Car. Jour. Math. 1 (2), 73-76

ON THE MINIMUM DOMINATING PAIR NUMBER OF A CLASS OF GRAPHS

F.R.K. CHUNG, R.L. GRAHAM, E.J. COCKAYNE & D.J. MILLER

1. Introduction

The closed neighbourhood $N_G X$ of the subset X of vertices of a graph G is defined by

$$N_G X = X \cup \{y \mid (x,y) \in E(G) \text{ for some } x \in X\}.$$

The dominating pair number of G, denoted by DP(G), is the maximum taken over all pairs u, v of vertices of G of the cardinality of $N_G\{u,v\}$. The study of this parameter was first suggested by Bollobás. The purpose of this note is to investigate the function $f(\ell)$, which is the minimum value of the dominating pair number for graphs which have 2ℓ vertices and $\binom{\ell}{2}$ edges. The graph $K_{\ell} \cup \overline{K}_{\ell}$ shows that $f(\ell) \leq \ell+1$. In the next section we exhibit a graph F on 22 vertices and $\binom{11}{2}$ edges with DP(F)=11 and then use F to construct an infinite class of graphs with 2ℓ vertices, $\binom{\ell}{2}$ edges and dominating pair number strictly less than ℓ . The exact determination of $f(\ell)$ remains an open question.

2. Results

The following graph F was obtained during the (vain!) attempt to prove that the dominating pair number of any graph with 22 vertices and $\binom{11}{2}$ edges, is at least 12. F is regular

of degree 5 and one may verify (tediously!) that. DP(F) = 11.

Let $V(F) = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5$ (disjoint union), where $A_1 = \{1,2\}.$

and

$$A_{i+2} = \{3+5i, 4+5i, 5+5i, 6+5i, 7+5i\}$$

for i = 0, 1, 2, 3.

The edges of F are as follows:-

- (i) The subgraph induced by A_1 , A_2 is the complete bipartite graph $K_{2.5}$.
- (ii) For i=1,2,3, A_{i+2} , using the given order of vertices induces a cycle C_5 .
- (iii) Finally, we add the edges of the C_{15} with vertex sequence (8,20,17,19,11,13,10,22,9,16,18,15,12,14,21).

It seemed likely that $f(\ell) \ge \ell$, for all ℓ . This however is false and in fact, using F as the starting point, we now exhibit infinite classes of graphs G with 2ℓ vertices, at

least $\binom{1}{2}$ edges and $DP(G) = \frac{1}{2}/(1 + \alpha/22)$, where α is any

positive rational less than the smaller root of $3x^2-44x+44=0$. This implies, for example, that there exist an infinite number of values of ℓ for which ℓ (ℓ) \leq .954 ℓ .

We first form F_m , the <u>m-expansion of F</u> as follows:-

- (i) Each $x \in V(F)$ is replaced by m copies of x, say x_1, \ldots, x_m , which form a complete graph K_m in F_m .
- (ii) If [x,y] is an edge of F then for all i, j, $[x_i,y_j]$ is an edge of F_m .

The new graph has 22m vertices and its size $e\left(F_{m}\right)$ is given by:-

$$e(F_m) = m^2 e(F) + {m \choose 2} v(F) = 66m^2 - 11m.$$

We now verify that $DP(F_m) = 11m$. We have

$$\boldsymbol{z}_k \in N_{F_m} \{ \boldsymbol{x}_i, \boldsymbol{x}_j \} \quad \text{if and only if} \quad \boldsymbol{z} \in N_F \{ \boldsymbol{x} \}.$$

Hence

$$\left|N_{F_m}\{x_{i},x_{j}\}\right| = 6m.$$

Also

$$z_k \in \mathbb{N}_{F_m} \{x_i, y_j\} \quad \text{if and only if} \quad z \in \mathbb{N}_F \{x, y\} \,.$$

Hence

(2)
$$|N_{F_m}\{x_i, y_j\}| = m |N_F\{x, y\}| \le 11m.$$

From (1) and (2), $DP(F_m) = 11m$ as asserted.

Next, we form the graph F_m^* by adding to F_m a disjoint copy of $K_{\Omega m}$, the complete graph of m vertices, where α is any positive rational less that $\frac{1}{3} (22-4\sqrt{22})$, which is the smaller root of $3x^2-44x+44=0$. We restrict ourselves to values of m for which αm is an even integer.

We note that $v(F_m^*) = (22 + \alpha)m$, $e(F_m^*) = 66m^2 - 11m + {cm \choose 2}$ and observe for $x \in V(F_m)$ and $y \in V(K_{cm})$,

$$|N_{F_m^*}(x,y)| = 6m + \infty < 11m.$$

It follows that $DP(F_m^*) = 11m$ and if $2\ell = (22 + \alpha)m$, then $DP(F_m^*) = \ell/(1+\alpha/22)$.

It remains to show that for sufficiently large m, $e(F_m^*) \ge \left(\frac{1}{2}v(F_m^*)\right)$. A little calculation shows that

(3)
$$66m^2 - 11m + {\alpha m \choose 2} - {m (22+\alpha) \choose 2} = \frac{1}{8} \left[(3\alpha^2 - 44\alpha + 44)m^2 - (44+2\alpha)m \right].$$

By defintion of α , $3\alpha^2 - 44\alpha + 44 > 0$. Therefore, for m sufficiently large, the expression on the right-hand side of (3) is positive as required.

BIBLIOGRAPHY

[1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.

ACKNOWLEDGEMENT

The Canadian authors gratefully acknowledge the support of the Canadian Natural Sciences and Engineering Research Council.

The work was partially completed while the second author was a Lansdowne Fellow at the University of Victoria.

F.R.K. Chung & R.L. Graham Bell Telephone Labs. Murray Hill N.J. 07974, U.S.A.

E.J. Cockayne & D.J. Miller Department of Mathematics University of Victoria Victoria, B.C., Canada V8W 2Y2.