On Isometric Embeddings of Graphs

R. L. Graham

ABSTRACT

For a finite connected undirected graph G=(V,E) one
can associate a metric d; by defining d;(x,y) to be the
number of edges in a shortest path between x and y, where
x and y are any two vertices in V, the vertex set of G. If
(M,dy) is an arbitrary metric space we say that an embed-
ding AV-M is isometric if for all
X, yEV, dM()\(x),)‘(y))=dG(x,y).

In this note we survey recent results on this topic,
especially in the case in which M is formed from the carte-
sian product of graphs.

1. Introduction

With a finite connected undirected graph® G = (V,E) one can
associate a metric dg.:VXV-N(the set of nonnegative integers) by
defining d;(x,y) to be the number of edges in the shortest path
between x and y for all x,y €V, the vertex set of G. If (M,dy,) is an
arbitrary metric space we say that an embedding \:V-M is isometric 1
if for all x,y €V,

(1) (M (x), M) = dg(x,).
We denote this by G M.

A fair number of papers have appeared in the past few years
which deal with various properties of graphs which have isometric
embeddings in certain metric and semi-metric§ spaces (e.g., see [As1],

*In general, we follow the terminology of [BM].
}1n the literature this is also sometimes said to be “distance preserving. “
§i.e., the triangle inequality may fail (in French, écart).
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[As2], [As3], [AD 1], [ADI2], [ADzl], [ADz2], [Av1], [Av2], [Dew],
[Dezl1], [Dez2], [DR], [Dj], [F], [GP1], [GP2], [HL], [GP2], [HL],
(K1], [K2], [K3]).

In this note we will describe some very recent work in this sub-
ject, and in particular, when the ‘“host“ metric space is itself derived
from a graph.

We should remark here that many of the results we discuss actu-
ally apply to general metric and semi-metric spaces. However, we will
usually restrict ourselves to metrics induced by graphs.

2. Some Background

Some of the early interest in questions of this type were motivated
by the investigation of routing algorithms in data networks ({P], [GP1],
[BGK]). Several of the first results involved the (semi-metric) space §
consisting of the three symbols 0, 1 and *, with the distance dg given
by:

1ifx=0,y=10orx=1,y=1,
ds(x,y) = 0 otherwise

In general, if (M,d),) is a (semi)-metric space there is a natural metric
dys on the cartesian product M" given by:

Forx=(x1,....%5), ¥y =05 ....y)M",

@ dplxy): = k.s::IdM(xk,yk).

FACT ([GPI]). Every finite metric space M can be embedded isometri-
cally into SV for a suitable integer N = N(M).

DEFINITION. For a graph G, denote by N(G) the least integer N so
that G = sV

Let D(G) denote the distance matrix of G. That is, if
V = V(G) = {vy. . . . ,v,} then D(G) = (d;;) is the n by n matrix
defined by setting d;; = dg(v;,v;). Observe that since D(G) is real and
symmetric then the eigenvalues of D(G) are real. Denote the number
of positive, negative and zero eigenvalues of D(G) by n_ (G),n_(G)
and ny(G), respectively.

A basic result concerning N(G) is the following.
THEOREM ([GPI]). For every (connected) graph G,
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3 N(G) = max{n,(G),n_(G)}.

PROOF: Suppose \:G-SV is an isometry (= isometric embedding).
Thus, since

N
dy = g:ld,(k(vi)k,x(vj)k)
where

&) =A@y - N@))

then by the definition of dg, we have the basic decomposition

4) %diﬂi’j = )5 [E xa] [2 xb]

k=1 a€A, b(lk

where

Ay = {a:\(vy), = 0},
By = {b:\(vp), = 1}
and the x; are indeterminates.
We can rewrite (4) as

aca, bes, aca, bea,

(4" ?jdif"i = %ﬁ [2 x; + Exb]z - [2 X, = sz]z

The significance of (4’) is that it represents a decomposition of the qua-
dratic form 3 d;x;x; into a sum and difference of squares. Thus, by
i

J
Sylvester’s “law of inertia“, N = = n _(G) and N = n_(G), i.e.,
N = max{n (G),n_(G)}

and the theorem is proved.O

In [GP1], [GP2], N(G) was determined for a number of classes of
graphs. In particular, it was shown that for complete graphs X, trees
T, and cycles C,, with n vertices:

N(K,) = n—1,
N(T,) = n-1,
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n—1 for n odd,

— for n even.
2

N(C,) =

On the basis of evidence of this type, it was conjectured in [GP1]
that for every graph G with » vertices,

(5) N(G) = n-1
This was finally very recently established by P. Winkler [Win1]
(improving earlier estimates of Yao [Y]).

We point out that the assertion N(K,) = n—1 has the following
equivalent combinatorial interpretation.

FACT ([GP1]). Suppose the edge set of X, is decomposed into ¢ dis-
joint complete bipartite subgraphs. Thent = n—1.

At present no purely combinatorial proof of this is known. How-
ever, Tverberg [Tv] has recently given the following nice algebraic

argument.
Denote the hypothesized bipartite graphs’ vertex sets by A; and
Bk,lskst. Thus,

©) S xx=3 {zxa][sz]

1<i<j<n k=1]aca, bed,
Consider the following system of r+1 homogeneous linear equations in
the n variables x;:

>x,=0, 1sk=1,

I(Ak

and
L]
Exi = 0.
i=1
If (y;. . . . .y,) is any solution to this system then we miust have

A Y2
0= {Eh} = Sy + 23y,
j=1 i=1

i<j

- ?:33"2 + 23 [zxa] [sz]

k=1laca, bed,



ON ISOMETRIC EMBEDDINGS OF GRAPHS 311

i.e., y; = 0 for all i. Hence, the number of equations in the system
must be as large as the number of variables, i.e., t+1 < ». O

3. A Geometric Interpretation of the Tree Theorem

For a tree T,, with n vertices, the equality N(T,)) = n—1 relied on
the fact that any tree T has n, (T) =1 (and consequently,
n_(T) = n—1 since D(T,) has trace 0). This follows from the surpris-
ing fact that det D (T, ) depends only on » and is otherwise independent
of the structure of T,. Specifically, we have:

THEOREM ([GP1]). For a tree T, with n vertices
) det D(T,) = (-1)""}(n—1)2""2,

A straightforward proof is not difficult. One can simply (arbi-
trarily) choose a root in T, and successively subtract the row and
column of each “son“ from those of his “father, « always selecting the
unprocessed vertices furthest from the root. At the termination of this
process the resulting matrix D’ = (d',-j) satisfies

1 ifi=1,j#10orj=1,i#+1,
d'ij= - 2ifi=1,j+1,
0 otherwise

and (7) follows easily.

However, one strongly suspects from the form of (7) that some-
thing deeper must be involved. The fact that the factor n— 1 represents
the number of edges of T, was observed in [GHH] where the following
result was proved.

Let cof (G) denote the sum of the cofactors of the matrix D(G) for
a graph of G.

THEOREM ([GHH]). If G has blocks® G . ...G, then
cof(G) = [cof(Gy) @

*i.e., maximal 2-connected subgraphs
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det D(G) = $det D(Gy) [Teof (Gy) (ii)

k=1

Note that when all cof(G;) # O then (ii) can be rewritten in the
attractive form

g _ ;840G
cof (G) =1 cof (Gy) (ii)

Thus, for T,, all blocks consist of a single edge K, which has
det D(K,) = —1, cof(K,) = —2 and consequently (7) follows at once.

The next result we give generalizes (7) and gives a geometrical
explanation for the factor 2"~2, Consider the set Q" of vertices of the
(usual) unit n-cube in IR?, i.e.,

o"={0,1}"={a=(ay. ....a)a,=00rl,1<k=n}
There is a natural metric dy on 0", called the Hamming metric, given
by
dH((al. - e s ,a,,),(bl. . ,bn)) = &Elak—bkL

i.e., the distance between a and b in Q" is just equal to the number of
coordinate positions in which they differ. Let us call a set S C Q"
full-dimensional if the convex hull of S has positive n-dimensional
volume.

THEOREM 1. If {a; ... .a,} is any full-dimensional set of n+1
points of 0" then

(8) det(dy (3;,3;)) = (-1)*n-2" "1
PROOF: For a; = (a;1, . . . .a;,) write

1 1
@ = 5 T 5%k

where a;; = = 1. Thus
(9) dH(El’a]) = kzllaik - ajk|
= 110, - ayl
= 2?:‘.1 o~ gy

1.2
= a—zl(l—aikajk)
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1 - —
= 5(n—a,--aj)
where @;a; denotes the inner product of the vectors
a; = (a;7, . . ., ;) and a; = (a;;, . . ..a4). It follows from ele-
mentary linear algebra that for any square matrix M = (m,-j), if J is the
matrix with all entries equal to 1 then

(10) det(M+zJ) = det M +z det(m‘-]-—mlj—ml-l-’rmn).

Thus, from (9) we have

(11 det(dH(ai,aJ-)) = det [—;—(n —5,»5]-)]

= _Ej:l-—ldet(af oy n)

=(——21)"—q{det(a‘ ‘a;) = n det(; @;~ayd,;—a, T+ apag)}

= ?_ZITT{dCt(H,‘-aJ') - n det((ai —ao),(a]__ao))}

The determinants which appear in (11) of the form det(ii-fj),
called Gramians, occur frequently in linear algebra. One of their par-
ticularly useful properties is the following.

FACT (see [Ga]). For a set of vectors %y, . . . . X, inlR", the Gramian
det(f,--fj) is just the square of the (m-dimensional) volume of the paral-
lelepiped spanned by the x,.

In particular, in (11) since the n+1@,’s all lie in IR" then
det(a;-a;) = 0. On the other hand, the vectors a;—ag by hypothesis
span an n-dimensional space. It is clear that the parallelepiped they
span has width 2 in each dimension (since all ay = *1), and conse-
quently, has volume 2".

Thus, continuing (11), we obtain

det dyy(@;,a)) = (—_217;1(0-,;-(2")2)
= (-1)"a-2""}

and the theorem is proved. O

Symmetric differences. It is often natural to interpret binary n-
tuples as characteristic functions on the set [n] = {1,...,n} so that each
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a = (aj, . . . .a,) corresponds to a subset §(a) C [n] by
k€ S(a)y<=>aq,=1.
With this association it is easy to see that
dy(a,b) = 1S(a) A S(b)|
where XAY denotes the symmetric difference X/YUY/X of X and Y.

Let us say that a family of subsets of [n] is full-dimensional if the
corresponding n-tuples are. We can restate Theorem 1 in these terms.
THEOREM 1’. Suppose {S,. . . . ,S,} is a full-dimensional family of
subsets of {n]. Then

det(1S,A8)1) = (-1)"n-2""1

The advantage of this formulation is that it can be readily extended to
the following more general situation. Suppose . is a discrete measure
on 2[”], i.e.,

w(k) = 0, k€ [n]
p(X) = Zﬂu(x), x Cnl.

THEOREM 2. Suppose {Sg,...,S,} is a full-dimensional family of
subsets of [n]. Then

(12)  det(u(s,45)) = (-0 T DuEMIu().

The proof of (12), which we will not give here, depends on an
extension of (if)’ appearing in [GHH]. Of course, when w is just the
counting measure, i.e., p(k) = 1 for all k €[n], then (12) reduces to
the previous result.

4. Embedding in the m-Cube.

The cartesian product K3 of K, (the complete graph on two ver-
tices) is usually called the n-cube in the graph theory literature. The
induced metric dx" on K3 is just the Hamming metric dyy. While we
have seen earlier that every graph G embeds 1sometr1cally in
{0,1,*} = SV for some N this is certainly not true for k5. The prob-
lem of characterizing those G for which GdK"' for some m was settled
by the following result of Djokovi¢. First we n“ed a definition.

For two wvertices x and y on a graph G define
N(x,y) := {2€V(G):dg(x,2) < dg(y,2)} (i.e., N(x,y) is the set of
points nearer to x than to y).
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THEOREM (Djokovi¢ [Dj]). G * K7 for some m if and only if
(i) G is bipartite,

(ii) For each edge {x,y} of G, if a,b€N(x,y) and
dg(a,c) + dg(c,b) = dg(a,b) then ¢ € N(x,y). (Of course, this
also applies to N(y,x)).

What (ii) says is that N(x,y) is closed under taking shortest paths.
Note that because of (i), N(x,y) UN(y,x) is actually a partition of the
vertices of G whenever {x,y} is an edge.

In [Dj], Djokovi¢ introduces the following equivalence relation 6
on the edge set E(G) of G by defining:
{x,y} = et et <=> ¢ intersects both N(x,y) and N(y,x).

The corresponding set E(G)/8 of 8-equivalence classes has the foliow-
ing property. Denote by dim(G) the least m such that G 2 k¥ 2 (when
G satisfies (i) and (ii)).
THEOREM (Djokovi¢ [Dj])
dim(G) = card(E(G)/9).
In fact, as pointed out by P. Winkler [Win2], this approach actu-
ally shows that any isometry of G into K % can only have m = dim(G)

(for a larger m none of the additional coordinates are used) and furth-
ermore, the embedding is unique up to symmetries of the m-cube.

The next result ties dim(G) directly to the distance matrix D(G).
THEOREM 3.

(13) dim(G) = n_(G)
PROOF: First, recall from (3) that
N(G) = n_(G).

Next, we claim
G KI=>n,(G) = 1.

This can be seen by observing (as was done in [BG]) in (4") that when
no *’s are used, A UB, is then a partition of V(G) and consequently,
the quadratic form 2dijx;x; is expressible as a sum of one positive
L
square and some negative squares. This implies n (G) =1.
Suppose A\:G-K% is isometry.
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CLAIM: rank (D(G)) = m+1.

PROOF OF CLAIM: On one hand
rank(D(G) = n_(G) + n_.(G)

n_(G)+1

= N({G) +1

=m+1

On the other hand, since G is connected there must exist
VosVLe « v v v, €V(G) such that the set {A(vg),\N(vy),...,A(v,)} is
full-dimensional in K%'. Thus the submatrix
(dg(visv))) = (dg(A(v)), A (v))
is nonsingular (by Theorem 1) and so,
rank(D(G)) =2 m+1
Consequently,
rank(D(G)) = m+1.
which proves the claim, and
n_(G) = m = N(G) = dim(G)
which proves the theorem.O

We note that it follows from these considerations, for example,
that G-K7 then det(D(G)) # 0iff G is a tree.

5. Embedding in Products of Graphs.
A natural extension of the questions raised in the preceding sec-
tion is to attempt to characterize those G for which G SH™ or

G iHlx .+ + XH,, hold, for various choices of H and Hy,...,H,,.

Unfortunately, our knowledge for these more general questions is
rather incomplete at present. In this section we will mention several
results (without proof) which are known.

To begin with, we should observe that no graph H can be a
“universal host“ (i.e., such that every graph G embeds isometrically
into some power of H) since, for example, it is not hard to show that

G 2H™ => x(G) = x(H)

where x denotes chromatic number. (Compare with condition (i) of
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Djokovi¢’s first theorem.) One reason that it was possible for G IS
to hold for any G is that § = {0,1,*} is not a metric space, since
ds(0,1) = 1> 0 = dg(0,*) + dg(*,1)

A more substantial restriction on G is given by the following con-
siderations. For x,y €V(G) define the set

S(x,y) = {z€V(G):dg(x,2) = dg(y,2)}

(the set of points of G at the same distance from x and y). With
N(x,y) and N(y,x) defined as before, define the relation 6 on E(G) as
follows: If e = {x,y} and e’ are edges of G then

e~ e’ <=> ¢'intersects at least two of the sets N(x,y),N(y,x),5(x,y)
It can be checked that 6 is symmetric and reflexive but not transitive

(consider a 5-cycle).

Define 0 to be the transitive closure of 8. Note that 9 is actually
the same equivalence relation given by Djokovi¢ in the case that G is
bipartite.

A basic result concerning 8 is the following.

FACT. Suppose \:G iHlx © - XH,. If {x,y} ~ {x’,y’} and A(x)

and \(y) differ only in their k** components then A(x") and A (y’) differ
only in their k" components.

Of course, if {x,y} is an edge then d;(x,y) = 1 and so A(x) and
A(y) can only differ in one component. This fact can be used to prove
the following result.

THEOREM 4. If G H™ then each connected component C of G

induced by the 8-equivalence classes must satisfy C ZH.

This is a rather strong restriction. It implies, for example, that if
G4 K7 then all such C are either K,'s or Ky's. Letus call G prime if

G iﬂlx c- o XH, =>G -'in for some k. The preceding results
can be used to prove the following.

THEOREM 5. If G has a single 0-equivalence class then G is prime,

For example, it is easy to check that this is the case for the 5-cycle
Cs although it seems to be a rather delicate condition in general. For
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example, for the graphs G and G’ = G—{e} shown in Figure 1, G has
a single 0-equivalence and so, is prime while G’ has three ©-
equivalence classes and in fact, embeds isometrically in X g (We have

shown the appropriate images next to each vertex, where we take

(a) G is prime B G =G - {e}—d»Kg
Figure 1

6. Concluding Remarks

The problem of embedding graphs isometrically into other graphs
is a special case the more general topic of embedding (finite) metric
spaces isometrically into other metric (or semi-metric) spaces. This
topic has an extensive literature, some of which can be found in
[ADz1], [ADz2], [Av3], [K2], [K3]. Of course, many of these more
general results impinge on our studies. For example, it follows from

these considerations that if G iK'3" (or indeed, if G = H™ for any

graph H with at most four vertices) then n,(G) = 1. The reason for
this is as follows.

Lets say that an n by n distance matrix D = (d;;) is of negative
type if
(14) x;p+ - +x,=0,x €R=>Fd;xx; <0.
"!
Similarly, call D hypermetric if
(15) Xy + --- + xn = 1, xk €Z=>2d, in = 0.
¥

Although (14) and (15) are similar, (15) is actually much
stronger. Not only does it imply (14) but also that the space actually
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satisfies the triangle inequality (and many stronger ones), something
that (14) does not do. It is not hard to show that

D is of negative type => n_ (D) = 1.

No example is currently known of a graph G for which n, (G) = 1and
D(G) is not of negative type although such graphs undoubtedly exist.

It turns out that the properties of hypermetricity and negative type
are preserved under taking products and isometric subsets. Thus,

K3 is of negative type (easy to check)
=>K?% is of negative type

=>G 4 K7 is of negative type

=>n, (G)=1

An interesting related question is the following. Suppose X is a
semi-metric space with distance matrix C. Let D®) denote the distance
matrix corresponding to the product space X4, As just remarked, if X
is of negative type then so is X* and consequently n_ (D (")) = 1 for any
k. Does the converse hold? In other words, does n+(D(k)) = 1 for all
k imply that X is of negative type?

It was conjectured at one time by Deza [Dez2] that hypermetricity
was a sufficient condition for isometric embeddability into
li(i.e. ,IR"with d(%,5) = 3 Ix;—y;l). This was shown not to be the case

i
by Avis [Av3] (see also Assouad [As1]), who proved that the graph
K7 — P3 is hypermetric but not isometrically embeddable into ly.
However, it is true [Dez1], [K1] that hypermetricity is a necessary con-
dition for /;-embeddability. In the same spirit it is easy to show that
the graph K3 + {e} (an edge) is of negative type but not hypermetric
(see [AsD2]).

Finally, we arrive at the graph K3 5, which is exceptional in
several respects. Since n_ (K 32 =2, K 3,2 is not of negative type and
therefore not isometrically embeddable into any K%' or evenIR'. In
fact, it is not even a subgraph of K. 1t also turns out that

N(K3,2) =4> max(n+(K3,2),n_(K3,2)) = 3.

showing that equality does not have to hold in (3).

At present no necessary condition is known for a graph to be /;-
embeddable, hypermetric or of negative type. It would seem fruitful
to study the characteristic polynomials of the associated distance
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matrices of various spaces rather than just the signs of the eigenvalues.
This has been initiated for trees in [EGG] and [GL]. It seems quite
likely that our understanding of this whole general area would increase
substantially if the corresponding results were known for more general

graphs, e.g., those G : K7
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