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I. INTRODUCTION

Suppose G={G,,G,,...,G,} isacollection of graphs*, all having
the same number of edges. By a U-decomposition of G we mean a set of

partitions of the edge set E(G ) of the G say E(G )= Z E » such that

for each j, all the F. i (1 <i< k), are isomorphic as graphs Define the
function U(G) to be the least possible value of r any U-decomposition
of G can have. Finally, let U, (n) denote the largest possible value UG
can assume where G ranges over all sets of k& graphs each having n ver-
tices and the same number of edges.

In previous work [3], [4], it was shown that
U, (n)— n+ o(n) and U, (n)— n+ o(n)

for any fixed k= 3.

*In general, we follow the terminology of [1].
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In this paper we consider the family, denoted by G(n,e), of all
graphs on n vertices and e edges. Let U(n, ¢) denote U(G(n,e)), and
let U(n) denote the maximum value of U(n, ) over all values of e. It is
easily seen that U, (n) < U(n). We will prove that

Un) = % n+ 0(1).

In particular,

Un,e)=o(n) if e>>n (i.e.,g o(1)).

II. PRELIMINARIES

Before we study U-decompositions of G(n, e), we will state some
auxiliary facts on unavoidable graphs, which were first investigated by two
of the authors in [2]. A graph contained in every graph on n vertices and
e edges is called an (n, e)-unavoidable graph. Let f(n,e) denote the
largest integer m with the property that there exists an (n, e)-unavoidable
graphon m edges. It was proved in [2] that

(i) fin,e)=1 if e< [%J

i) fin,e)=2 if |3] <e<nm

4

i) fin, )= (£)" +0(2) if n<e<n?;

@) ¢ Vibg" <fin, )< c, ‘/ilog”
log (2] —loge log (2] —loge

for dn?<e< (g) _ptte

where ¢, and ¢, are appropriate constants where d, and d, are any

constants satisfying 0 < d, < %, 0< d, < 1. In particular,

V) fin,e)=( +o0(1)¥V2e for §=o(1).

The unavoidable graphs in (i), (ii) and (iii) are disjoint unions of stars.
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In (iv) and (v) the unvoidable graphs involved are disjoint unions of com-
plete bipartite graphs.

Let S; denote a star with i edges and let jS; denote the vertex
disjoint union of j copies of S; We need the following useful facts.

Lemma 1. Suppose G has n vertices and e edges, and has
maximum degree d. For any two integers t and r, if we have

r—1
2

e> n+(t— 1)d+ 12,2

then G contains tSr.

Proof. Suppose k is the largest integer such that kS, is embedded
in G and suppose k<t Let X denote the image of k centersof §s.
Let Y denote the image of kr leaves. Because of the maximality of %,
the induced subgraph of S on Z= V(G)—- X — Y does not contain any
vertex with degree r or more. At most k verticesin X U Y are adjacent
to at least kr vertices in Z. The total number of edges in G is then
bounded above by

((k+21)r) s =+ zl)r)(r— D kd+ k22 <

<r_21n+(t——l)d+ t2r2,

This is a contradiction and Lemma 1 is proved. 1

Lemma 2. Suppose G has n vertices and e edges with

4
on3)=e=mn+s (n>s=0).

Then G has the following properties:

e 2
W If s>—’3, G contains [—’z—-sz—m] (edge-disjoint) copies of

e m?2
msS,. After removing [ui__l"__J copies of mS,, the remaining graph
G' has maximum degree s+ m?. G' contains l% - % - mzj copies of
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(m + 1)S,. After removing [% - % - m2j copies of (m + 1)S, from

G' the remaining graph G" has maximum degree at most %+ 2m?2.

G" contains [% —m?| copies of (m+ 1)S,. After removing these

(m+ 1)S, from G" the remaining graph has maximum degree 4(m + 1)2
and has at most 20(m + 1)3 edges.

(i) If s<%, G contains [%—mzj copies of mSz. After re-
moving [%—-mzj copies of mS,, the remaining graph G' contains

[% —§5— mzj copies of mS,. After removing [% —5— m2J copies of
mS,, the remaining graph G" contains s —m? copies of (m + DS,;.
After removing s — m? copies of (m + l)Sl, the remaining graph has
maximum degree 4(m + 1) and 20(m + 1)? edges.

Proof. The proof proceeds by using Lemma 1 iteratively. We first
prove (i) by proving the following stronger statement.

2
n-—s-—m
—'——2_], the
remaining graph G, contains mS, and G; has maximum degree

<n-2i+ 2.

By removing i copies of mS, from G, i<[

It is clearly true for i= 1 by Lemma 1 (we may assume m > 1 in
(i)). Suppose it is true for j<i. We note that

|E(G)I> e~ 2im>3 + (m—)(n—2i+ 4) + 4m?.

Thus by Lemma 1, G, contains mS, We now embed mS, into G; such
that centers are mapped into vertices with highest degrees if possible. If
there are more than m vertices with degree n — 2i + 3 or more, the total

number of edges in G,_, isthenatleast (n — 2i+ 3)(m+ 1) — m;- 1).
Since G;_; has e — 2(i— 1)m edges, we then have
e=20-Dm>(n -2+ 3Hm+1)— ("3 1),
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m+1

ie. s>n—2i+3—[ 2

This yields a contradiction. The rest of (1) can be proved by using
Lemma 1 repeatedly. (ii) can be proved in a similar fashion. 8

Lemma 3. Suppose G has n vertices and e edges with e=
4

=mn+s=o0mn3) and m>c for some constant c¢. G contains

i@—cm copies of s . After removing 4—n——cm copies of
c 2 [%] c

171s

5 the remaining graph has at most ¢cm?> edges.

c b
1

Proof. It can again be proved by induction that after removing 2i

copies of s the remaining graph has degree at most n — L
2 [_°2L] 2

III. ESTIMATING U(n)

We are now ready to tackle the problem of determining U(n). In
[4] it is proved that Uym)>2n—Vn—1. Thus, U(n)> U,(n)>
= % n— ¥n — 1. We will first prove the following:

Theorem 1. Un,e)<an if e> %.

Proof. We consider all graphs on n vertices and e, edges. We will
remove an (n, e)-unavoidable graph from each graph of edges currently
remaining in each of the graphs. We consider the following cases.

2- n =«
Case 1. n €<e<(2), where €= 10"

In this case, we remove a common subgraph having at least -:7 Ve

edges. Thus, if e; denotes the number of edges remaining in each graph
after i repetitions have been performed then

e. <e.—le.
i €

i+1 i
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It can then be proved by induction that e, < (Ve, — é) since

0
__.1_‘/_.< ‘/—__Z_.z__l. i
iv1 €T e, < (Ve, 26) e(eo 2)

i+ 1,2
<(V%—lze ) :

We apply this process as long as e;> n?-¢ sothat at most 2en sub-
graphs are removed from each graph.
4
Case 2. n3 <e<n?-¢,

In this range, the unavoidable graph has at least ¢y Ve edges (see [2]).
Let e, denote the number of edges remaining in each graph after i sub-
graphs are removed. We have

<ei-—clV?i.

It can be proved by induction that

€iv1

4

-y 1
We apply this process as long as e ;>n 3 5o that at most cn
graphs are removed.

_E
2 sub-

4
Case 3. g<e<n3

In this step, we repeatedly remove unavoidable graphs with

a- e)(%)2 edges. Then

e. 2
1<ei—(;’) :

It can be proved by induction that
S 1
n2 i

Hence, to reach e <§ requires the removal of at most en subgraphs.
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n n
Case 4. e <e<z.

We now use Lemma 3 by choosing ¢ = [%} After removing at
2

most 3en graphs, at most ¢“ edges are left. We then remove one edge

at a time.

Since ey >>n, then e >_6r5 and c¢? < en. Therefore we require at

most an = % steps in the U-decomposition of G(n, €y ). Theorem 1

is proved.
Theorem 2. U(n, cn2) < nlogn forsome constant c.

Proof. The proof is similar to that in Theorem 1 except for taking €

to be H)-(_)%g-n in the proof of Theorem 1. &
Theorem 3. U(n) < % n+ O(1).

Proof. We consider graphs on 7 vertices and e edges. From The-
orem 1 we only have to consider the case that e < 157. We now use
Lemma 2. Let ¢ be equal to 225 and e = mn + r. We consider the fol-
lowing cases.

Case 1. s>%.

Each G in G(n,e) can be decomposed into [-n—:-zs-—:—c-J copies

of mS,, [% - % —c¢] copies of (m+ 1)S, and [% —¢| copies of

(m+ 1)S,. After removing these star-forests, only 4c2 edges are left.
Thus we have

Un, )< |*=5=5) + [5—F—c|+ |5 —c| + 4’ <
<-34£+4c2.
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Case 2. s< %

Each G in G(n,e) can be decomposed into [% - cj copies of
mSz, [% -5 — cj copies of mSl and s—c¢ copies of (m+ 1)S1.
After removing these star-forests, only 4c? edges are left. Thus we have

Un,e) < [%—cj+ l—g——s—cj+s—c’+4c2 <§4@+402'

Therefore U(n) < %ﬂ + 4¢?  and the proof of Theorem 3 is com-
pleted. 1

IV. CONCLUDING REMARKS

Let ¢; denote some appropriate constants. From Theorem 2 we know
that U(n,c,n )< c,nlog n. If we insist that only unavoidable graphs can

c
be used in the U-decomposition, then log3n subgraphs are required since

an (n,cyn 2)-unavoidable graph can have at most ¢ 41 log n edges. Isit true
that U(n, clnz) = ¢ynlogn? Can we do better by using graphs other
than unavoidable graphs in finding minimal U-decompositions of G(n, e)?

In this paper we actually prove that

3

2V 1<Um<3n+cg

There is still room for improvement.

For Uz(n), it can be shown in a similar manner that

2 1 2
§n—§<U2(n)<§n+c7.

It would be of interest to get the exact value for U,(n) (and U(n), for
that matter).
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