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INTRODUCTION

Mathematics has sometimes been called the science of order. From this point of
view, the guiding principle of Ramsey theory is given by the statement, “Complete
disorder is impossible.” In a nutshell, Ramsey theory is the study of structure invari-
ant under partitions. Typical examples of results in this subject are:

(i) (Adam [0].) Any rearrangement of the integers {1, 2, ..., n? + 1} always
contains a monotone subsequence of length n + 1.

(ii) (van der Waerden [18].) For any partition of the set Z* of positive integers
into finitely many classes, one of the classes must contain arbitrarily long arithmetic
progressions.

(iii) (Ramsey [12].) For any partition of the k-element subsets of Z* into finitely
many classes, some class must contain all the k-element subsets of some infinite
subset X < 77,

(iv) (Hindman [9].) For any partition of Z* into finitely many classes, some class
must contain all the (finite) subset sums of some infinite subset X < Z*.

(v) (Graham et al. [5]; also see [16].) For any integers k, I, and r and any finite
field F, there exists an integer N = N(k, I, r, F) such that if all the k-dimensional
subspaces of an n-dimensional vector space G over F are partitioned into r classes,
then some class must contain all the k-dimensional subspaces of some [-dimensional
subspace of G.

A few remarks may be in order here. First, we should point out that despite their
similar appearance, (iv) is significantly more difficult to prove than (iii). The precur-
sor to (iv) was the theorem of I. Schur [13], who in 1916 showed that if the integers
{1, 2, ..., [er!]} are partitioned into r classes, then some class must contain a
solution to the equation x + y = z. This theme was picked up by Schur’s illustrious
student R. Rado, who, beginning with his dissertation [11] in 1933, developed a
beautiful theory for the “partition regularity” of systems of linear equations. In more
recent times, great progress in these (and other) directions has been made by
Deuber, Nefetfil, R6dl, and many others. A description of much of this work can be
found in [6].

In contrast to (iii) and (iv) there is no infinite analogue to (ii). This can be seen,
for example, by the partition

2% ={x: 2% < x < 2% k> 0) U {x: 22Kt <y < 22KF2, k> 0}.

Finally, we should remark that in some sense the first Ramsey theorem actually
was due to Hilbert [8], who in 1892 proved that for any partition of Z* into finitely
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many classes, some class contains for every m and suitable choices of positive
integers @, a,, ..., a,, all 2™ sums

m
a+ ) ga, whereg =0or 1.
k=1

[This is a special case of (iv).]

EucCLIDEAN RAMSEY THEORY

For Euclidean Ramsey theory, the fundamental problem is this: Which configu-
rations of points C must always occur, up to some Euclidean motion, in a single
class, whenever Euclidean n-space E" is partitioned into r classes?

DeriNiTION. For such C we will say that R(C, n, r) holds.

For example, it is easy to see that if C, is the set of three vertices of some unit
equilateral triangle, then R(C,, 4, 2) holds (by considering the five vertices of a unit
simplex in E*) and R(C,, 2, 2) does not hold (by partitioning E into two classes of
alternating half-open strips of width \/5/2).

The following is typical of some of the many results available along these lines.

Fact. R(C, 6, 2) holds when C is the set of four vertices of some unit square.

Proof. Consider the set S < E® defined by S = {(x;, ..., x¢): x; = 1/\/5 for
exactly two values of i, and x; = 0 for all other values of i}. Any partition of E® into
two classes, say x: E®— {0, 1}, also partitions S into two classes. To each point
s={(sy,..., S¢) € S we can _associate a pair {i, j} by letting i and j denote the two
indices for which s, = 1/\/5. Thus, x induces a partition of the edges of the complete
graph on six points into two classes. By a standard result in (Ramsey) graph theory,
in any such partition there must be a 4-cycle, say

C—»cl—>c2—->c3—>cp

in a single class. It is straightforward to check that this 4-cycle corresponds to the
four vertices of a unit square in S, which proves our claim. ]

It is no accident that in the examples presented thus far, a proof that R(C, n, r)
holds for a particular C was accomplished in fact by selecting a suitable finite subset
of E" and partitioning it (instead of requiring all of E"). A standard compactness
argument (see [6]) shows that this must always be the case.

Before proceeding to more general considerations, we mention a tantalizing
question that, besides being among the most fundamental in the theory, illustrates
more than adequately how little we really know about what is going on in this area.

For this example we take for C the set C* consisting of two points separated by
a distance of 1. It is easy to see that R(C*, 2, 2) holds by considering the three
vertices of a unit equilateral triangle. It is somewhat less obvious (but equally true)
that R(C, 2, 3) holds. In the graph shown in FIGURE 1, all edges represent unit
distances. This graph has the property that it has chromatic number 4, ie., any
3-coloring of the vertices must assign the same color to the two endpoints of some
edge of the graph.
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FIGURE 1. The Moser graph.

In the other direction, suppose E? is tiled by regular hexagons of diameter 9/10.
It is easy to partition these hexagons into seven classes so that no class contains two
points at a distance of 1. Thus, R(C*, 2, 7) does not hold. At present, no one knows
the least value of r such that R(C*, 2, r) does not hold. This is also known as the
chromatic number of F2, denoted by y(E2), since it is the chromatic number of the
(uncountable) graph formed by taking each point of E? as a vertex and each pair
{x, y € E*: distance (x, y) = 1} as an edge. Thus, the best current bounds are

4<yEHY <.

More generally, it has recently been shown by Frankl and Wilson [4] that x(E"),
the chromatic number of Euclidean n-space, grows exponentially in n, verifying an
earlier conjecture of Erdés. The best available bounds for the general case now are

(1 + o()N1.2)" < y(E) < (3 + o(1)".

RAMSEY SETS

A basic concept in Euclidean Ramsey theory is that of a Ramsey set.

DeriNITION. A configuration C is said to be Ramsey if for all r there exists an
N = N(C, r) such that R(C, N, r) holds. The most general result for constructing
Ramsey sets is given by the following.

THEOREM [1]. If C, and C, are Ramsey sets, then the Cartesian product C, x C,
is a Ramsey set.

Since any two-point set is a Ramsey set, any subset of the vertices of a rectangu-
lar parallelepiped (= “brick”) is a Ramsey set. The determination of which n-
simplexes are subsets of bricks is an interesting open problem. It is certainly
necessary that any angle formed by three of the points be less than or equal to 90°.
This also turns out to be sufficient for n = 2 and 3 but not for n = 4.

On the other side of the coin, one might well ask if there are any non-Ramsey
sets. The simplest example of such a set is given by the following result.

THEOREM. Let C = {X, §, z} be a set of three equally spaced collinear points (see
FIGURE 2). Then C is not a Ramsey set.

Proof. To each @t € E? assign the color y(u) = [ - &] (mod 4), where [«] denotes
the greatest integer not exceeding a.
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FIGURE 2

Suppose C = {%, , z} occurs “monochromatically,” ie., for some i, there is a
copy of C in ¥~ (i). Since

a®>=b%+1—2b cos 6,

c2=b%+1+4 2bcos 6,
then

a’ +c?=2b% 42 n

Since x(x) = x(¥) = x(2) = i, then

a*=4k,+i+e, 0<e<l,

b*=4k,+i+e, O0<g<],

=4k +i+e, 0<e <1,
for suitable integers k,, k,, k.. Thus, by (1)

4k, — 2k, +k)—2=—¢,+ 2, — ¢

which is, however, (barely) impossible because of the constraints on the ¢&’s. |

This argument contains the kernel of an idea which when more fully developed
can be used to prove the following result.

THEOREM [1]. If C is a Ramsey set, then C must lie on the surface of some sphere.

This is still the strongest restriction known for Ramsey sets.

A fair number of results in this general spirit appear in [1-3, 14, 17]. Rather than
repeat these, we will conclude the next section with several very recent results which
have not yet appeared in the literature.

EUCLIDEAN RAMSEY THEORY ON THE n-SPHERE

In this section we examine the corresponding questions when the underlying
spaces are unit n-spheres

S"={(x0, X Y XE = l}g !

k=0

and the allowed motions are orthogonal transformations of §" onto itself. The
corresponding Ramsey sets will be called “sphere-Ramsey.” It will turn out that for
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sets X < §" which are not too large (in a sense to be made precise later), results
similar to those preceding hold. For the remaining cases, only very preliminary
results are available, although we suspect that much more is very likely true. We
begin with a necessary condition.

THEOREM. Let X = {X,, ..., X,.} be a set of points in E" such that:
(i) for some nonempty set I < {1, 2, ..., m} = [m], there exist nonzero o, iel,
such that

Y 0% =0;

iel
(ii) for all nonempty J < I,
Y ##0.
jed
Then there exists r = H(X) such that for any N, there is a partition SV = U;=1 C,
such that no C; contains a copy of X.

Proof. Consider the homogeneous linear equation
Y oz =0, @)
iel
By (ii), Rado’s theorem for the partition regularity of this equation over R* (see [6]
or [11]) implies that it is not regular, ie., for some r there is an r-coloring

%: R™— [r] such that (1) has no monochromatic solution. Color the points of
SY ={(xq, ..., xy) € SV: x, > 0} by
1¥X) = x(@ - %),
where @ denotes the unit vector (1, 0, 0, ..., 0). Thus, the color of X e SY just
depends on its distance from the “north pole” of S¥.
For each nonempty subset J = I, consider the equation

Y 4,z =0. @)

jed
Of course, by (ii) this also fails to satisfy the (necessary and sufficient) condition of
Rado for partition regularity. Hence, there is a coloring y, of R* (using r, colors) so

that (2), has no monochromatic (under y,) solution. As before, we can color SY by
giving X € SY the color

X3X) = g% - @).
Now, form the product coloring § of S¥ by defining for x € S¥ ,

2(-2) = (Xl(x)! s XJ()_C)’ . -)s

where the sequence has length 2" — 1 and the indices of the ¥y range over all
nonempty subsets J < I. The number of colors required by the coloring j is at most
oricr s =R
An important property of j is this. Suppose we extend % to Sy ={(xg, ...,
xy) € S¥: xo > 0} by assigning all R colors to any point in SMSY, ie., having
xo = 0. Then the only monochromatic solution to (2) in R* U {0} is z; = O for all
iel
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Next, construct a similar coloring ¥ on $¥ = {—x: x € $¥}, but use R com-
pletely different colors. This assures that any set X that hits both hemispheres S
and S¥ cannot be monochromatic. Finally, we have to color the equator

SVl ={xe 8" x, =0}

By our construction, any copy of X that is not contained entirely in $¥ ! cannot be
monochromatic. Hence, it suffices to color S¥~! avoiding monochromatic copies of
X where we may use any of the 2R colors previously used in the coloring of
S% U SY . By induction, this can be done provided we can so color S'. However,
since m > 1, $' can in fact always be 3-colored without a monochromatic copy of X
(in fact, of any 2-element subset of X since the corresponding graph has maximum
degree 2). This proves the theorem. Jj

Note that if X is a constant distance d # 90° from some point f € S", then X
cannot satisfy both (i) and (ii). For

iel
implies
0=t (Z cx,-)'c,.>= Y ot X
iel iel
=(cos d) - oy
iel
ie.,

since cos d # 0.
However, these are not the only sets not ruled out from being possible Ramsey
sets by the theorem. Another such example is given by the three-point set

R Y

Their linear dependence is given by
ty—t,—ty=0

which does not satisfy (ii).
We restate the theorem in its positive form.

THEOREM'. If X is sphere-Ramsey, then for any linear dependence Y ;. u;%; =0
there must exist a nonempty J < I such that Zjej a;=0.

The next result gives a sufficient condition for a set to be a sphere-Ramsey set.
Let us call an m-dimensional brick with edge lengths 4, 4,, ..., 4,, small if

) 3
i=1

THEOREM. Every small brick is sphere-Ramsey.
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Proof. We sketch the proof (which has the same basic structure as that of the
Hales—Jewett theorem given in [7]). Let a fixed number r of colors be given. For
m = 1, the theorem is immediate: We simply consider the r + 1 points

r+1

P R, S

(ﬁlaoy 0’ -'-90s y)
(07 ﬁl?oy ey 0’ Y)
(O’ 05 ﬂl’“-soa ')))

©,0,0, ...,B,,9),

where 8, = /11/\/5 < 1and y* + B} = 1. These r + 1 points are on §"* . Since they
are r-colored, some pair must have the same color. This pair has distance /31\/_ =
A, , which is the desired conclusion.

In general, for a 4, x --- x 4, brick B, the set S of points we consider is of the
form

Nm Nm—l Nl

© ... Br s 0 0,y By s O, Oy 0, 0,...,B,.... 0, y).

That is, S consists of {N,, + N,,_, + - + N, + 1)-tuples in which exactly one of
the entries in the jth block (of length N)) is §; = 1;/,/2 and all other entries are 0,
with the exception of the last entry

= (1 =) ﬁ,?)m,

chosen so that all points are a unit N-sphere with N =N, + N,,_; + - + N,. The
hypothesis (3) guarantees that y is real. The key to this construction is (as usual) in
the choice of the N;’s. Needless to say, for the proof to work they must grow very
rapidly.

As an example, we consider the case m = 2. Choose Ny =r + 1, N, =" + 1.
An r-coloring x of S induces an r"* !-coloring y’ of the set

N,
S={0,...,8,....0,9)}
by
X6 =xG6), sy, s5€8,
iff
x(s1 1) = x(s5 1)
for all
N,
1

te{0,....8,...,0, )} =T,,



Graham: Euclidean Ramsey Theorems 27

where the concatenation s) ¢ has the obvious interpretation of being an element of S.
Since [S'| = N, =#*' + 1 and §' is " " *-colored, some pair of points 5}, s;, € §' has
x'(s1) = x'(s3), ie., x(s1 1) = x(s3 t) for all t € T;. Since y is an r-coloring and | T; | =
N, =r+ 1, some pair of points ¢, t' € T; has
x(s10) = xsy t).
Of course, this implies
2510 = (ls1 1) = xsy 1) = (s ).

But

(s t, sy £) = B /2 = A4 = d(s t, sy 1),

dsyt, 5,0 = By /2= hy = d(si £, 5, 1)

so that these four points form the desired monochromatic A; x 4, brick.

The general result follows by the same techniques where, in general, we choose
Ny=r+1 and N;,; =1+M""% for j> 1. Specifically, we think of S as
S(m) x T(m), where S(m) consists of the N,, N, -tuples (0, ..., 8., ..., 0) and T(m)
consists of the Ny N, - N, complementary (N, + -+ + N, _; + D-tuples

Nm—l Nm—2 Nl
(. 1T 1 [
O, ooy Bty wvos Bz ooy e e Brs ey D).

The initial 7-coloring x of S induces an r™' " ¥»~t_coloring y' of S(m) by

V6 =o05), 81,5, € Sim),

iff
x(s1t) = x(sht) for all t € T(m).

Since

|S(m)| = N, = 1 + ¢t Nm-1,
there exists a pair of points, say s,, s, € S(m), such that

K51 = x/(s2).
Also, there is induced r-coloring j of T(m) by
=10, teT(m).

By induction, there is a monochromatic 4; x --- x 4, brick under the coloring 7 of
T(m). By the definition of § and y/, this extends to a monochromatic 4, x -+ x 4,
brick in the original coloring of S. ||

By suitable manipulations, it can be shown that the N, satisfy

m
'(r +2)
G2 +2)
r +21m.

N, <
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Bricks that have a main diagonal of length exceeding 2 seem much less tractable,
although we expect that any 4, x -+ x A, brick with
B4 4a2<4
is sphere-Ramsey. We can only prove this in the case m = 1.

THEOREM. Let B be the set {—41/2, 4/2}, where 0 <A < 2. Then B is sphere-
Ramsey.

Proof. Tt is enough to show that the graph G, with vertex set S" and edge set
{{x, y}: d(x, y) = 4} has chromatic number tending to infinity as n tends to infinity
(where d denotes Euclidean distance). To prove this, we use the following recent
result of Franki and Wilson (suggested by Barany, Fiiredi, and Pach).

THEOREM [4]). Let % be a family of k-sets of [n] such that for some prime power g,
[F ~ F'| # k (mod g)

|97ls( " >
qg—1

For a fixed r, choose a prime power ¢ so that
2
(1 + &)gq oy 2(1 + &g ,
(I +eq q—1
where 4 = 28, /24, and choose ¢ > 0 and « so that

o + 21 + e)gf® = 1

and N = (1 + ¢)q is an integer. Consider the set

forall F + F in %. Then

N
S={(s0,.‘.,s2N):so=a, s;=+8, 3. s,~=0}.

i=t

To each s € S associate the subset

F(s) = {i e [2N]: 5; = B}.
Thus, the family

F ={F(s):se S}
consists of the (3') N-element subsets of [2N]. If F, F' € #, F # F', then
|F n F'|= N (mod g)

iff

[FAF|[=N-g=¢q.

If the elements of & are r-colored, then some color class must contain at least

1 2
\F=1 2N - N
r\ N qg—1

~ | =
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elements of #. However, by Frankl and Wilson, if |F n F'| = £q never occurs, then
the number of N-sets must be at most qz—Nl), which is a contradiction. Thus, some
monochromatic pair F, F’ must have

|F ~F|=g¢q.

This means that the corresponding points s, s’ € S must (up to a permutation of
coordinate positions) look like

&q q &q q
[ H 1 T 110 1
s=(,pB,....6 B....B, —B,..., =B, —B, ..., — B,

s=8....8 =B ....,=B B ... —B ..., —h.
| | - Il J L I
£q q £q q

Note that

d(s, s") = W =1
and
d(s, 0) =d(s', 0} = a® + 2(1 + &)gB> =1,
ic., s, 5" € S*M. This proves the theorem.

As remarked previously, one would expect that the corresponding result should
hold for any 4, x --- x 4, brick provided A + --- + 12 < 4. However, we are
unable to prove this for even the case m = 2.

We conclude with a final observation. Many of the results in (Euclidean) Ramsey
theory assert that the desired structure will occur whenever the dimension N of the
space is sufficiently large. The proofs of these results typically end up constructing
N’s that are quite large. In this domain, bounds such as N, < (r + 2)ttm given
before are considered very small. For the finite form of van der Waerden’s theorem,
which asserts for a suitable integer W(k), any 2-coloring of [W(k)] must contain a
monochromatic arithmetic progression of length k, the only known upper bounds
on W(k) are not even primitive recursive (see [6]) (they grow like the Ackermann
function). The best lower bound grows like k - 2. Whether these gigantic upper
bounds are a reflection of the truth or just of our inability to find the right proofs of
these results is not currently known. Some evidence for the former is given by recent
results of Paris, Harrington, and others (e.g, see [6, 10]) who give examples of
combinatorial theorems of this general type which have lower bounds that grow this
fast (and even much faster; see [15] for an amusing account).
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