COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 37. FINITE AND INFINITE SETS, EGER (HUNGARY), 1981

MINIMAL DECOMPOSITION OF ALL GRAPHS WITH EQUINUMEROUS VERTICES AND EDGES INTO MUTUALLY ISOMORPHIC SUBGRAPHS

F.R.K. CHUNG — P. ERDŐS — R.L. GRAHAM

I. INTRODUCTION

Suppose $\mathbf{G} = \{G_1, G_2, \dots, G_k\}$ is a collection of graphs*, all having the same number of edges. By a *U*-decomposition of \mathbf{G} we mean a set of partitions of the edge set $E(G_i)$ of the G_i , say $E(G_i) = \sum_{j=1}^r E_{ij}$, such that for each j, all the $E_{i,j}$ $(1 \le i \le k)$, are isomorphic as graphs. Define the function $U(\mathbf{G})$ to be the least possible value of r any U-decomposition of \mathbf{G} can have. Finally, let $U_k(n)$ denote the largest possible value $U(\mathbf{G})$ can assume where \mathbf{G} ranges over all sets of k graphs each having n vertices and the same number of edges.

In previous work [3], [4], it was shown that

$$U_2(n) = \frac{2}{3}n + o(n)$$
 and $U_k(n) = \frac{3}{4}n + o(n)$

for any fixed $k \ge 3$.

^{*}In general, we follow the terminology of [1].

In this paper we consider the family, denoted by G(n, e), of all graphs on n vertices and e edges. Let U(n, e) denote U(G(n, e)), and let U(n) denote the maximum value of U(n, e) over all values of e. It is easily seen that $U_k(n) \le U(n)$. We will prove that

$$U(n) = \frac{3}{4} n + O(1).$$

In particular,

$$U(n, e) = o(n)$$
 if $e >> n$ (i.e., $\frac{n}{e} = o(1)$).

II. PRELIMINARIES

Before we study U-decompositions of G(n, e), we will state some auxiliary facts on unavoidable graphs, which were first investigated by two of the authors in [2]. A graph contained in every graph on n vertices and e edges is called an (n, e)-unavoidable graph. Let f(n, e) denote the largest integer m with the property that there exists an (n, e)-unavoidable graph on m edges. It was proved in [2] that

(i)
$$f(n, e) = 1$$
 if $e \le \lfloor \frac{n}{2} \rfloor$;

(ii)
$$f(n, e) = 2$$
 if $\left\lfloor \frac{n}{2} \right\rfloor < e \le n$;

(iii)
$$f(n, e) = \left(\frac{e}{n}\right)^2 + O\left(\frac{e}{n}\right)$$
 if $n \le e \le n^{\frac{4}{3}}$;

(iv)
$$c_1 \frac{\sqrt{e} \log n}{\log \binom{n}{2} - \log e} < f(n, e) < c_2 \frac{\sqrt{e} \log n}{\log \binom{n}{2} - \log e}$$

for $d_1 n^2 < e < \binom{n}{2} - n^{1+d_2}$

where c_1 and c_2 are appropriate constants where d_1 and d_2 are any constants satisfying $0 < d_1 < \frac{1}{2}$, $0 < d_2 < 1$. In particular,

(v)
$$f(n, e) \ge (1 + o(1))\sqrt{2e}$$
 for $\frac{n}{e} = o(1)$.

The unavoidable graphs in (i), (ii) and (iii) are disjoint unions of stars.

In (iv) and (v) the unvoidable graphs involved are disjoint unions of complete bipartite graphs.

Let S_i denote a star with i edges and let jS_i denote the vertex disjoint union of j copies of S_i . We need the following useful facts.

Lemma 1. Suppose G has n vertices and e edges, and has maximum degree d. For any two integers t and r, if we have

$$e \ge \frac{r-1}{2}n + (t-1)d + t^2r^2$$

then G contains tS_r.

Proof. Suppose k is the largest integer such that kS_r is embedded in G and suppose k < t. Let X denote the image of k centers of S_i 's. Let Y denote the image of kr leaves. Because of the maximality of k, the induced subgraph of S on Z = V(G) - X - Y does not contain any vertex with degree r or more. At most k vertices in $X \cup Y$ are adjacent to at least kr vertices in K. The total number of edges in K is then bounded above by

$${\binom{(k+1)r}{2}} + \frac{(n-(k+1)r)(r-1)}{2} + kd + k^2r^2 <$$

$$< \frac{r-1}{2}n + (t-1)d + t^2r^2.$$

This is a contradiction and Lemma 1 is proved.

Lemma 2. Suppose G has n vertices and e edges with

$$o(n^{\frac{4}{3}}) = e = mn + s \quad (n > s \ge 0).$$

Then G has the following properties:

(i) If $s > \frac{n}{2}$, G contains $\lfloor \frac{n-s-m^2}{2} \rfloor$ (edge-disjoint) copies of mS_2 . After removing $\lfloor \frac{n-s-m^2}{2} \rfloor$ copies of mS_2 , the remaining graph G' has maximum degree $s+m^2$. G' contains $\lfloor \frac{s}{2} - \frac{n}{4} - m^2 \rfloor$ copies of

 $(m+1)S_2$. After removing $\left\lfloor \frac{s}{2} - \frac{n}{4} - m^2 \right\rfloor$ copies of $(m+1)S_2$ from G' the remaining graph G'' has maximum degree at most $\frac{n}{2} + 2m^2$. G'' contains $\left\lfloor \frac{n}{2} - m^2 \right\rfloor$ copies of $(m+1)S_1$. After removing these $(m+1)S_1$ from G'' the remaining graph has maximum degree $4(m+1)^2$ and has at most $20(m+1)^3$ edges.

(ii) If $s \leq \frac{n}{2}$, G contains $\lfloor \frac{n}{4} - m^2 \rfloor$ copies of mS_2 . After removing $\lfloor \frac{n}{4} - m^2 \rfloor$ copies of mS_2 , the remaining graph \bar{G}' contains $\lfloor \frac{n}{2} - s - m^2 \rfloor$ copies of mS_1 . After removing $\lfloor \frac{n}{2} - s - m^2 \rfloor$ copies of mS_1 , the remaining graph \bar{G}'' contains $s - m^2$ copies of $(m+1)S_1$. After removing $s - m^2$ copies of $(m+1)S_1$, the remaining graph has maximum degree 4(m+1) and $20(m+1)^2$ edges.

Proof. The proof proceeds by using Lemma 1 iteratively. We first prove (i) by proving the following stronger statement.

By removing i copies of mS_2 from G, $i < \lceil \frac{n-s-m^2}{2} \rceil$, the remaining graph G_i contains mS_2 and G_i has maximum degree $\leq n-2i+2$.

It is clearly true for i = 1 by Lemma 1 (we may assume $m \ge 1$ in (i)). Suppose it is true for j < i. We note that

$$|E(G_i)| \ge e - 2im \ge \frac{n}{2} + (m-i)(n-2i+4) + 4m^2.$$

Thus by Lemma 1, G_i contains mS_2 . We now embed mS_2 into G_i such that centers are mapped into vertices with highest degrees if possible. If there are more than m vertices with degree n-2i+3 or more, the total number of edges in G_{i-1} is then at least $(n-2i+3)(m+1)-\binom{m+1}{2}$. Since G_{i-1} has e-2(i-1)m edges, we then have

$$e-2(i-1)m \ge (n-2i+3)(m+1)-{m+1 \choose 2},$$

i.e.
$$s \ge n - 2i + 3 - {m+1 \choose 2}$$
.

This yields a contradiction. The rest of (1) can be proved by using Lemma 1 repeatedly. (ii) can be proved in a similar fashion.

Lemma 3. Suppose G has n vertices and e edges with $e = mn + s = o(n^{\frac{4}{3}})$ and m > c for some constant c. G contains $\frac{4n}{c} - cm$ copies of $\lfloor \frac{m}{2} \rfloor S_{\lceil \frac{c}{2} \rceil}$. After removing $\frac{4n}{c} - cm$ copies of $\lfloor \frac{m}{2} \rfloor S_{\lceil \frac{c}{2} \rceil}$, the remaining graph has at most cm³ edges.

Proof. It can again be proved by induction that after removing 2i copies of $\lfloor \frac{m}{2} \rfloor S_{\lceil \frac{c}{2} \rceil}$ the remaining graph has degree at most $n - \frac{ic}{2}$.

III. ESTIMATING U(n)

We are now ready to tackle the problem of determining U(n). In [4] it is proved that $U_3(n) \ge \frac{3}{4} n - \sqrt{n} - 1$. Thus, $U(n) \ge U_3(n) \ge \frac{3}{4} n - \sqrt{n} - 1$. We will first prove the following:

Theorem 1.
$$U(n, e) < \alpha n$$
 if $e > \frac{10n}{\alpha}$.

Proof. We consider all graphs on n vertices and e_0 edges. We will remove an (n, e)-unavoidable graph from each graph of edges currently remaining in each of the graphs. We consider the following cases.

Case 1.
$$n^{2-\epsilon} < e \le {n \choose 2}$$
, where $\epsilon = \frac{\alpha}{10}$.

In this case, we remove a common subgraph having at least $\frac{1}{\epsilon} \sqrt{e}$ edges. Thus, if e_i denotes the number of edges remaining in each graph after i repetitions have been performed then

$$e_{i+1} \leq e_i - \frac{1}{\epsilon} \sqrt[V]{e_i}.$$

It can then be proved by induction that $e_i \le \left(\sqrt{e_0} - \frac{i}{2\epsilon}\right)^2$ since

$$\begin{split} e_{i+1} & \leq e_i - \frac{1}{\epsilon} \, \sqrt{e_i} \leq \left(\sqrt{e_0} - \frac{i}{2\epsilon} \right)^2 - \frac{1}{\epsilon} \left(\sqrt{e_0} - \frac{i}{2\epsilon} \right) \leq \\ & \leq \left(\sqrt{e_0} - \frac{i+1}{2\epsilon} \right)^2. \end{split}$$

We apply this process as long as $e_i > n^{2-\epsilon}$ so that at most $2\epsilon n$ subgraphs are removed from each graph.

Case 2.
$$n^{\frac{4}{3}} < e < n^{2-\epsilon}$$
.

In this range, the unavoidable graph has at least $c_1 \sqrt{e}$ edges (see [2]). Let e_i denote the number of edges remaining in each graph after i subgraphs are removed. We have

$$e_{i+1} \le e_i - c_1 \sqrt{e_i}.$$

It can be proved by induction that

$$e_i \le \left(n^{1-\frac{\epsilon}{2}} - \frac{2i}{c_1}\right)^2.$$

We apply this process as long as $e_i > n^{\frac{4}{3}}$ so that at most $c_1 n^{1 - \frac{\epsilon}{2}}$ subgraphs are removed.

Case 3.
$$\frac{n}{\epsilon} < e \le n^{\frac{4}{3}}$$
.

In this step, we repeatedly remove unavoidable graphs with $(1-\epsilon)\left(\frac{e}{n}\right)^2$ edges. Then

$$e_{i+1} \le e_i - \left(\frac{e_i}{n}\right)^2.$$

It can be proved by induction that

$$\frac{e_i}{n^2} \le \frac{1}{i}.$$

Hence, to reach $e \le \frac{n}{\epsilon}$ requires the removal of at most ϵn subgraphs.

Case 4.
$$\frac{n}{2\epsilon} < e < \frac{n}{\epsilon}$$
.

We now use Lemma 3 by choosing $c = \lceil \frac{1}{2\epsilon} \rceil$. After removing at most $3\epsilon n$ graphs, at most c^2 edges are left. We then remove one edge at a time.

Since $e_0 >> n$, then $e > \frac{n}{\epsilon}$ and $c^2 < \epsilon n$. Therefore we require at most $\alpha n = \frac{10n}{\epsilon}$ steps in the *U*-decomposition of $G(n, e_0)$. Theorem 1 is proved.

Theorem 2. $U(n, cn^2) \le n \log n$ for some constant c.

Proof. The proof is similar to that in Theorem 1 except for taking ϵ to be $\frac{1}{100 \log n}$ in the proof of Theorem 1.

Theorem 3. $U(n) < \frac{3}{4}n + O(1)$.

Proof. We consider graphs on n vertices and e edges. From Theorem 1 we only have to consider the case that e < 15n. We now use Lemma 2. Let c be equal to 225 and e = mn + r. We consider the following cases.

Case 1.
$$s > \frac{n}{2}$$
.

Each G in G(n, e) can be decomposed into $\lfloor \frac{n-s-c}{2} \rfloor$ copies of mS_2 , $\lfloor \frac{s}{2} - \frac{n}{4} - c \rfloor$ copies of $(m+1)S_2$ and $\lfloor \frac{n}{2} - c \rfloor$ copies of $(m+1)S_1$. After removing these star-forests, only $4c^2$ edges are left. Thus we have

$$U(n, e) \le \left\lfloor \frac{n - s - c}{2} \right\rfloor + \left\lfloor \frac{s}{2} - \frac{n}{4} - c \right\rfloor + \left\lfloor \frac{n}{2} - c \right\rfloor + 4c^2 \le$$
$$\le \frac{3n}{4} + 4c^2.$$

Case 2.
$$s \leq \frac{n}{2}$$
.

Each G in G(n, e) can be decomposed into $\lfloor \frac{n}{4} - c \rfloor$ copies of mS_2 , $\lfloor \frac{n}{2} - s - c \rfloor$ copies of mS_1 and s - c copies of $(m+1)S_1$. After removing these star-forests, only $4c^2$ edges are left. Thus we have

$$U(n,e) \le \left\lfloor \frac{n}{4} - c \right\rfloor + \left\lfloor \frac{n}{2} - s - c \right\rfloor + s - c' + 4c^2 \le \frac{3n}{4} + 4c^2.$$

Therefore $U(n) \le \frac{3n}{4} + 4c^2$ and the proof of Theorem 3 is completed.

IV. CONCLUDING REMARKS

Let c_i denote some appropriate constants. From Theorem 2 we know that $U(n,c_1n^2) \le c_1n \log n$. If we insist that only unavoidable graphs can be used in the *U*-decomposition, then $\frac{c_3}{\log n}$ subgraphs are required since an (n,c_1n^2) -unavoidable graph can have at most $c_4n \log n$ edges. Is it true that $U(n,c_1n^2)=c_5n \log n$? Can we do better by using graphs other than unavoidable graphs in finding minimal *U*-decompositions of G(n,e)?

In this paper we actually prove that

$$\frac{3}{4} n - \sqrt{n-1} < U(n) < \frac{3}{4} n + c_6.$$

There is still room for improvement.

For $U_2(n)$, it can be shown in a similar manner that

$$\frac{2}{3} n - \frac{1}{3} < U_2(n) < \frac{2}{3} n + c_7.$$

It would be of interest to get the exact value for $U_2(n)$ (and U(n), for that matter).

REFERENCES

- [1] M. Behzad G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Inc., Boston, 1971.
- [2] F.R.K. Chung P. Erdős, On unavoidable graphs, to appear.
- [3] F.R.K. Chung P. Erdős R.L. Graham S.M. Ulam F.F. Yao, Minimal decompositions of two graphs into pairwise isomorphic subgraphs, *Proc. 10th Southeastern Conf. on Comb., Graph Theory and Comp.*, 1979, 3-18.
- [4] F.R.K. Chung P. Erdős R.L. Graham, Minimal decompositions of graphs into mutually isomorphic subgraphs, *Combinatorica*, 1 (1981), 13-24.
- [5] F.R.K. Chung P. Erdős R.L. Graham, Minimal decompositions of hypergraphs into mutually isomorphic subhypergraphs, J. Comb. Theory (A), 32 (1982), 241-251.

F.R.K. Chung - R.L. Graham

Bell Laboratories, Murray Hill, New Jersey 07974, USA.

P. Erdős

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, H-1053, Hungary.