ON UNIVERSAL GRAPHS FOR SPANNING TREES

F. R. K. CHUNG anp R. L. GRAHAM

Introduction

A number of papers [1,2,3,4,6] recently have been concerned with the
following question. What is the minimum number s(n) of edges a graph G on n
vertices can have so that any tree on n vertices is isomorphic to some spanning tree
of G? We call such a graph universal for spanning trees. Since K,, the complete graph
on n vertices (see [5] for terminology), has the required property, it is immediate that

(1) sn) < <;> ~in?.

A previous bound of Nebesky [6] asserted that
n2
) s(n) < (1+o(1))?.

If G is merely required to contain all n-vertex trees as subgraphs (not necessarily
spanning) then the corresponding minimum number s*(n) of edges was shown [4] to
satisfy

3 s*(n) = O(nlogn(loglogn)?).

On the other hand, a degree constraint argument (see [2]) implies at once that

4) s(n) = s*(n) > inlogn.

In this note we close the gap between the lower bound of (4) and the upper
bounds of (2) and (3) considerably. In particular, we prove that

5
< ——nl .
(5) s(n) log4n ogn+0(n)

Preliminaries

We begin with some notation and definitions. By the binary tree with k levels,
denoted by B(k), we mean the graph defined as follows. The vertex set V(k) of B(k) is
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given by
(6) V(k)={oclaz...aj:oz,-=00r1,1<i<j,0<j<k}

where the point denoted by the expression ay; ... o; for j = 0 is called the root of
B(k) and is denoted by . The only edges in B(k) are the pairs

{agoy oo, 000, . 0} and {agay ... a Xy, ...oa;l}.
In Figure 1 we show an illustration of B(4).

*

B(4)
Fi1G. 1

Schematically, we can think of B(k) as being formed from two copies of B(k—1),
denoted by By(k—1) and B, (k— 1), joined to the root  as shown in Figure 2. Note
that B(k) has 2**! —1 vertices.

*

B (k)
FiG. 2

If o=aa,.. aje V(k), j <k, the two vertices o0 = a0y ...0;0  and
al = aa, ... a;1 are called the left and right sons of a, respectively. Also, « is called
the father of a0 and «1, and a0 is called the left-hand brother of al.

We next come to the most important definition in the paper. A subtree A of B(k)
is said to be admissible if one of the following holds:

(i) A is empty;
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(ii) A consists of the single vertex =;

(ili) A has the form shown in either Figure 3(a) or 3(b) where A’ is an admissible
subtree of B(k—1) attached at its root to the indicated vertex (that is, 0 in
(a) and 1 in (b)).

(a) (b)
FiG. 3

If B is a vertex of A, we let v,(f) denote the total number of desdendants of § in
A, that is, sons of B, sons of sons of f, and so forth.

We next form the graph G(k) on the vertex set V (k) as follows. For each vertex
a € V(k), there are edges between a and

(i) every descendant of «,
(i) the left-hand brother of « (if « has one) and its descendants,

(iii) the left-hand brother of the father of «, called § (if it exists), and all of the
descendants of .

Finally, a subgraph G = G(k) is said to be admissible if it is an induced subgraph
of G(k) on the set of vertices of some admissible subtree of B(k).

What we shall prove is that every admissible graph is universal for spanning
trees. In fact, we shall prove by induction on |V(G)| the following stronger statement.

(x) For any tree T with [V(T)| < |V(G)| and for any ve V(T) there is an embedding
A: V(T) - V(G) such that the subgraph induced by V(G)—(V(T)) is admissible and

vo(A(v) < V(T < ve(A(0)*),
where A(v)* denotes the father of A(v) (if it exists).

Before beginning the proof of () we first mention a lemma which will be needed
several times during our proof. Given a tree T and a vertex u of T, by a u-component
of T we mean any component formed by removing u from T. The following result
follows at once from the related theorem in [2].

LeMMA. Let T be a tree with at least k+ 1 vertices. Then for some vertex u, there

is a set of u-components C; of T, 1 < i < t, such that the numbers of vertices [V(C) in
the C; satisfy

(7 k < i V(C)| < 2k.

i=1
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The statement () clearly holds if {V(G)] = 1. We therefore assume that G is a
fixed admissible graph with |V(G)| > 1, and that (*) holds for all admissible graphs
with at most |V(G)|—1 vertices. The assertion also holds when T has one vertex.
Thus, assume that T is a given tree with |V(T)| > 1, that v is a fixed vertex of T and
suppose that (x) holds for G with all trees having at most |V(T)|—1 vertices. There
are now a number of cases to consider.

L. Suppose that G has the form shown in Figure 4, where G, is isomorphic to an
admissible subgraph of G(k—1) (with 0 playing the role of +).

3#

FiG. 4

Case (i), when |V(T)| < |V(G)|. Since G, is admissible and IV(T) < |V(G,)l it
follows by induction that there is an embedding A: T — G, such that G, —A(T) is
admissible and

v6,(H0) < V(T < v, (Aw)*).

By the definition of admissibility, G — A(T) is also admissible. Since Vg, (x) = vg(x) for
x € V(G,) it follows that 1 satisfies all the requirements of ( *).

Case (ii), when |V(T)| = |V(G)|. Form the tree T" by removing the fixed vertex v
from T and connecting up components with additional edges, if necessary. As before,
by induction, there is an embedding ' : T" - G,. Extend A’ to an embedding of T
mto G by defining A'(v) = «. Since

ve(x) < [V(T)|

it follows that A’ satisfies the conditions of (*).

II. - Suppose that G has the form shown in Figure 5, where G, is isomorphic to
an admissible subgraph of G(k—1).

FiG. 5

Case (i), when |V(T)| < |V(G,)|. In this case an argument identical to that in I
shows that the desired embedding exists.
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Case (i), when |V(G,)| < |V(T)|. There are now several subcases to consider.

Subcase (a), when G, consists of a single vertex {1}. Form the tree 7" by
removing v from T and reconnecting the components if necessary. By induction,
since G—G, = G—{1} is admissible, there exists an embedding 1': T' » G—{1}
satisfying (x). Extend 4’ to T by defining A'(v) = 1. Then it is easily checked that
A T — G satisfies (*).

Subcase (b), when G, consists of more than one vertex but 1 has only one son 10
(see Figure 6). There are two cases.

F1G. 6

1. Suppose that |V(T)| < |V(G). In the tree T’ formed from T —{v} by
connecting up components if necessary, choose a vertex v, such that there exists a
collection of v,-components C,, ..., C, having

(8) ve(10) < Y [V(C)l < 2v4(10).
i=1

This is possible (by the Lemma) by the assumption of (ii). We can consider G to have
the form shown in Figure 7 (by the way the edges in G(k) are defined). The circled

portion, denoted by G,, is (isomorphic to) an admissible graph. Hence, by the
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induction hypothesis, there is an embedding

l’:(ig Cu {vl}> — G,

such that
1
6=t ({) o o)
i=1

is admissible and A'(v,) = 10 (by (8)). But G—G, + G;—{1} = G, can be written as
shown in Figure 8. Again by induction, there is an embedding

w(7- C-lt={n}) — G,

»*

00 Ol

G =66 65" {'}

Fi1G. 8

13
with G, — 1" <T— U C,-—{v}—{vl}> admissible. Finally, we form an embedding
i=1
4:T — G by defining

t
i/(x) for X € U Ci U {vl} s
i=1

t
Mx)={ A"(x) forxeT— | C;i—{v,}—{v},
i=1

t

1 forx =v

(since 10 is connected to every vertex in G(k)). Certainly G — A(T) is admissible. Also

v is mapped to the proper place by 1 in order to satisfy (x), so that this subcase is
finished.

2. Suppose that [V(T)| = |V(G)|. In this case the desired embedding must map v
to «. The argument in this subcase is very similar to that in the preceding subcase
(since 1 and * are connected to exactly the same sets of vertices in G), and will not be
given.
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Subcase (c), when G, consists of more than one vertex and 1 has two sons (see
Figure 9).

1. Suppose that |V(T)| < |V(G)|. Then the desired embedding will map v to 1.
In T —{v}, choose v, such that for some collection of v,-components C,, ..., C,,

t
(9) ve(11) < 3 [V(C)l < 2v6(11).
i=1
By induction, T; = | C; u {v,} can be embedded by some mapping 4, into

i=1
G, v {1} so that G; U {1} —4,(T;) is admissible and 4,(v,) = 11 (by (9)). Consider
G — 4,(T,) written as shown in Figure 10. The situation is essentially the same as in

(b)1, Figure 7. The argument used there now applies here with the eventual
conclusion that there is an embedding A: T — G satisfying (%) (in particular, with

A(p) = 1).

2. Suppose that |V(T)| = |V(G)|. The only difference in the argument for this
case from that in (c)1 is that now A(v) = = is required. However, as in (b)1 and (b)2,
there is no essential difference and the subcase can be dealt with without difficulty.

This completes the induction step and () is proved.
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The next step in the proof of (5) is to estimate the number of edges in an
admissible G < G(k) with n vertices. First, we count the number of edges in G(k).
The i-th level of G(k) has 2° vertices. It follows from the way that G(k) is defined that
the average number of edges going down from an i-th level vertex is at most
$-2¥*171 Hence, the total number of edges in G(k) is bounded above by

k—1 ) )
Y 5260l < sk 0k
i=0

For arbitrary n, we form an admissible subgraph G, of G(k), where

-1 <ng 2o

3

as shown in Figure 11. More precisely, n is written as a sum

=
Il
UN
S

I
[=]

AN

G G(k-8)
Fic. 11
where d; = 2‘ or 1. It is easy to see that the number of edges e(G,) of G, satisfies
k
(10) e(G,) < ) e(G(i))e;+0(n)
i=0

where ¢; = 1 if d; = 2' and 0 otherwise. Thus,

k

Y 2ig;+0(n)

k . 5logn
< Y Si- 2 <
e(G,) i;o i-2'%,+0(n) og? |

5
< ——nl .
log4n ogn+0(n)

This completes the proof of (5).

Concluding remarks

It may be possible with a little more care to squeeze the coefficient
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5/log4 = 3.6067... down even further. Conceivably, the right value might even be %
although at present we certainly do not see how to prove this.
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