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ABSTRACT

Let Cla) denote the finite interval graphs representable as intersection
graphs of closed real intervals with lengths in [1, a]. The points of in-
crease for C are the rational a = 1. The set D{a) = [N, CBINC(a) of
graphs that appear as soon as we go past « is characterized up to iso-
morphism on the basis of finite sets Ela) of irreducible graphs for each
rational . With @ = p/q and p and q relatively prime, |Ela)| is computed
for all (p,g) with g <2 and p = g + 1. When g = 1, E(p) contains only
the bipartite star K; ,.,. A lower bound on |E{a)| is given for all rational c.

1. INTRODUCTION

Let C(a) denote the class of nonempty finite interval graphs that have closed-
interval representations in which every interval’s length is between 1 and
a = 1 inclusive. Thus a reflexive graph (X, ~) is in C(a) if 0 < |X]| < « and
there are f, p: X — R such that

p(X) C [1,a]

and, for all x and y in X,

x ~y &), f&) + p0)] N [F().f(3) + p(»] 0.

Correspondence C is strictly increasing in a. Its smallest class is C(1), the class
of finite indifference or unit interval graphs [3, 6]; its upper bound is the class
of finite interval graphs.

Our aim is to describe how C increases as a increases. We show first that it
is left-continuous for every a > 1, i.e.,
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Cle) = |Jc@) foreverya > 1,

B<a

and that it is right-continuous at every irrational a > 1, i.e.,

Cla) = ﬂ c(B) for every irrational a > 1.
B>a
Consequently, the points of increase for C are the rational & = 1. The new in-
terval graphs that appear as soon as we pass beyond such an « are those in

D(e) = [N CBINC(e) .
B>a

Figure 1 pictures graphs in D(2) and DR along with interval representations
with minimum length 1. Every point in a graph has a loop (not shown); inter-
vals are displaced vertically for visualization, and unspecified ends of intervals
appear without short vertical bars. To minimize the longest length that is
needed in a p = 1 representation, we divide the points of X into three parts,
namely short primaries (a, b, c), which get length 1, long primaries (x,y),
which are assigned the same longest length, and secondaries (the s;), which can
have any length between 1 and the long length. It is apparent from the figure
that K| , is not in C(2) but is in C(2 + &) for every 8 > 0. Similarly, the lower
graph is not in C@) but is in C(3/2 + 8) for every & > 0.

Proofs of the preceding continuity assertions for C appear in the next section.
The third section then establishes a precise characterization of D(e) for each ra-
tional « in terms of irreducible graphs. The set of irreducible graphs for « is
denoted by E(ax). The characterization says that (X, ~) is in D(a) if and only if
some induced subgraph of (X, ~) is isomorphic to a graph in E(a), and no in-
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duced subgraph of (X, ~) is isomorphic to a graph in Ug., E(B). The upper
and lower graphs of Figure 1 are respectively in E(2) and EG).

Each E(«a) for rational « is finite. In fact, if « is an integer, then E() is a
singleton whose only member is the bipartite star K ,+,. More generally, when
a = p/q with p and q relatively prime positive integers, each graph in E(a) has
p + q + t points for some 2 < ¢t < 2g. The representation of such a graph
consists of p short primaries, g long primaries, and ¢ secondaries. The primaries
are arranged into alternating runs of shorts and longs that zigzag back and forth
along the line, ending approximately back at the beginning. The secondaries
project off the ends of the long runs, e.g., s; and s, for x, and s, and s, for y in
the lower part of Figure 1.

Figure 2 illustrates this for @ = } with § = short primary, L = long pri-
mary, and s = secondary. The S runs go left-to-right; the L runs right-to-left. A
run of two §’s is followed by a run of two L’s, then a run of five §’s, and fi-
nally a run of two L’s. The last L ends just to the left of the left endpoint of the
initial S, thus completing a circle of p §’s and g L’s. The essential pattern of
the run arrangement appears in the lower part of the figure. Different graphs in
EG) for this pattern are obtained from the interval representation by changing
the lengths of the two inside secondaries: s; can be extended left to intersect s,
and s, can be extended right to intersect s,. However, because of symmetry,
there are three and not four graphs in E() that have the (S,L) pattern shown.
The graph for s; extended and s, not extended is isomorphic to the graph for s;
not extended and s, extended.

The final section of the paper discusses the enumeration of the E(a). We
have already mentioned that |[E(a)| = 1 if « is an integer, and will prove later

that
2n + 1 n+2
E = +1.
‘( 2 )‘ (3) :
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In addition, we show that two basic (S, L) patterns that are not equivalent under
rotation and/or reflection cannot yield isomorphic graphs in E(c). Hence |E()|
is at least as large as the number of nonequivalent (S, L) patterns. This number
is derived from Polya’s enumeration theorem. An additional result then shows

that
+1
A5 =2l () - ()]
q 219 +1\¢q L2q]
which grows exponentially fast as g increases. For example, |E(2)| = 1,
EG| =2, [EQ)| = 4,...,|[Emw)| = 8524, ....

2. CONTINUITY

Theorem 1. C is left-continuous for every o > 1 and right-continuous at
a = 1 if and only if « is irrational.

The proof is based on two lemmas and several auxiliary definitions. We shall
say that a finite, asymmetric partially ordered set (X, <) is an interval order if
there exist f, p: X — R such that, for all x,y € X, p(x) > 0 and

x <y fl+ pl) <f(y).

An interval order (X, <) agrees with an interval graph (X, ~) if ~ is the sym-
metric complement of <, i.e., x ~ y if and only if neither x < y nor y < x.
Every finite interval graph has at least one agreeing interval order—use (f, p)
for (X, ~) to define < by the preceding expression—and, since X is finite, the
set of interval orders that agree with an interval graph is finite.

We refer to (f, p) as a representation of an interval graph or interval order
when it satisfies the requisite interval-intersection or interval-ordering property
for all x,y € X. It will always be assumed that p > 0. Throughout the rest of
this section, we assume that minp(x) = 1 for each representation.

Lemma 1. Suppose a > 1 is the maximum interval length in a particular rep-
resentation of a finite interval graph. Then there is another representation of the
graph with maximum interval length less than a.

Proof. Let (f, p) with maxp(x) = a > 1 be a representation of a finite in-
terval graph (X, ~). Assume with no loss in generality that minf(x) = 0. Let
A > 0 be less than the minimum distance between nonintersecting intervals in
the representation, and for all x define

ry =8 e =22 EL
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It is easily checked that (', p') is a representation of (X, ~) with minp’(x) = 1
and maxp'(x) < a. 1

Lemma 2. Suppose (X, ~) is a finite interval graph. Let 4 = inf{max, p(x)},
where the infimum is over all representations of (X, ~) for which minp(x) = 1.
Then u is rational.

Proof. Given the hypotheses of the lemma, let (X, <) be an interval order
that agrees with (X, ~). By Theorem 7.2 in Fishburn {3] there is a set of strict
inequalities of the form

S < Jpkx), B#ACX, @$#BCX, ANB=90

called the p-ser of (X, <) which has the following property. There exists an f
such that (f, p) is a representation of (X, <) if and only if [given minp(x) = 1
in the present setting] p satisfies the inequalities in the p-set of (X, <).

Let u(X, <) = inf{max, p(x)}, where the infimum is over all representations
of (X, <) for which minp(x) = 1. Modify the p-set of (X, <) by replacing <
with < throughout, and let p* be a solution to the modified p-set that mini-
mizes maxp(x), given minp(x) = 1. Then it is easily seen that small increases
in the values of some p*(x), leaving minp*(x) at 1, will satisfy the original p-
set, and therefore w(X, <) = maxp*(x). Moreover, because minp(x) = 1 and
the coefficients in the modified p-set are integers, maxp*(x) must be rational.

Since every representation of (X, ~) is a representation of one of its agreeing
interval orders, it follows that

= inf{u(X, <): (X, <) agrees with (X, ~)}.

Since the set of agreeing interval orders is finite, and every w(X, <) is rational,
w is rational. Wl

Proof of Theorem 1. Lemma 1 implies that C is continuous from the left
for every a > 1. For right-continuity, suppose first that o is irrational. If C
were not right-continuous at «, then there would be an interval graph in
[Ng>e CBNC(@), so u as defined in Lemma 2 for this interval graph would
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equal «. Since this contradicts the conclusion of Lemma 2, C is right-continu-
ous at every irrational « > 1.

On the other hand, if o = 1 is rational, then E(a) is nonempty, so D(a) is
nonempty and C is not right-continuous at «. An explicit description of one
member of E(c) is shown by the interval representation in Figure 3. We sup-
pose that the graph has p + ¢ + 2 points, where @ = p/q with p and ¢ rela-
tively prime positive integers. There are p short primaries S of length 1 each
that are separated by very small gaps, ¢ long primaries L of length a + & each
that touch end-to-end with & just large enough so that the span of the L’s prop-
erly includes the span of the S’s at both ends, and two secondaries (s) that in-
tersect no S. With the gap length between S’s suitably small and § suitably
small, each internal endpoint in the L run falls within an S interval since p and
q are relatively prime. It is apparent that the interval graph is not in C(a) but is
in C(B) forevery 8 > a. 1

3. CHARACTERIZATION

In view of Theorem 1, we assume throughout the rest of the paper that
a = p/q = 1, with p and q relatively prime positive integers. We first describe
our characterization of D(a), then prove its validity. As noted below, we shall
use lengths ¢ and p instead of 1 and o + 8 for short and long primaries.

Given o = p/q, consider the family of all circles or “rings” of p S’s and ¢
L’s (see Figure 2). Two rings are defined to be equivalent if one can be ob-
tained from the other by rotation and/or reflection (change clockwise to coun-
terclockwise). We shall make no distinction between rings that are equivalent in
this sense: see Figure 4.

Let R(a) denote the family of equivalence classes of rings for a. For conve-
nience, we identify a class in R(a) by an arbitrary ring R in that class. Given
R € R(w), let R* be a list of its p + ¢ symbols for one full revolution around
the circle that begins with S and ends with L. If we begin at $* on the left of
Figure 4 and proceed clockwise, then R* = SSSLLSLLLLLSSSSSSSLLL.

Given R* for R € R(«), construct intervals for its successive S’s and L’s as
follows. (We now use length ¢ for S, length p for L, and open each § interval at

SLLL L L s

* L
s s s s
s s s S
s s S
L L S
S L L S
S s S S
L L L
L o b L L L

u

FIGURE 4. Equivalent rings for « = .
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both ends to avoid intersections.) Assign interval (0, g) to the first S. Suppose
assignments have been made through the ith symbol in R*, i < p + g. If sym-
bol i is § with interval (j,j + g), then

ifi +1isS, assignit(j + q,j + 2g);
ifi +1isL,assignit{j +q —p,j + q].

If symbol i is L with interval [k, k + p], then

ifi + 1isL, assignit [k — p,k];
ifi + 1is S, assign it (k,k + g).

All endpoints (open or closed) have integer values, every endpoint serves ex-
actly two intervals since p and g are relatively prime, and the left endpoint for
the final L is 0 since we went to the right p times with length-g intervals and to
the left g times with length-p intervals.

If some other R* is used in the construction, we obtain either the same set of
intervals, uniformly shifted left or right, or a uniformly shifted reflection of the
original set. Hence the intersection graph of our (p + g)-point interval con-
struction for R is the same regardless of how R* is formed.

Given the interval construction for R*, our final step is the placement of sec-
ondary intervals. These are closed and have lengths anywhere in [g, p]. A sec-
ondary interval is put at each end of each run of L intervals; it just touches that
end and projects away from the run.

Different intersection graphs may be obtained by changing the lengths of the
secondaries. If there are r runs of L’s (hence also of S’s) in R*, there will be 2r
secondary intervals initially. However, some of these may be redundant for a
given set of lengths. In particular, the crucial role of a secondary is to prevent
the interval for an § that is just inside an end of an L run from having any point
outside the interval for that L. Hence, if one secondary touches the right end-
point of one L run and the left endpoint of another L run (and does not go be-
yond those endpoints), then it serves a dual purpose and one of the other initial
secondaries can be deleted. Once such deletions have been made, all ends of L
runs will still be “blocked” by secondaries, and no remaining secondary will be
equivalent to or intersect the same intervals as any other secondary or primary
interval.

Let E(R) denote the set of all nonisomorphic intersection graphs thus con-
structed on the basis of R* with the possible secondary placements, reduced as
just indicated to avoid redundancy. When r is the number of L runs in R*, each
graph in E(R) has at least p + ¢ + 2 + (r — 1) points and no more than
ptgq+2r

Finally, let E(a) be the set of all nonisomorphic graphs in the E(R) for all
R € R(a).
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Theorem 2. A finite interval graph is in D(a) if and only if it has an induced
subgraph in E(a) and has no induced subgraph in U{E(B): 8 > «a, 8 rational}.
In addition, every proper induced subgraph of a graph in E(a) is in C(a).

Let C*(«x) be the class of all nonempty finite interval orders that have closed-
interval representations in which every interval’s length is between 1 and « in-
clusive, or between ¢ and p under uniform rescaling. The proof of Theorem 2
is based on two lemmas for C*. The first, from Fishburn [2] (also [3, Theo-
rem 8.1]), derives from Hanlon’s study [4] of interval graphs.

Lemma 3. A finite interval graph is in C(c) if and only if every interval order
that agrees with the interval graph is in C*(a).

The other lemma, from Fishburn [1] (also [3, Theorem 8.4]), uses compo-
sitions of the ordering relation < and its symmetric complement ~ for an
interval order (X, <). Let < and ~ for ¢ € {1,2,.. .} be respectively the
c-fold compositions of < and ~. Thus, x <°(~°)y if there are z, =
X,23, ...y Zey Ze41 = y such that

21 < (V)2 < (~) 0 < (M)ze < (~)zew
Then, given positive integers ay, b, a,, b,, . .. ,a,,b,,

<% b b, o b

is the composite composition that contains (x,y) if there are x, = X, Y1, X2,
Y25 - - - s X, ¥r, ¥ such that

x; <%y, ~blx2 <%y, ~ba . ‘x, <%y, ~bry .
The composite ~* <% ~% -1 <%-1...~% <% i5 defined analogously.

Lemma 4. A finite interval order (X, <) is in C*(a) if and only if, for all
r €{1,...,q} and all integer vectors (a;, by, ...,a,,b) = (2,2,...,2,1) for
which2a;,=p +rand b, =q +r — 1,

<% bl b C <, ~b gk g C <.

Proof of Theorem 2.  Suppose interval order (X, <) is not in C*(a). Then,
by Lemma 4, it has a restriction on p + g + 2r or fewer points for some
r < g which violates one of the composition-inclusion conditions at the end of
the lemma. Let (Y, ~) be the interval graph for such a restriction. Then, by
Lemma 3, (¥, ~) is not in C(a).

Alternatively, suppose an interval graph (X, ~) is not in C(a). Let (X, <) be
any one of its agreeing interval orders. By Lemma 3, (X, <) is not in C*().
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Hence, by the preceding paragraph, (X, ~) has an induced subgraph (¥, ~) with
|Y| < p + g + 2r for some r < g such that all (Lemma 3) of the interval
orders (Y, <) that agree with (¥, ~) violate one of the composition-inclusion
conditions in Lemma 4.

It follows that the interval graphs that are not in C(a) are precisely those that
have induced subgraphs on p + g + 2r or fewer points for some r < g such
that one (and hence all) of the interval orders that agrees with the induced sub-
graph violates a condition of Lemma 4. At the same time, since D(a) =
[Ng>e C(B)NC(c), the interval graphs in D(a) are precisely those which have
induced subgraphs as just described and do not have any induced subgraph
whose agreeing interval orders violate some composition-inclusion condition of
Lemma 4 applied to all rational 8 > a.

In view of the constructions developed earlier, it is not hard to see that D(a)
is characterized as in Theorem 2. Because the interval graphs that correspond
to an interval order and its dual are identical, it suffices to consider the first
condition at the end of Lemma 4. Suppose this condition is violated, say by

x <‘11y1 ~b1x2 <ﬂzy2 b X, <aryr ~bry ,

and either y < x or y ~ x. Then, in order for the corresponding interval graph
to be in C(B) for every 8 > « [it is not in C(a), as just proved], it must have
an interval representation that adheres to the very tight construction developed
previously. In particular, we must have y ~ x and not y < x, and, in any ~b
path such as y; ~ z, ~ -+ ~ z, ~ X, all points must be distinct and ~ holds
between no other two distinct points in the path. The secondaries referred to
earlier are the turning points X, y;, X2, ¥, . . . , X,, and y,, but not y since the fi-
nal ~ path extends to y, ~b*1 x with b, + 1 = 2. Some secondaries may ap-
pear twice in the composite composition, but all other points (the primaries) are
distinct. The short primaries are the points internal to the <“ compositions, and
the long primaries are the points internal to the ~? compositions. Because

= 2 and b; = 2 (replace b, by b, + 1) in Lemma 4, there are r nonempty
runs of shorts and r nonempty runs of longs. Moreover, there are exactly p
short primaries and ¢ long primaries.

To get an interval representation with the desired length properties whose
corresponding interval graph is not in C(e) but is in C(8) for every 8 > a, it is
necessary to use the zigzag pattern for the short and long runs, with secondaries
projecting off the ends of the long runs. If some secondaries serve a dual pur-
pose as described previously, others can be deleted without changing the fact
that the intersection graph is in D(e), and such deletions are made whenever
possible.

All this translates into the construction described earlier in the section. The
possible patterns of short runs and long runs (up to the circular equivalence) are
given by the rings in R(e) and, for each R € R(a), the graphs in E(R) are
those obtainable from different feasible length assignments to the secondaries
with redundant deletions.
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The final sentence of Theorem 2 says that the graphs in each E(R) are irre-
ducible; i.e., every proper subgraph thereof will be in C(a) instead of not in
C(a@). It is easily seen from the construction of E(R) that if any point in a graph
in E(R) is removed, then slight adjustments of intervals show that the remain-
der is in C(ar). |1

4. ENUMERATION

We conclude with remarks on the cardinalities of the irreducible E(c) families.
Exact counts are given only for ¢ <2 and p = ¢ + 1. A lower bound for
other ¢’s is noted later in the section. Each graph that is counted is non-
isomorphic to every other graph that is counted.

Theorem 3. For every positive integer n,

E(m)| =1  and 'E(z"; 1)' =1+ <” ; 2).

Proof. Clearly, E(n/1) = {K, ,.,}. Henceforth, @ = §(2n + 1). One ring
in R(a) has the two L’s together, with R* = § ... SLL. This has [E(R)| = 1
since neither secondary intersects a short primary.

There are # rings in R(«) with the L’s separated. They are the R, with

R} = (S,t times)L(S,2n + 1 — ¢ times)L

fort =2n,2n — 1,...,n + 1. Figure 5 pictures the full construction of the
preceding section for R*. There are two outside secondaries (unmarked), two
inside secondaries (s, and s,), and all four are essential since no redundancies
can arise. It is easily checked that each of s, and s, can intersect up to
t — n — 1 other intervals that it does not intersect when it has the shortest
length 2. So t — n choices are available for each s;.
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Because of symmetry about the midpoint of the primary span in Figure 5, it
foliows that

1 t—n+1
ER) = =[¢c ~n)?+(t —n)]= :
2 2
Moreover, since the maximal independent sets of graphs in different E(R,) have
different cardinalities, there is no inter-E(R,) isomorphism. Hence

E@=1+ S |E(R,)|—1+2<v+2) 1+("+2). X

Znt 3

n+2

The lower graph in Figure 1 is the one for ("}%) when a = 3.

Our further counts will be based on

E@| = > |ER),

RER(a)

which is a direct consequence of
Theorem 4. If R, R’ € R(a) and R # R', then E(R) N E(R’) = @.

Proof. Let G be a graph in E(R) for R € R(a), with interval representa-
tion H constructed on the basis of R* as described early in the preceding sec-
tion. In view of that construction and the proof of Theorem 2, G could be in
E(R') for some R’ # R in R(a) only if the intervals in H could be relabeled to
yield a different pattern (R’) of p short and g long primaries, with the remaining
intervals (the new secondaries) touching ends of the new L runs in the pre-
scribed manner. In this relabeling, as in the original labeling, each endpoint of
a primary must serve exactly two primary intervals and have an integer value,
the left endpoint and the leftmost L must be the same as the open left endpoint
of the leftmost S, all intervals in S runs fit tightly together, and all adjacent in-
tervals in L runs must just touch at the ends. [If this could be done, then the
new secondaries could be adjusted to give other interval graphs in E(R’).]

We shall show that this cannot be done, i.e., any “new” labeling of the type
described must be the same as the original labeling of H. Clearly, no original S
can be an L under relabeling, nor can it be a secondary under relabeling since it
is open at both ends and therefore could not intersect the end of any relabeled L
run at a single point. Hence the p S’s in H must be the S’s in any relabeling that
has the properties described above.

It follows that the only feasible candidates for different labels are the orig-
inal long primaries (L) and secondaries (s). Any s that is relabeled L must
have length p and have one endpoint at the same point as exactly one of the
$ intervals. Moreover, it must have the proper orientation: for right-end coinci-
dence it goes left from that point; for left-end coincidence it goes right from
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that point. However, any length-p interval of this type (at the end of a run of
adjacent S’s, projecting back across some of those §’s) is in fact one of the
original L intervals. Consequently, the g L’s in H must be the L’s in any fea-
sible relabeling. |

As remarked previously, two rings each consisting of p S’s and g L’s are
considered equivalent if one can be obtained from the other by rotation and/or
reflection. These operations correspond exactly to the action of the dihedral
group D, acting on the set of rings for @ = p/q with n = p t q. Thus, to
count the number of nonequivalent rings, i.e., |R(a)|, we need only apply
Polya’s enumeration theorem (see [5]) to this situation.

This application requires the cycle index of D,, which is given by

Z(D,) = % > dk)sp* +

kin

1 -

3882 nodd,

‘ —

(3% + 51722, neven,

where ¢(k) is the Euler phi function, i.e., the number of integers in [1, k] that
are relatively prime to k. If ¢, is the number of nonequivalent rings with exactly
k S’s (and n — k L’s), then, by Polya’s theorem. the generating function

Clx) = X cx*

satisfies

CW = 5 S0 (1 + 2

k|n
3+ 00 +xH" 2 podd,
HA + )™+ (1 + 0% + xrbay, neven.

For our application we take k = p with & = p/q, p and q relatively prime,
and n = p + q. Then n and p are relatively prime, so the only term of the sum
in C(x) that contributes to the count is the k = 1 term, i.e., (D (1 + x)*/2n,
which generates the term (;)x”/2n. A simple computation based on the parities
of n and p shows that the x” term from the final piece of C(x) is just %(%%@)x" .

Thus

_ o _L(n\ 1 /(lin - 1)
Rl = ¢, = 2n(p> ¥ 2( Lip) ) '

Hence, in view of Theorem 4, we have

Theorem 5.

>_ 1 (pPrq\ 1/(lip+q-1)
lE(o‘)l/2(p+q)<p >+2< LipJ )
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Since this lower bound counts only the nonequivalent ring patterns for a,
and takes no account of changes in the lengths of secondaries, it will be just a
fraction of |E(c)| in most cases. For example, when (p,q) = 2n + 1,2), the
lower bound in Theorem 5 reduces to n + 1, so, by Theorem 3, the ratio of
that bound to |EG(Q2n + )] is 6(n + 1)/[6 + (n + 2)(n + Dn].

In one case, however, equality obtains in Theorem 5, and that occurs when
p=q+ 1

Theorem 6. If p = g + 1, then |[E(R)| = 1 for every R € R(a).

Corollary ‘E(i%l)l ) %[Flr—l (s )+ (LZ;J)]

By Stirling’s formula, |E(%;Y)| =~ K4?/¢> with K = 1/ (2Vm), so even in
this case |E(c)| increases exponentially fast.

We conclude with remarks on the proofs of Theorem 6 and the Corollary.
The latter follows directly from Theorems 4 and 6 along with our calculation of
|R().

Theorem 6 is verified by showing that, in our standard interval assignment
for « = (g + 1)/q presented early in Section 3, no new intersections can be
obtained by increasing the lengths of secondaries from g to ¢ + 1. That is, if
the length of a secondary is changed from ¢ to ¢ + 1, this will not create a
new intersection with a short primary or a long primary or a secondary (of any
length). Since the full proof of this is straightforward, we shall do only one
case to illustrate the procedure.

Suppose L, and L, are long primaries with L; to the right of L. Suppose fur-
ther that L, is at the right end of an L run, so it has a secondary s projecting
from its right endpoint toward L,. A new intersection of s with L, is created
when s increases from length ¢ to g + 1 if and only if the left endpoint of L, is
g + 1 units to the right of the right endpoint of L,. Suppose this is the case,
and, starting from L, and going backward over its L run, ... , until we reach
L, (part of a revolution around the ring), suppose that we encounter a S’s and
b L’s (other than L,) before we get to L,. For convenience, suppose L,’s left
endpoint is at 0. Then its right endpoint is at ¢ + 1, and L,’s left endpoint is
at ga — (g + 1)(b + 1). Thus, with the presumed spread of g + 1 units be-
tween these points, we have ¢ + 1 =1[ga — (¢ + D(d + D] — (¢ + 1),
which reduces to

(@ +1)/g=al/lb+3).

The only way that this can hold is to have a = ¢ + 1, i.e., all §’s are met in
going from L, to L,. But this is impossible since the S that has the same right
endpoint as L, is not between L, and L, in the direction traveled. Alternatively,
since the ratio requires b + 3 = g, exactly one L other than L, and L, is
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missed in going from L, to L,, and since all §’s are supposedly encountered
and one full revolution around the ring must return to the start, the missing L

must cover the (g + 1)-unit gap between L, and L,. But then L, would not be
at the right end of an L run.
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