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ON THE MINIMUM DOMINATING PAIR NUMBER OF
A CLASS OF GRAPHS

F.R.K. CHUNG, R.L. GRAHAM, E.J. COCKAYNE & D.J. MILLER

1. Introduction

The closed neiachbourhood .NGX of the subset X of vertices
of -a gravh G is defined by

NeX =XV {y | (x,y) € E(G) for some xE:X}.

The dominating pair number of G , denoted by DP(G), is the
maximum taken over all pairs u, v of vertices of G of the
cardinality of Ng{u,v}. The study of this parameter was
first sugaested by Bollobas. The purpose of this note is to
investigate the function f (%), which is the minimum value of
the dominating pair number for araphs which have 22 vertices

and (g) edges. The qgraph KQIUI_(2 shows that f() < 2 +1. In
the next section we exhibit a gqraph 7 on 22 vertices and (%})
edges with DP(F) = 11 and then use F to construct an infinite
class of araphs with 2% vertices, (g) edges and dominating

pair number strictly less than %. The exact determination of
f(L) remains an open question.

2. Results

The following araph F was obtained during the (vain!)
attempt to prove that the dominating pair number of any araph

with 22 vertices and (éﬂ edges, is at least 12. F is reaqular
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of degree 5 and one may verify (tediously!) that. DP(F) = 11.
Let V(F) = AjUA,VA4,UA,U45 (disjoint union), where

A, = {1,2}

and

A,L.+2 = {3+5%, 4+5¢, 5+5%, 6+57, 7+5%}

for £=0,1,2,3.
The edges of F are as follows:-

(i) The subaraph induced by 4,» A, is the complete bi-

partite graph X, g
14

(ii) Por 1 =1,2,3, Ai+2' using the given order of ver-
tices induces a cycle (Cg.

(iii) Finally, we add the edges of the (;s5 with vertex se-
quence (8,20,17,19,11,13,10,22,9,16,18,15,12,14,21).

It seemed likely that (%) 2 2, for all . This however
is false and in fact, using F as the starting point, we now
exhibit infinite classes of qraphs (G with 2% vertices, at

')
least (2) edges and DP(G) = 2/(1 +a/22), where 0 is any
positive rational less than the smaller root of 3x’- 44x+44= 0,
This implies, for example, that there exist an infinite num-

ber of values of % for which f() < .9544.

We first form F),;,, the m-expansion of F as follows:-

(i) Each x € V(F) is replaced by m copies of x, say
Xyseee, Xy which form a complete aravh K in Fy.

(i1) If [x,y] is an edge of F then for all %, J, [xiryj]
is an edge of 7, .
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The new araph has 22m vertices and its size e¢(Fp) is aiven
by:-

e(Fy) = me (F) + ('g) V(F) = 66m% - 1lm.
We now verify that DP(Fp) = 11m. We have

keNF { 1805 .} if and only if ZENF{.’JC}.

Hence
(n INFm{xi'xj}‘ = 6m.
Also
zkeNFm{xi,yj} if and only if zelNp{x,y}.
Hence
(2) !NFm{xi'yj}‘ = m.IVF{x,y}‘ < 1lm.

From (1) and (2), DP(Fp) = 11m as asserted.

Next, we form the graph F;, by adding to Fy, a disjoint copy
of Kum , the complete qraphlof m vertices, where O is any
positive ratlonal less that 3 (22- 4‘72-2—), which is the smaller
root of 3x?-44x+44 = 0. We restrict ourselves to values of
m for which om is an even integer.

* * 2 om
We note that v(Fp) = (22 +a)m, e(F,) = 66m” - 11m + 5 | and
observe for xe V(Fy) and y e V(Ky,),

‘IVF*{x,y}l = 6m + om < 1llm.

It follows that DP(Fm) = 11m and if 2% = (22 + a)m, then
DP(Fm) =/(1+0a/22).

It remains to show that for sufficiently larae m, e (Fn) 2

1 v(Fp)
2PUmIY A little calculation shows that

am) (_’E(22+<x)
=12

2

3) 2 _ +
( 66m 11lm (2 5

): 'gl'g'[( 302 -440+44)m? - (44+20L)m:| )
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By defintion of o, 3a® - 440 + 44 > 0. Therefore , for m
sufficiently larae, the expression on the right-hand side of
(3) is positive as required.
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