k = 3 and X = 1 such configurations are known as Steiner

"

triple systems. It was shown by Kirkman in 1847 that in this case
(i) and (ii) are also sufficient for (1) (see e.g., [Ra~-Wi 1] or
the extensive bibliography in [Do-Roj).

On the other hand, for the values v = n2 +n+ 1, k = n +1,
A = 1, (1) holds iff there exists a projective plane of order
n (PP(n)) (see [Ry]). 1In this case conditions (i) and (ii) are not
sufficient since, for example, if such a plane exists then n must
satisfy the celebrated condition of Bruck and Ryser [Bru-Ry], namely,
n=0or 1 (mod 4) and n = x2 + y2 for integers x and y. The first
n for which the existence of PP(n) is undecided is n = 10. It has
recently been shown that if PP(10) exists it must have very little
symmetry (see [An-Hal]}).

The strongest general result known for (1) is the theorem of
Wilson (Wi 3.
Theorem. TFor fixed k and A, (1) holds if (i) and (ii) hold, provided
v is sufficiently large.

Thus, conditions (i) and (ii) are asymptotically sufficient.

More generally, let I c ZZ+, the positive integers, and consider
the decomposition

KD e <k, cieIds. (2)
In this case, Wilson [Wi 4] has proved an asymptotic result analogous
to the preceding theorem. Let

a{I) denote g.c.d. {i-1l:ieI},

B(I) denote g.c.d. {i(i~1):ieIl}.
Theorem (Wilson). For fixed A and I c Z+, if v > VO(I,A)
and v satisfies

A{v-1) = 0 (mod a(I)) (i)

Av(v=1l) = 0 (mod B(I)) (ii")
then (2) holds.
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As before it is not hard to check that (i') and (ii') are
necessary conditions for (2).

Typical results in this class of a more precise nature are:
Theorem (Hanani [Han 2j).

KV € <{K3’KM’K6}> iff v 0 or 1 (mod 3), v > 3,
K, € <{KM,K5,K8,K9,K12}> iff v = 0 or 1 (mod 4), v > L4,
Theorem (Wilson (Wi 2j).
K, € <{K3,K5}> iff v 21 (mod 2), v > 3.

K, € <{KM,K7,K10,K19}> iff v = 1 (mod 3), v > 4.
Theorem (Brouwer [Br 3]).

Kv 3 <{KQ,K7}> iff v £ 1 (mod 3), v > 4, v £ 10, 19

K, € <{K3,K4,K5,K6,K8}> iff v > 3.

For a summary of many results of this type the reader is referred
to the recent doctoral dissertation of Sotteau [So 17].

If # consists of the set of all complete graphs then of course
G € <H> for all G. 1In this case, however, it is of interest to know
how many factors are required in the decomposition. In this case,
Erdgs, Goodman and Posa [Er-Go-Po] have shown that any graph on n
vertices can be decomposed into at most LnE/MJ edge-disjoint complete
graphs. In fact, they showed the same bound applies if one takes
H = {KZ’KB} (and that this bound can be achieved).

If instead of minimizing the number of factors in a decomposition

E(G) = T E(K_ ) (*)
1

i
we instead ask for the minimum value of

L v(K ) =32 n,

i i i
then Chung /Ch 4] has shown that for any graph on n vertices, there is
a decomposition (*) with

2
Z n. < |n“/2],
i -

settling an earlier conjecture of Katona and Tarjdn. Furthermore,
the only graph for which the bound is achieved is K n al-
2] 2]

CYCLES AND PATHS

An extensive literature exists on decompositions of (complete)

graphs into a fixed cycle Ck' Necessary conditions for

G e <{C}> (3)
are:

n - 1 is even, k < nj (1ii)

n{n-1) = 0 (mod 2k) (iv)

It is an old conjecture that these conditions are sufficient for
(3) to hold but this is not yet known. Cases for which (iii) and

(iv) are sufficient include the following:
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(a)
(b)
(c)
()
(e)
(f)

= k, [Ber}

0 (mod 4), (Ko 1)

2 (mod 4), (Ro 1]

0 (mod k), [J 3]

- 1= 0 (mod 2k), [J U}
= 2pa, p prime, [Al-Va].

x B8 5 X" K 3
1]

The reader should consult [So 1] and [Ga] for a more complete
discussion of known results.

In the case of triangles 03 (=K3), Nash-Williams has raised the
following conjecture:

Conjecture [l]. 1If all vertices of G have even degrees at least
£ v(G) then G ¢ <(Cy)>.

A variation of cycle (and complete graph) decompositions which
has received some attention is that of a resolvable decomposition.

In this case it is required that it be possible to partition the edge-
disjoint cycles (partitioning E(G)) into classes, with the cycles in
each class forming a partition of V(G). For example, the celebrated
solution by Ray-Chaudhuri and Wilson [Ra-Wi 1] of the Kirkman school=~
girl problem shows that K6r+3 always has such a decomposition into
CB'S. This general problem often is referred to as the"Oberwolfach'
problem [Gu). Partial results can be found in (He-Ko-RoJ, [Hu-Ko-RoJ
and [He-Roj.

Similar but less complete results are available for the case
Kéx) € <{Ck}>, A > 1 (the reader should consult [So 1] for a summary).
Of course, k = 3 is the previously mentioned case of Steiner triple
systems.

Partial results for decompositions of complete multipartite graphs
Kn,n,...,n into cycles are available in [So 1J, [Co-HarJ, [So 3j. It
is known for example, that

K € <{C2t}>
0 (mod 2), r > £, s >t and rs = 0 (mod 2t).

Relatively little is known for the case thatw = <{Ci:ieI}> for a
subset I ¢ z .

following:

The strongest conjecture as to what may be true is the

Conjecture (Alspach [Al}): Suppose n is odd and m; >3, 1% i<r, are
integers satisfying

Then

E(K_ ) = £ E(C_ ).
noia M3
If H = {Ci:iZB} consists of all cycles then it is easy to see that

G e <H> iff all deg(v), v € V(G), are even. In this case, however,
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there are a number of interesting conjectures concerning minimal cycle
decompositions.
Conjecture (Hajos (see [LoJ)). Every graph G on n vertices with all
degrees even can be decomposed into at most l% edge-disjoint cycles.
If true the bound of {%J would be best possible because of n
The best result known in this direction is the theorem of Lovédsz [Loj:
Theorem. If v(G) = n then G can be decomposed into at most [%J edge-
disjoint paths and cycles.
This is also the strongest partial result known towards the follow-
ing beautiful question of Gallai:
Conjecture: If v{(G) = n then G can be decomposed in at most [%} paths.
Suppose 2(G) denotes the minimum number of linear forests
(= union of paths) into which a graph G can be decomposed.
Conjecture {([Pe] and [Ak-Ex-Harj).

@) < [} @]

where A(G) denotes the maximum degree in G.
In [Pej it 1s shown that

f%A(G)} < 2(6) < [(28(6)+1)/3]

so that if valid, the bound in the conjecture would be close to best
possible.

We mention in passing that the special case of 2(G) in which each
of the paths is required to be a single edge has been intensively
studied. 1In this case %(G) 1s usually denoted by x'(G) and called the
chromatic index of G. It 1s just the minimum number of colors needed
for coloring the edges of G so that neighboring edges have distinct
colors. The reader is referred to the excellent monograph of Fiorini
and Wilson [Fi-Wi] which summarizes much of what is currently known
about x'(G). The well known theorem of Vizing asserts that
x'(G) = A(G) or A(G) + 1 for all graphs G (where A(G) denotes the
maximum degree of G). It is known (Er-Wi] that almost all graphs G have
x'(G) = A(G) although Holyer (Hol] has shown that the problem of
determining whether x'(G) = A(G) or A(G) + 1 is NP-complete.

Along somewhat different lines, the following old conjecture of
S. Lin to the best of the authors' knowledge still remains unsettled.
conjecture (Lin (Linj}). If v(G) = n, e(G) > n and G ¢ <{Cn}> then G
has at least two distinct representations as ZE(Cn).

No doubt the number of such representations 1s bounded below by
some increasing function of e(G).

It has been noted by Sloane [S1] (using a result of Tutte [Tuj)
that the edge disjoint union of any two hamiltonian cycles of a graph
always contains a third hamiltonian cycle.

A related conjecture of Nash-Williams is still open:
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Conjecture [5]. If deg(v) = 2k for all v e V(G) and v{(G) < b4k then
G can be decomposed into at most k hamiltonian cycles.
It has been recently shown by Jackson (J 1] that under these hypo-
theses G always contains at least % edge-disjoint hamiltonian cycles.
Kotzig [Ko 2] has proposed the following related

Conjecture: If Gi can be decomposed into 1 hamiltonian cycles,

r

1 <i<r, then the cartesian product I Gi can be decomposed into
r i=1
3 p; hamiltonian cycles.
i=1

This was shown to be true for Py = p, = 1 by Kotzig (Ko 2},
p1 =p, = p3 = 1 by Foregger [Forj and r = 2, P, < pl < 2p2, by Aubert
and Schneider [Au-Schnj.

For further discussions of these and related questions (especially
the analogues for directed graphs) the reader is referred to [J 2j.

A SINGLE ARBITRARY GRAPH

Suppose # = {H} where we assume (as usual) that H contains no
isolated vertex. Let us denote by deg(x) the degree of a vertex in a
graph. Define D(H) by

D(H) = ] =z deg(v):z_=0,1,2,...
VgV(H) v v slycy >

i.e., D(H) is the set of nonnegative integer linear combinations of
the deg(v), v e V(H).

As before the obvious necessary conditions for

G e <{H}> (4)
can be easily stated:

e(G) = 0 (mod e(H)); (v)

For each vertex x e V(G), deg(x) & D(H). (vi)

As in previous cases, most of the work on this problem has been
concerned with the choices G = K(x), and in particular, G = K . The

strongest asymptotic results are given by the following beautlful
theorem of Wilson:
Theorem (Wilson [Wi 27, (Wi 4j).

For all X > 0 and H there exists (a least) v(H,X) so that if:
(a) v > v(H,)),
(b) Av(v-1) = 0 (mod 2e(H)),
(e¢) A(v-1) = 0 (mod d) where d = g.c.d. {deg(v):veV(H)},
then

Kéx) e <{H}>

In other words, for Kéx) the necessary conditions (v), (vi) are
sufficient for v sufficiently large.

A detailed analysis of such decompositions of K for each graph H
with v(H) < 5 has been carried out by Bermond, Huang, Rosa and Sotteau
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[Berm-Hu-Ro-So], extending earlier work of Bermond and Schonheim
[Berm-Sc] who treated all H with v(H) < 4. 1In general they found
that the exact values of v(H,l) they obtained were always rather small,
in particular, much smaller than the bounds implicit in the construc-
tions of Wilson.
A variation which has received some attention recently is to
decide whether a graph G occurs nontrivially in <{H}> for any graph
H (where nontrivial means G # H). From an algorithmic point of view,
it has been shown by Graham and Robinson [Gr-Rob] that the problem is
NP-complete, even if G is a tree and a decomposition into two isomorphic
subgraphs is required (see [Gar-Jo] for a discussion of NP-completeness).
For G = Kv, it was shown by Harary, Robinson and Wormald [Hara-Rob-
Wo 17 that the necessary condition for the decomposition of Kv into ¢t
isomorphic edge-disjoint subgraphs is sufficient, namely,
v(v-1l)/2 = O (mod t).
Similar results for other classes of graphs (including directed graphs)
can be found in ([Hara-Rob-Wo 2}, [Hara-Rob-Wo 37, [Waj.

TREES

The following conjecture is usually attributed to Ringel [Ri] (see
[{Ro 27).
Conjecture: For any tree T with e(T) = n,

K2n+l e <{T}>.

Kotzig strengthened Ringel's conjecture and conjectured that every
K2n+l has a cyclic decomposition into trees isomorphic to a fixed tree
T with e(T) = n. This is equivalent to asserting that every tree T is
graceful, i.e., there exists a 1 -~ 1 labelling A:V(T) -+ {0,1,...,e(T)}
such that all the values |A(1)-X(j)|, e = {i,j} € E(T) are distinct.
Although still unresolved, this conjecture has stimulated numerous
papers dealing with various special cases. A discussion of much of this
work can be found in the survey papers of Bloom [Blj, and Huang, Kotzig
and Rosa [Hu-Ko-Ro 27].

An analogous concept, that of a harmonious graph, in which each
edge {i,j} is assigned the value A(i) + A(j) modulo e(G) and all edge
values are required to be distinct, has been studied recently. The
connection of this concept with coding theory and additive number
theory is covered in [Gr-S1 1) and [Gr-S1 2]. A particularly stubborn
problem is the following.

Problem: Is it true that for an absolute ¢ > O, every harmonious graph

G with n vertices must have

e(G) < [% - e]n2?

In other words, if {al,...,an} c Z, has the property that every
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element z ¢ Ze can be written as z = a; + a; (mod e) then is it true
that e < {% - € nz?

It is known that harmonious graphs with n vertices and %8 (1+o(l))n2
edges exist. Also, it is not hard to show that almost all graphs are
neither graceful nor harmonious.

In (Ch 3], Chung considers the problem of decomposing a connected
graph G into a minimum number t(G) of trees. She shows that at most

[V(G)W are ever required and that this bound is achieved, for example,
2

for complete graphs. A related result of Nash-~Williams [Nash 1] proves
that the minimum number of forests (i.e., acyclic graphs) a graph G can
be decomposed into is exactly

e(H) . . .
maX{VTET:l' H is an induced subgraph of G .

(Related work occurs in [Re],[Beij,[Ak-Haj]).

The consideration of t(G) was suggested by results of M. and T.
Forreger who considered the related quantity t'(G), defined to be the
minimum number of subsets into which V(G) can be partitioned so that
each subset induces a tree. They show [For-For] that

we) < [3vo).

The relationship between 1(G) and t'(G) is not yet completely under-
stood. Examples are known for which

?;%%% > % v(G)
and
l%%%%% > % v(G").
These are probably not the extreme values these ratios can achieve.

Question: What are the extreme values of 7(G) and ' (G) ?
T(G)v(Q) T(G)v(G)

An extended discussion for decompositions of Kn into trees is

given by Huang and Rosa in [Hu=-Ro 2]. 1In particular they determine
which K € <{T}> for all trees with e(T) < 8.

In this connection, Gyarfas and Lehel have raised the following
striking conjecture:

Conjecture [Gy-Lej. 1If {Ti:liiin—l} is an arbitrary set of trees with
n-1

e(Ti) = i then E(Kn) can be decomposed into J E(Ti).
i=1

This is known to hold, for example, if all the Ti are either stars
or paths [Za-LuiJ, [St]J. However, at present it is not even known
that the degree sequences of the Ti can always be arranged so that the
(vector) sum is the degree sequence of K., i.e., (n-1,...,n=1).
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COMPLETE BIPARTITE GRAPHS
Decompositions of graphs G into complete bipartite subgraphs

behave in a somewhat different manner than for other graphs. One
reason for this, for example, is the fact that the spectrum of G (i.e.
the set of eigenvalues of the adjacency matrix of G), strongly limits
the minimum number of complete bipartite factors in such a decomposi-
tion of G. More precisely, if n+(G) and n (G) denote the numbers of
positive and negative eigenvalues, respectively, of A(G) (which always
has all eigenvalues real), then

t

E(G) i§1E<Kri,si>
implies

t < max{n*(G),n"(a)}

(see [Gr-Pol] or [Hoj). No analogous bounds can exist for decompositions
into complete graphs.

Very little work has been done for the general decomposition
problem G € <{Kr,s}>' The cases in which (r,s) = (2,2) and (2,3) are
treated in [HuJ and (r,s) = (2,4) and (3,3) are treated in [Hu-Ro 1J
under the additional restriction that the decomposition be balanced,
i.e., each vertex of G appears in the same number of factors. This type
of restriction on general compositions has been investigated in a number
of papers (see [So 1] for a discussion of this work).

An interesting variation of decomposition into complete bipartite
graphs has recently been considered by Chung, Erdds and Spencer
[Ch-Er-Sp). Define the function a(n) to be the least integer such that
any graph G on n vertices can be decomposed into complete bipartite sub-

graphs

E(G) = JE(K )

I TieSy

with

Iv(K ) =} ris. < a(n)

i Tis®i i+t
Theorem

a(n) éog nosoo(1).

n

In order to provide the reader with an idea for the type of techniques
useful in estimates of this kind (and since the results are not available
in the literature) we sketch a proof.

We first show

n2
a(n) > (1-g) (5)
2e log n
(2) -

for any € > 0 and all sufficiently large n. Consider a random graph G
with n vertices and Ln2/2ej edges. The probability that G contains

K is bounded above by
a,b
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[nJ{nJe—ab < ¢(a+b) log n - ab_

al \b
Let 8 denote the set of all unordered pairs {a,b} satisfying
a+b 1-¢
l<a,b < n and 55—< TEEhﬁ
- cos . . a+b 1l-¢
The probability that G contains a Ka,b with ab < TBE_H
is bounded abov? by
Ual {g]e—ab < 3 o-€ab
{a,b}eS {a,b}eS
- 1 2 n
< o€ log
{a,b}eS
2
<n® e ® o n

for large n. Thus, there exists a graph G with n vertices an Ln2/2ej
edges which does not contain any such Ka p 88 @& subgraph.
k]
Let

E(G) = ZE(KP_ s.)
i i*"i

be a decomposition of G having Z(ri+si) minimal. For any edge {u,v}
in G, define

flu,v) = ——=

where {u,v} ¢ Kr.,s.. Then
i*”i
Yir.+s.) = ) flu,v).
i+t {u,v}
By hypothesis, any Kr s occurring in the decomposition has
i2°1

r.+s. 1-¢
i 7i >

risi log n
Thus
f(u,v) . _i-g
— log n

for any {u,v} ¢ E(G) and consequently

a(n) > (l—s)n2

2e log n

which proves (5).

We next show

a(n) < (l+e)  n° (6)

2 log n

for any € > O and all n sufficiently large. We first need the following:
Proposition. For any € > O andp > O, any graph G on n vertices and
p[gfedges contains a subgraph isomorphic to Kr s for some r, s with
r > epn and s > (l-e)prn. ’
Proof of Proposition: Suppose v(G) = n, e(G) > p[g\and G does not

contain K, _ as a subgraph where r = [epn] and s =[(1-e)p"n]. Thus, if
3
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we consider the adjacency matrix A(G) = (aij) of G then
n
) a, - a. . n
§=1 1<ij<.i.<i<n L1ode e dpsd < (S-l)[r]' (6)

The left-hand side of (6) is minimized by choosing all n of the sums
n

) aj; as equal possible.

i=1
Thus, since

n n

‘21 '21 aj; = 2e(G) = pn(n-1)
Jj= i=

then

fn fp{n-1
-1 (2] 2 (7). 7)
However, this is incompatible with the assigned values of r and s.
Continuing the proof of (6), the proposition guarantees that a

graph GO on n vertices andp[g edges contains a subgraph HO isomorphic to

K where
Taa8g

r

o L(l-so) log n/log (1/p)],

84 L(rg/log (l/D)J.

where £y > 2 log log n . We will decompose GO into complete bipartite

log n
subgraphs by a "greedy" algorithm. Given GO’ we find a subgraph HO iso-
morphic to K and we let Gl be the subgraph of G, with edge set
To250 0

E(Gl) = E(GO) - E(HO). Next, we find a subgraph H1 isomorphic to Krl’sl
and we let G, be the subgraph of G1 with edge set E(Gl) - E(Hl)' We
continue in this fashion until at most € n2/log n edges remain.
Therefore,

E(Gy) = ] E(X Jus
7 iS50  Ti»Si
where S is a set of at most €9 ng/log n edges.

We will prove by induction on the number of edges that for given

€15 0 < €1 < €g» and n sufficiently large

Y

>
L (ry*sy) < (Qvey) _ n J Tog (1/x)dx + 2¢

i>0 2 log n

|~

1 n2/log n (8)
Since

T (ri+s.) =r. + s, + § (r.+s;)
iiO 171 0] 0] iil 1 71

then by induction
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1
) 5] ¢ 22008 i vy g [ togtarm
(r.+s:) + |S] €« ——=—— + (14e ——— J log(l/x)dx
ivo 1 (log(1/p))> 172 logm
o]
2
+ 261 n-/log n
¢
where p' = (e(GO>'rOSO)/LS] and n is sufficiently large. However,
straightforward calculation shows that
1
(l-el)(log n)2 ( ) n? 2 ( )
_— l+e ——_—— J log(1l/x%)dx
(log(1/p))3 1adeem
n? i n®
< (l+g.) = J log(l/x)dx + 2¢
— 172 logn 1 log n
0
Thus,
2 + 2
a(n) < (Q+e;) o= log(l/x)dx + 26, —BH——
— 17 2 log n J 1l log n
0
n2
< U%e) 315w

for any preassigned € > O, provided n is sufficiently large. This
proves (6).

The theorem follows by combining (5) and (6). 0O

We mention in passing the following:
Problem. Find an explicit construction for a graph G on n vertices and
cn2 edges (or even cn2/log n edges) which contains no K as a subgraph

m,m
with m = ¢' log n.

H-FREE GRAPHS

At the other end of the spectrum, a large number of papers have
appeared within the last 10 years which deal with the following question.
For a fixed graph H, we say that a graph G is H-free if G contains no
subgraph isomorphic to H. Define a(G;H) to be the minimum number of
factors possible in an H-free decomposition of G.

(BIG) PROBLEM

Determine (or estimate) a(G;H) for various families of G and H.

When G is a complete graph then a(G;H) is what might be thought of
as an inverse "Ramsey number". In particular, if r(H;k) = r denotes
the least integer so that any k-coloring of the edges of Kr always forms
a monochromatic subgraph isomorphic to H, then

a(Kr(H;k);ﬁ) =k + 1

There are a rather large number of recent survey papers covering
this interesting topic, e.g., [Bu 11, (Bu 2], [Be-Ch-Lej, [Parj, (Grj,
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[Bo], [Gr-Rot-SpJ, [Ne-RodJ. Rather than duplicate their contents, we
will restrict ourselves to mentioning several of what we consider to be

the most attractive open problems in the area.

7"
Question (Erdos). Does lim r(Kn;2)l/n

n+e

exist? If so, what is its value?

(It is known that it must be between v¥Z and 4 (see [Gr-Rot-SpJ] or
[Er-SpJ]).

Question [Er-Grj. Is 1t true that if 'I‘m is a tree with m vertices then
for fixed Xk, r(Tm;k) = (l+o(1))mk? It is known [Er-GrJ that it lies
between & (1+o(1))mk and 2(1+o(1))mk.

Question: Is lim r(X ;k)l/k < ?

Koo 3

It is known (Ch 2 that the limit exists and is greater than 3.1
(see [Ch 1]).

Define a family ¢ of graphs to be L-set 1f for some absolute
constant ¢ = ¢{¢),

r(G;2) < cv(G) for all G ¢ G.

Define the (local) edge density p(G) of a graph G by

o~

e(H)

p(G) = max -

HeG
- "
(Strong) Conjecture (Erdos). If p(G) is bounded for G e ¢ theng is an
L-set.

"
cConjecture (Erdos). If Gm has chromatic number m then r(Gm;2) > r(Km;2).

=

Question: Is it true that if H is any Cu-free graph then for any k
there exists another Cu—free graph Gk so that a(Gk;H) > k?

This is known [Ne-Rod] to be true for Km—free graphs and C2m+l-free
graphs.
Problem [Er-Fa-Ro-Scj]. If a(G;Fn) > 2 then how small can e{(G) be (where
Pn denotes the path of length n)?

It is rather embarrassing that at present we can rule out neither

2 nor e(G) < cn!

e(G) > ¢cn
There are many other beautiful problems still open in Ramsey graph
theory which unfortunately we must restrain ourselves (because of space
limitations) from discussing. Many can be found in [Ne-Rod;, [Grj,
IBu 1j, [Bu 2].
We close this section with a final problem which has been annoying
a number of people for (what seems to us to be) an unreasonable length
of time. Let ¢ denote the set of odd cycles. It is not hard to see

that

a(K ;¢) = n, al(K s¢) > n.
2" 2"+
In other words, it is possible to decompose K a into n bipartite graphs
2
but this is not possible for K noc Let L(n) denote the least integer

27°+1
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such that in every decomposition of X n into n subgraphs, some sub-
27°+1

graph has an odd cycle of length at most L(n).

Question: Does L(n) » © ags n + =92

SIMULTANEOUS DECOMPOSITION
Given two graphs G and G' with e(G) = e(G'), by a v-decomposition

r ro,
of G and G' we mean a pair of partitions E(G) = ] E;js E(G') = ] E,
i=1 i=1

such that as graphs, Ei and Ei are isomorphic for all i. The function
U(G,6') is defined to be the minimum value of r for which a U-
decomposition of G and G' into r parts exists. U-decompositions always
exist when e(G) = e(G') since we can choose all the Ei and Ei to be
single edges.

A number of standard graph invariants can be placed into this frame-
work. For example, if G' consists of e(G) disjoint edges then U(G,G')
is just the chromatic index of G (mentioned earlier). When G' is a star
of degree e(G) then U(G,G') is known as the edge-dominating number of G.
Similarly, m?n U(G,G') has been called the thickness, arboricity or

G

biparticity of G (see [Harj], [Har-Hs-Mi}) when G' ranges over all planar
graphs, acyclic graphs or bipartite graphs, respectively.
Several recent papers have dealt with the quantity

U(n) = max U(G,G')
G,G'

where v(G) = v(G') = n (and, of course, e(G) = e(G')). The basic result
is this.
Theorem [Ch~Er-Gr-Ul-Yaj.

U(n) = % n + o(n).

The bound is achieved by (approximately) taking G to be a star of
degree n and G' to be % disjoint triangles.

A rather surprising phenomenon occurs for the analogous function
Um(n), defined by simultaneously decomposing k graphs Gl,...,Gk into
mutually isomorphic subgraphs (so that U(n) = U2(N)). In this case:
Theorem [Ch-Er-Gr 1j. For all k > 3,

Up(n) = % n + o(n)
where the o(n) term depends only on k.

It was completely unexpected that the coefficient % would be
independent of k, for k > 3.

Three graphs which drive U(Gl,G2,G3) up to % n are:

Gl = a star of degree n;

- n 1y

G2 =3 K3 EH

n-vn
2

] disjoint edges together with K/H'
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If the graphs under consideration are restricted to be bipartite
*
then corresponding function Uk(n) satisfies:

* n
Us(n) = 5 + o(n),
* -3
Uk(n) = gn+ o(n).
L.Babai has raised the following tantalizing question.
Question: Is ig true that if for some €3> 0, v(G) = v(G') = n and

e(G) = e(G') > en“ then U(G,G') = o(n)?

(Weak) supporting evidence for an affirmative answer is that all
known examples for achieving U(G,G') = % n + o(n) have, in fact, a
linear number of edges.

The question "Is U(G,G') = 1?," known as the graph isomorphism
problem, has been actively studied recently from an algorithmic point
of view. It is known (see [Luj, [Baj) that for any fixed bound on A(G),
there is a polynomial time algorithm (in v(G)) for testing isomorphism
to G. The general problem for arbitrary graphs has not been shown to be
NP-complete (and, many researchers feel that it is not). However, the
related question "Is U(G,G') = 2?" has been proved by F. Yao [Ya] to be
NP-complete.

For trees T, T', the question "Is U(T,T') = k?" has a polynomial
time solution for k = 1 and is undecided for k > 1.

OTHER DIRECTIONS

In this final section we indicate some of the variations on our
central theme which can be found in the literature.

Suppose Hy denotes thﬁ class of all graphs of diameter exactly 2.
In [Bos~-Er-Roj, Bosédk, Erdos and Rosa show (among other things) that

for any k > 2, there is a complete graph X e <H> which has a de-

composition with exactly k factors (extend?éz)earlier work of (Bos-Ro-
Znj). A number of papers (e.g., [(Zn 1], [Zn 2], [Pa], [To]) have dealt
with questions of a similar type for graphs of diameter d, especially
in the case that all the factors are required to be isomorphic (see
[Ko~Ro] for a survey of these results).

Many of the problems and/or results described in earlier sections
have directed analogues. For example, suppose K; denotes the complete
symmetric directed graph on n vertices. A necessary condition that
K; £ <{C;}> (where C;
n(n=-1) = 0 (mod k).

Conjecture (Bermond): These conditions are sufficient for K; € <{C£}>
except for (n,k) = (4,4), (6,3) and (6,6).
Sotteau [So 2] has shown, for example, that if k > 5 is odd, n > k

denotes a directed k-cycle) is that n > k and

* *
and n = 0 or 1 (mod k) then K e <{ck}>, settling the above conjecture

when k is an odd prime power, or k is odd and n is a prime power. Many
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references to this and related work can be found in [So 1j.

In another direction, one might ask the analogous questions for
hypergraphs (and indeed, people have). Typical results range from the
difficult area of t-designs (see, e.g., [Ra-Wi 3], [Gr-Li-Lj, (Wi 17,
[Br 17), the beautiful theorem of Baranyai on complete hypergraph
decompositions, [Bar], [Caj, (and more generally, hypergraph designs
(see [Br-Schj for a survey) directed hypergraph decompositions ([Ge},
and U-decompositions of hypergraphs (Ch-Er-Gr 2], to name a few. An
especially stubborn problem of this type (and one for which Erdgs is
offering US $500) is the following problem.

Problem. (Erdgs, Faber, LovAsz [Erj]). Suppose F is a family of n
n-sets such that for any F, F' € p, F # F', we have |FnPF'| < 1. 1Is it

true that it is always possible to partition the underlying set u F of
FeF
vertices into n classes C .C, so that [CsnF| <1 for all i and all

XK
F e F?

Some partial results can be found in ([HiyJ.

In most of these variations, one might also ask when resolvable
decompositions are possible, i.e., so that the vertex sets of the factors
can be grouped to form partitions of the factored graph. This topic
also has a wide literature, some of which can be found in [Han-Ray-Wij,
[Han 1], [Ra-Wi 2], [(J 2}, [Ka], and especially [So 1].

FOOTNOTES
Usually we will adopt the graph-theoretic terminology in [Harj.

2. For a detailed treatment of the use of the probabilistic method,
see [Er-SpjJ.
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