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For a class V of graphs, denote by a(@?) the least value of m so that for some 
graph II on m vertices, every GE Q occurs as a subgraph of U. In this note we 
obtain rather sharp bounds on u(q) when Q is the class of caterpillars on n 
vertices, i.e., tree with property that the vertices of degree exceeding one induce a 
path. 

Recently several of the authors have investigated graphs U(g) which are 
“universal” with respect to various classes Q of graphs. By this we mean 
that every graph G E 59 occurs as a subgraph of U(V). The usual goal has 
been to estimate u(g), the minimum number of edges such a universal graph 
U(g) can have. Typical examples of known results are: 

(i) @I = {trees on n vertices}, 

(f + o(l)) n log n < U(q) < 
( 
& + o(l)) n log n; 

* The work by this author was done while he was a consultant at Bell Laboratories. 
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(ii) Vz = {graphs with n edges}, 

+& < u(K) < (1 + o(1)) n2 zg’n”” n ; (2) 

(iii) %‘j = {trees on n vertices}, u*(gj) defined as the minimum number 
of edges in a universal tree, 

u*(Gq = n (1 +ow)loL7n/lo~4~ (3) 

Proofs of these and other results can be found in [l-7, 10, 111. 
In this note we take up the same question for a special class of trees 

known as caterpillars (in general, we will use the graph theoretic terminology 
of [8]). Specifically, a caterpillar is a tree with the property that its vertices 
of degree greater than one induce a path (see [9] or [ 121 for many other 
characterizations of caterpillars). 

Define c, to be the minimum number of edges a caterpillar can have that 
is universal for all caterpillars with n vertices. Estimates for c, have been 
given by Kimble and Schwenk in [9]. In particular, they show 

(4) 

for n sufficiently large. 
Our main result will be the improvement of the upper bound in (4) to 

(4’) 

for a suitable constant c, which is therefore the best possible up to a constant 
factor. 

COVERING FUNCTIONS ON Z, 

We now shift the scene of our discussion from graphs to functions defined 
on the ring Z,, of integers modulo n. It will be easy to see the relevance of 
results obtained here to the estimation of c,. 

To begin with, for a fixed integer n and functions f: Z, + R +, the set of 
nonnegative reals, and g: Z, + Z +, the set of nonnegative integers, we say 
that f covers g if for some a E Z,, 

f(x) > & + a) for all xEZ,. 

Further, call f Z,,-covering if f covers every g: Z, + Z + with 

w(g) := c g(x) = n. 
XCZ. 

(5) 
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Finally, define A(n) by 

/I(n) = min ( w(f):f is Z.-covering }. 

THEOREM. For appropriate positive constants cl, cz, 

(6) 

Proof: We first show the lower bound. The argument is similar to one 
occurring in [9]. For a number t (which will be specified later; it will be 
about log n), we consider for each t-set T s Z,, the function g, : Z, -+ E ’ by 

gr(x> = LnltJ if xE T, 

=o otherwise, 

where ]xJ denotes the integer part of x. Suppose f covers g, for every such 
TC Z,. Let S denote {x:f(x) > n/t) and s = (S]. Up to cyclic equivalence 
these are at least ( : ) . (t/n) such g,‘s. Since there are just (s) different t- 
subsets of S then we must have 

Thus, 

and 
2--l/l 

w(f)= 2 fix,>++. 
XEZ" 

Choosing t - log n gives 

w(f)& - 

log n l/log n 

( 1 log n n 
= (1 +o(l))e-l& 

(7) 

(8) 

(9) 

as required. 
The proof of the upper bound of (6) will use the so-called probability 

method. Define d to be the integer satisfying 

100 < log, n < eioo, (10) 

where we will use the abbreviation 

log, x = log(log(* . . (log x) * ’ *)), 
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the i-fold iterated (natural) logarithm. For 1 < i < d, define 

Si = n/lOgf n, ki = (log n)/(3 logi+ I n) 

and k, = 1. Note that 

k,<k,<k,<...<k,<iogn 

and 

k, > 
log n 

3 log 100 

For a fixed g:Z,-+Z+ with w(g) = n, define Gi to be the set 
(x E Z,, : n/k, < g(x) < n/k,- i } for 1 Q i < d and let g, denote 1 Gil. Note that 
since n(g) = n then 

(11) 

From this it follows that 

? gi ,< k, < log n* 
iY1 

(12) 

We next defne a random function3 Z, + R + with the following structure. 
For 1 Q i < d, a random subset Si of Z,, with 1 S,j = Si is selected. For each 
x E Si,f(x) will be delined to be n/ki-, . In addition, every x 6Z lJy=‘=, Si will 
have f(x) = n/k,. (Of course, what we are really doing is assigning a 
uniform probability measure to each of the possible functions of this form). 

For such anf, we have 

300 n2 
+- 

log n 

for a suitable c. 
We next must show there is such an f which is Z,-covering. To do this, 

we first estimate the probability that f does not cover a fixed translate of g, 
say g(x + a). Let G,(a) denote the corresponding set G, for this translate of 
g. We are actually going to require f to cover g(x + a) in a special way if it 
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is to be counted as covering g(x + a). We will say that f sharply covers 
g(x + a) if G,(a) z Si, 1 < i < d. 

Since there are (i,) ways of choosing Si, of which (:i~i;) contain G,(a) 
then the pobability that G,(a) s Si is 

Since the d events {G,(a) E S,}, 1 < i < d, are independent then the inter- 
section 

satisfies 

prm)J = fi (:,:p,: )/( s:)* 
Next, observe that for translates g(x + a) and g(x + b) for which 

we have 

i.e., 

Thus, if ,!? denotes 

G,(a) n G,(b) = 0 for all i,j, 

PrWa) I E(b)} < WW)L 

Pr{E(u)nE(b)} & Pr{E(a)} Pr{E(b)}. 

the complement of the event E, 

Pr{E(a)n@)} < Pr(E(a)} Pr{E(b)) 

(13) 

(14) 

(15) 

(16) 

and more generally, if g(x + a,),..., g(x + a,) are “disjoint” translates of g; 
i.e., Gi(uJ) n G&z,) = 0 for all i, j, k, I, then 

Pr /j E(q) < fi Pr{E(ui) . 
I I i=l i=l I 

(17) 

Thus, the probability that f does not sharply cover any of the translates 
g(x + a,),..., g(x + a,) is at most (1 - Pr{E(0)})U, since Pr{E(u)} = Pr{E(O)} 
for all a E Z,. 

At this point it will be useful to find a lower bound on U, the number of 
disjoint translates of g we can find. For any y E H, there are exactly cy= r gi 
translates of g which hit y, i.e., such that y E Uf=, G,(u). Thus, by (12) each 
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translate of g rules out fewer than log* n other translates and so, we can 
certainly find n/log* n disjoint translates of g, i.e., we can take 

u > n/log* n. (18) 

Next, we need an upper bound on the number of different g’s there are. 
For each choice of g,, 1 < i < d, there are at most (i,) ways to select the sets 
Gi. For each x E Gi there are at most 1 + n/k,- r ways to assign a value of g 
to it. The locations of the x E Z, for which g(x) < n/k, are irrelevant, since 
f(x) is always at least n/k, for every x E Z,. 

Thus, a crude upper bound on the total number of g’s with w(g) = n is 

I<i<d 

for n sufficiently large. Since for each one of them, the fraction off’s which 
do not (sharply) cover it is at most (1 - Pr{E(O)})’ then there must exist 
some f which covers all g’s provided 

n3’ogn(l - Pr{E(O)f)U < 1. 

Taking logarithms, by (18) it is enough that 

(19) 

3 log* n + & lodl - WWN) < 0. (20) 

Using (13), the inequality 

and the inequality -x ) log( 1 -- x) for x < 1, it follows that it is enough that 
for n sufficiently large 

> log((3 log4 n)/n>, 

or, since log( 1 - x) > -x - X2 for 0 < X < f, 

d 

c gi log 2 > 6 log, n - log n. 
i=l 

(21) 

But 
2 log n 

10+=210g,+,n=-- 
3ki 
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so that it is enough that 

;iogn < gi 
&, K < log n - 6 log, n. 

However, by (11) this easily holds for n sufficiently large. 
Consequently, there must exist an f of the required form covering all the 

g’s. By the previous calculation, such an f has wdf) < &/log n for some 
fixed c. This proves the theorem. a 

The application of the Theorem to the estimate for c, is immediate. Simply 
observe that a universal caterpillar for n-vertex caterpillars can be formed by 
placingf(x) edges at the “vertex” x E Z,, “opening up” the cycle E, to form 
a caterpillar and joining two copies of this graph together. It seems certain 
that for some c* 

F12 cn - c* logn’ 

It would be interesting to determine the exact value of c* in this case. 
We also note that analogues to the Theorem can be proved in the more 

general setting in which our functions are defined on an n-set S on which 
some permutation group G acts. We can say that f covers g in this case if 
f(x) > g(x”) for some u E G and all x E S. In general, one can ask for 
estimates of the minimum weight a function can have which covers all 
g:s-+IR+ with w(g) = m. However, we will not pursue this here. 
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