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ABSTRACT

A connected graph is highly irregular if each of its vertices is adjacent
only to vertices with distinct degrees. In this paper we investigate sev-
eral problems concerning the existence and enumeration of highly
irregular graphs as well as their independence numbers, with particular
focus on the corresponding problems for highly irregular trees.

1. INTRODUCTION

One of the best known classes of graphs is the class of regular graphs. These
graphs have been studied extensively in a variety of contexts. Regular graphs of
degree r and order n exist with only limited, but natural, restrictions. Indeed,
for integers r and n with 0 =< r < n — 1, an r-regular graph of order n exists if
and only if nr is even.

A graph that is not regular will be called irregular. it is well-known (see [1],
for example) that all nontrivial graphs, regular or irregular, must contain at
least two vertices of the same degree. In a regular graph, of course, every ver-
tex is adjacent only to vertices having the same degree. On the other hand, it is
possible for a vertex in an irregular graph to be adjacent only to vertices with
distinct degrees. With these observations made, we now consider graphs that
are opposite, in a certain sense, to regular graphs.

*This subject was inspired by the first author's regular use of the phrase “highly
irregular.”
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FIGURE 1. Two highly irregular graphs.

For a vertex v of a graph H we denote its neighborhood (i.e., the set of ver-
tices adjacent to v) by N(v). We define a connected graph H to be highly irreg-
ular if for every vertex v,

u,w € N(v), u#w, implies that deg,, u # deg, w,

i.e., every vertex of H is adjacent only to vertices with distinct degrees. For
example, the graphs H and I of Fig. 1 are highly irregular.
We begin by stating a sequence of easy observations.

Fact 1. If v is a vertex of maximum degree d in a highly irregular graph H,
then v is adjacent to exactly one vertex of degree k for 1 < k = d.

Fact 2. Let H be a highly irregular graph of order at least 4 having maximum
degree d. Then H contains P, (the path of order 4) as an induced subgraph so
that the vertices of degree 2 in P, have degree d in H and the vertices of
degree | in P, have degree | in H.

Fact 3. A highly irregular graph H with maximum degree d has at least 2d
vertices.

Fact 4. If H is a highly irregular graph with maximum degree d, then a
highly irregular graph having maximum degree d + 1 can be obtained by tak-
ing two copies of H and joining vertices of degree d in the two copies. Further-
more, since K| is a highly irregular graph with maximum degree 0, we see that
for every positive integer d there exists a highly irregular graph H, (which may
always be taken to be a tree) having maximum degree d.

Fact 5. There is no highly irregular graph of order 3 since K; and P, are
the only connected graphs of order 3 and neither of these two graphs is highly
irregular.
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Fact 6. There is no highly irregular graph H of order 5 since, by Fact 3, H
has maximum degree at most 2, and, by Fact 2, H must contain two vertices of
degree 1 at a distance 3 from each other (which is impossible).

Fact 7. Forn =1, 2, 4, and 6 there is a highly irregular graph of order #,
namely, K|, K,, P,, and the graph of Fig. 2.

Fact 8. There is no highly irregular graph of order 7. For if such a graph
exists, then it must have maximum degree 3 and, furthermore, there must be
a vertex not adjacent to any vertex of degree 3 but adjacent to two vertices of
degree 2, which is impossible.

Fact 9. For every positive integer n # 3, 5, or 7, there exists a highly irregu-
lar graph of order n.

Proof. 1t is sufficient to show there is a highly irregular graph of order n
where n = 8.

Suppose now that n = 2d = 8. Let H denote the bipartite graph of order n
having partite sets V = {v,,v,,...,v,} and U = {u, u,,...,u,} and edge set
E(H) = UL E,, where E, = {vu;|d — i + | = = d}. Hence, it follows
that deg, v, = deg, u; = i fori = 1,2,...,d and therefore that H is a highly
irregular graph of order n. Note further that by subdividing the edge v,u,_,
of H, we obtain a highly irregular graph of order n + 1 =2d + 1 = 9. We
may now conclude that there exists a highly irregular graph of every order
n=8 1

Figure 3 illustrates the construction employed in the proof of Fact 9 for
n=38andn = 9.

Fact 10. The size of a highly irregular graph of order n is at most
n(n + 2)/8, with equality possible for n even.

@ -
FIGURE 2. A highly irregular graph of order 6.

Uy Up Uz Ug Uy U2 Uz Ug

Vy Vo Vg Vg Vy Vo Vz Vg
FIGURE 3. Highly irregular graphs of orders 8 and 9.



238 JOURNAL OF GRAPH THEQORY

Proof. The construction of highly irregular graphs of even order n pro-
vided in Fact 8 shows that there exist highly irregular graphs with n(n + 2)/8
edges. Furthermore by Fact 3, every highly irregular graph of order n has maxi-
mum degree at most n/2. Since a vertex of every degree d in a highly irregular
graph is adjacent to exactly one vertex of every degree k, 1 < k =< d, it fol-
lows that there are at least two vertices of every degree k. Hence a highly irreg-
ular graph of order 2m has size at most /2y 20 +24+ -+ +m) =
[m(m + D]/2. Similarly, if the order is 2m + 1, then the size is at most

mm + 1) mim + 2)
2 B 2

m

-+

2
and we are done. 1

2. HIGHLY IRREGULAR GRAPHS CONTAINING A GIVEN GRAPH
AS AN INDUCED SUBGRAPH

In 1936 Kénig [3] proved that if G is a graph with maximum degree d, then
there exists a d-regular graph H containing G as an induced subgraph. In 1963
Erdos and Kelly [2] determined the minimum number of vertices required to
add to a given graph G to produce such a graph H. We now present a result that
may be considered an analogue to Kénig’s theorem for highly irregular graphs.

Theorem 1. Every graph of order n = 2 is an induced subgraph of a highly
irregular graph of order 4n — 4.

Proof. Let G be a graph of order n = 2. If n = 2, then G = K, or
G =K,, and H = P, has the desired properties; thus we assume that n = 3.
Let G’ be another copy of G, where V(G) = {v;|1 =i = n}, V(G') =
{v/|1 =i =n}, and v] corresponds to v; (1 =i =< n). To the graphs G and
G' we add 2n — 4 new vertices u,, u,, ..., u,_, and u,ujs, ..., u, , The ver-
tices v; and v/(1 = i =< pn) and the vertices u;and u/(1 =j =n — 2) consti-
tute the vertex set of the desired graph H. To E(G) U E(G') we add several
additional edges to complete the construction of H. First, for | < j < n, we
Jjoin v; and v/ for all i such that vv, € E(G), and for 1 =j =n — 1 we also
join v; and v/. Then, for | <j = n — 2, we join u;toeachy, with1 =/ <
and join u; to each v with | < | =< j,

The resulting graph H contains G as an induced subgraph. Moreover, for
1=i=n,

degy v, = degy v/ =2n — 1 — i,
whereas for | <i <n — 2,

degy u; = degyu] =i,
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so that H has exactly two vertices of degree i foreachi, 1 =i = 2n — 2. By
the construction of H, no vertex is adjacent to vertices of the same degree, and
H is connected, i.e., H is highly irregular. 1

The proof of the preceding theorem shows that for every graph G of order
n = 2, there exists a highly irregular graph H of order 4n — 4 and maximum
degree 2n — 2 containing G as an induced subgraph. Furthermore, it follows
from the preceding construction that given such an H, we can uniquely recover
the original graph G. This implies that there are at least as many highly irregu-
lar graphs of order 4n — 4 as there are graphs of order n. If, for n = 4, in the
graph- H constructed in the proof of the preceding theorem, we (1) subdivide
the edge v u,, (2) subdivide the edges v,u, and viu; or (3) subdivide the edges
VU, viits, and v,_v,_;, we obtain a highly irregular graph containing G as an
induced subgraph and having order 4n — 3, 4n — 2, or 4n — 1, respectively,
Consequently, there are at least as many highly irregular graphs of order &,
4n — 4 =k = 4n — 1, as there are graphs of order n.

By a suitable choice of the graph G in Theorem 1, the proof of this theorem
shows that there exists a highly irregular graph of order 4n — 4 having clique
number k, for every £ with 2 = k = n. We now show that for n = 3, no larger
clique number is possible.

Corollary 1a. For n = 3, the smallest order of a highly irregular graph with
clique number n is 4n — 4.

Proof. We have already remarked that there exists a highly irregular graph
of order 4n — 4 having clique number n. Let H be a highly irregular graph
containing a set § of n (=3) mutually adjacent vertices. Since each vertex of §
has degree at least n — 1 in H and no two vertices of S have the same degree in
H, it follows that the maximum degree is at least 2n — 2, which implies, by
Fact 3, that H has order at least 4n — 4. |

Corollary la may be restated as follows.

Corollary 1b. For n = 3, the smallest order of a highly irregular graph con-
taining K, as a (n induced) subgraph is 4n — 4.

Corollary 1b shows that the bound presented in Theorem 1 cannot then be
improved in general. We next present a class of graphs where the bound given
in Theorem 1 is not sharp.

Proposition 1. For r = 1, the minimum order of a highly irregular graph
containing the regular complete bipartite graph K(r,7) of order n = 2r as an
induced subgraph is 2n — 2.

Proof. For n = 2, the result is immediate since K(1,1) = K, is itself
highly irregular; thus we assume that n = 4. Denote the partite sets of K(r, r)
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by {v,,v,, ..., v,} and {v], v}, ..., v/}. Since K(r,r) is r-regular and v|, say, is
adjacent to v; (1 =i = r), the maximum degree of any highly irregular graph
H containing K(r,r) as an induced subgraph is at least 2r — 1, implying, by
Fact 3, that the order of H is at least 4r — 2 = 2n — 2. We now construct
such a graph H of order 2n — 2. To K(r,r) we add n — 2 new vertices
Wy Uy, oo Uy, Ui, U5, ..., u_,. To complete the construction of H, for
I =j=r—1, we join 4, to each v; with 1 =i = j and u/ to each v/
with 1 =i = j. Then K(r,r) is an induced subgraph of H, and H is highly
irregular. 11

For even a regular graph G of order n, the problem of determining the mini-
mum order of a highly irregular graph containing G as an induced subgraph
appears to be very difficult. Even G = K, poses great difficulty. We shall
describe this situation in more detail in the last two sections.

3. HOW MANY HIGHLY IRREGULAR GRAPHS ARE THERE?
Let us denote by HI(r) the number of (nonisomorphic) highly irregular graphs
with n vertices. On one hand, one naturally suspects (and we will prove
shortly) that highly irregular graphs are quite rare in the sense that if G(n)
denotes the total number of graphs with n vertices, then
HI(n)/G(n) = 0

as n — o (in fact, exponentially rapidly). On the other hand, an unexpected
corollary of Theorem 1 shows that there are quite a few highly irregular graphs.
In particular,

HI(n) = (1 + o(1))2"*
and so,

HIn) = (1 + o(1)G(n)"'®.

We formalize this in our next result.

Theorem 2.
1 log HI(n) 3
— 4+ ol) < ——= <2 — —1 3+ 0(1) =0.8112 -
i6 "W < Tog Gin) 5 10823 4 oll)

Proof. To prove the right-hand side, observe that, by Fact 10, a highly ir-

regular graph with n vertices can have at most ﬂgz + O(n) edges. Then
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HI(n) < Z 2 _ 2(n2/2)H(1/4)

I <j=n2/8+0(n) J

where H(x) denotes the binary entropy function —(x log, x + (1 — x)
- logy(1 — x)) [so that H(1/4) = 2 — (3/4) log 3]. Since G(n) = 22+t
then the claim follows. By more careful consideration of the vertices of small
degree, it is possible to improve this exponent slightly.

To prove the left-hand side, note that by the remark following Theorem 1,

Hildn — 4) = G(n) .

Since

G(t) = (1 + o(1))2)
then
HI(n) = (1 + o(1))2"*

and the theorem is proved. 1§
It is very likely that log HI(n) ~ cn’ for some constant c.

4. THE INDEPENDENCE NUMBERS OF HIGHLY IRREGULAR
GRAPHS

The definition of highly irregular graphs suggests that these graphs tend to con-
tain large independent sets of vertices. We investigate the independence number
of highly irregular graphs in this section. We begin by showing the existence of
a family {H,,} of highly irregular graphs in which almost all vertices are inde-
pendent, i.e.,

where B(H,,) denotes the independence number of H,, and v(H, ) denotes its
order. It is convenient to first describe a class {G,} of graphs.

It is known (see [1]) that for each positive integer m, there exists exactly one
connected graph F,, of order m with the property that for every pair u, v of
distinct vertices, deg u # deg v, with exactly one exception. In particular,
we may let V(F,,)) = {u,,u,,...,u,}, where

m—iifl=i=<[m/2]
deg u; = . . .
m—i+ 1if[m/2]+1=<i=m.
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Thus F,, has two vertices of degree {m/2] and one vertex of degree i for each
i #|[m/2]and 1 =i =m — 1. Moreover, F,, has clique number {m/2] + |
as every two vertices u; and u; are adjacent, if 1 =i <j =|m/2} + 1. Let
F,, be another copy of F,,, where V(F,) = {v,,v,,...,v,} and v, corresponds
tou, (1 =i =m).

For m = 1, define G,, to consist of F,, and F,, together with the edges u,v,,
where 1 =i = [m/2]. The graph G,, so constructed has order 2m, maximum
degree m, and is highly irregular. The graphs G, and G are shown in Fig. 4.

We are now prepared to present the aforementioned result.

Theorem 3. There exists a family {H,} of highly irregular graphs in which
almost all vertices are independent.

Proof. For a fixed positive integer m, let M = m!, and consider the graph
G,, defined above, where then V(G,,) = {u;,uy,.. .,uy,v,,vy,...,vy}. For
1 = k = m, we introduce a set

Ay = {a, (1), a,(2),...,a,(M/k)}

of M/k vertices. We join a,(1) to u,,u,,...,u,, the vertex a,(2) to
Upiys Ugras - oo Uy vertex a,(3) to iy, Ugeras - - -, Uy, and so on. In general,
then, for each k (1 = k = m), the vertices of A, are joined to disjoint sets of k
vertices u; of G,, and, moreover, each ; is joined to some a, (j) € A,. We then
proceed in a symmetric manner by introducing sets B,, 1 = k = m, of M/k
vertices that are joined as above to the vertices v; of G,,. The resulting graph is
highly irregular and is denoted by H,,.
Since |A,;| = |B,| = M/k,

M=

viH,) = v(G,) +2> M/k

M= 7

i

= 2m![l + (l/k):l

=2m![1 + o(1)] log m.

k=1

Uy vy Uy V4
uz V2 uz V2
us \'e ¢ V3 U3 V3
Ug Vg Ug Vg
Us Vs

Gag Gs

FIGURE 4. Constructing highly irregular graphs.
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()0 (Gn)

is independent in H,, and has cardinality

The set

2 (M/k).

k=

Thus,
BH,) =2m![1 + o(1)] log m

and, consequently,

. B(H,,)
lim=——"=<=1. §
”’l_r’ll V(Hm)
By Theorem 3 we know that there are highly irregular graphs G for which
B(G)/v(G) is close to 1. We show that the maximum degree A(G) of such a
graph G is large.

Theorem 4. If a maximum independent set / of vertices in a highly irregular
graph G satisfies

then A(G) = ™2,

Proof.  Partition I as Uj_, I, where I, is the set of vertices of I having degree
k. Next, partition J = V(G as U;_, J,, where x € J, if and only if x is
Joined to exactly k vertices in /. Thus, if x € J,, then deg x = k.

If x and y are distinct vertices in /,, then, since G is highly irregular, x and y
must have disjoint neighborhoods (in J). Let n = »(G). By hypothesis, then,
Il = n — n/m. Now since

x €1, > |Nx)| =k,
it follows that

Kil=W|l=n—-lll=n—(n —n/m)=n/m.
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Therefore,

n t
— <
m AE B

(n—n/m)Sn—|J[=‘I|=2(|]kIS (logt + 1).

1.7
k m

This implies that log t = m — 2, and, consequently,
AG)=r=e"2 1

We have seen that the independence number of a highly irregular graph can
be proportionally close to its order. We now show that every highly irregular
graph must have a moderately large independence number.

Theorem 5. Every highly irregular graph G contains an independent set of
size at least [log(5 v(G))]/[log 3/2]. On the other hand, there are highly irregu-
lar graphs G’ that have independence number at most [(4 + o(1)) log v(G )]/
[log 3/2].

Proof. Let G be a highly irregular graph of order » and let

be the degree sequence of G. Since every vertex of degree A(G) is adjacent to
exactly one vertex of degree ¢, fori = 1,2,...,A(G), it follows that each i,
1 =i = A(G), occurs as d; for at least two values of j.

We now construct an independent set S of vertices of G as follows. First, we
place a vertex u, of degree 1 in S and delete its neighbor in G. In general,
among all the vertices remaining, select one vertex u; of minimum degree to
add to S and delete its neighbors. The degree of u, in G is no more than half the
number of vertices that have deleted so far. Thus, deg(u;) = (1/2)%'
(deg(u;) + 1) + 1. It is easy to prove by induction that deg(u;,) + 1 = 2 -
(3/2)"". Since =M, (deg(u;) + 1) = v(G), we have

5] = log(5v(G))
log(3/2)
as claimed.

It remains to construct a highly irregular graph G with independence number
(4 + o(1)) log v(G"). To achieve this we will first form a graph L,, (which
is not required to be highly irregular) with independence number [(1 +
o(1)) log 2m]/[log 3/2] and with vertices w, . .., W,, . W, ,, Wwhere

deg w,, = degwyyy =m — 1 + 1

fori =1,2,...,m — 1 and deg w, = m + 1. Such a graph is not difficult to
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construct; for example, one can start with disjoint cliques of sizes [(2/3)m],
L(4/9m], ..., 1(2/3)m],..., and put in appropriate additional edges. Simi-
larly, we construct a closely related graph L, with independence number
[(1 + o(1)) log 2m]/[log 3/2] and with vertices w,, . . . , w,,, where deg w,,_, =
deg w,, = m — i + 1. Now we construct G,, by combining two copies of L, ,
denoted by L\, and L\;, and two copies of L, denoted by L' and ‘> and ad-
ditional vertices X, ..., Xy, Yis- .., Vami1» z and z'. The edge connection
between L,,", L}, and x,. . .., X,,,,, z can be described as follows: for i odd, x;
is adjacent to x;,j # i, to wy;,2j =2m + 2 — i, and to Wor, 2 + 1 =
2m + 2 — i for i even, x, is adjacent to x,,j # i, to wyi, 2 + 1 =2m +
2 — i, and to wy,2j = 2m + 2 — i. Also z is adjacent to x,. The edge con-
nection between L\, LY, and vy, ..., Vs, ,2 is done just the same way. In
addition, x; is adjacent to y;,, 1 =i = 2m + 1. It is not difficult to check that
the resulting graph is highly irregular and has an independence number equal to

(4 + o(l)) log m
log 3/2

as required. 1

5. HIGHLY IRREGULAR TREES

By Fact 4, there exists a highly irregular tree with maximum degree d for every
nonnegative integer d. The proof of this result is based on the fact that if we
Jjoin two vertices of degree d in distinct copies of a highly irregular tree T with
maximum degree d, then a highly irregular tree 7' with maximum degree
d + 1 is produced. By noting that K, is highly irregular and that if T has order
n, then T' has order 2n, we see that there exists a highly irregular tree with
maximum degree d having order 2°. We show that this is the smallest possible
order for such a tree.

Theorem 6. The order of a highly irregular tree with maximum degree d is at
least 27,

Proof. The smaliest highly irregular tree with maximum degree 0, 1, or 2
is K, K,, or P,, respectively; thus, the result is true if d = 2. Hence we assume
that d = 3.

Let v be a vertex of degree & in a highly irregular tree T with A(T) = d = 3.
Let u be a vertex of T adjacent with v, and if k > 1, letv,,v,,...,v,_, be the
remaining vertices of T adjacent with v, where the vertices v, are labeled so that
deg v, = i.

Let f(k) denote the minimum number of edges in the subtree of T that con-
tains uv as well as the component of T — uv containing v. We show that
f(k) = 2*7'. This is certainly the case for k = 1 and k = 2. Assume that
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f(j) =2 "for2 < j < k. Thus,

k—1 k—1
fly=1+ 2 f@)=1+ 227" =2""

as desired.

To complete the proof, consider a vertex x with deg x = A(T') = d. Neces-
sarily, x has a neighbor x’ with deg x’ = d. By the above claim, the total
number of edges in 7T is at least 2f(d) — | (where the subtraction takes into
account the fact that the edge xx’ was counted twice). Therefore, the order » of
T satisfies

n=2f(d) =2 1

Next, we discuss the independence number 8 of highly irregular trees. Un-
like the situation for highly irregular graphs in general, there is no highly irregu-
lar tree almost all of whose vertices are independent. This fact is verified next.

Theorem 7. If Tis a highly irregular tree of order n = 2, then B(T") < 9n/14.

Proof. Let X be a set of B8(T) independent vertices of T and let
Y = V(T)\X. Furthermore, let e(X,Y) denote the number of edges joining X
and Y. Choose y, € Y so that y, has the maximum number of neighbors in X;
denote by N(y,) the set of neighbors of y, in X, and let n(y,) = |N(v,)|. Next
choose y, € Y so that y, has the maximum number of neighbors in X\N(y,).
Denote by N(y,) the set of neighbors of y, in X\N(y,), and let n(y,) = |[N(¥,)|.
Continuing in this manner, we produce a sequence y,, y,, . . . , ¥ of vertices of ¥
so that for every y € Y\{y,,¥,, - . ., ¥} the neighborhood of y in'X is contained
in U, N(y,). Thus,

k

n(y;) = [X].

1

i

Since T is highly irregular, the sum of the degrees of the n(y,) vertices of N(y,)
is at least

L n(y) + 1

>j= :

=1 2

Also, for 1 =i = k, none of the vertices of N(y;) is adjacent to any y, for
Jj < i. It therefore follows that

eX,Y) = é(n(y") * 1) .

i=1 2
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Suppose now, to the contrary, that [X| > 9n/14. Then
X[ >3]

Since |X| > |Y

, n(y;) = 2. We employ the fact that

x| > 3l
to show that n(y,) = 3. Suppose that n(y,) = 2. Let a denote the number of
vertices y; for which n(y,) = 2, and let b denote the number of vertices y, for
which n(y;) = 1. Thus @ + b = k. Observe that
d|<X|=2a+b=a+k=a+]y|

so that @ > (1/2)|Y|. Then

eX,Y) = Y deg x = |X| + a > IJy| + iJy| = 2Jy|

x€X

so that e(X,Y) > 2|Y|. Since n(y,) = 2, there are at most two edges joining y
and X for every y € Y. Consequently, e(X,Y) < 2|Y|, which produces a con-
tradiction. Therefore n(y,) = 3.

Suppose that n(y;) = 3 for 1 =i < s and n(y,) < 2 for i > s, and let
t = |¥Y| — 5. Then

E”()’i) = %t

i>s

by the argument given earlier in the proof. Let
w = 2[”()’[) - 3].
i=1
Then

>nly)=13s +w.

i=1

Hence

R

,Xl = En(yi) + zn(y,») =3 +w+t %(|Y‘ —5)

i=1 i>s
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implying that
s 2 5(x[ = w = 3.
Consequently,
Y| — ¢ =3(x| —w — 3]
so that
r= 2| = 3X] + dw.

Since T is a tree, n > e¢(X,Y). Therefore,

n>elX,Y) = é(n(y,) + ) _ i(n(y,-); 1) . Z<n(y,-)2+ 1>-

= i>s

Observe that

i(n(y, )26s+4w.

Let 7, (j = 1,2) denote the number of vertices y, for which n(y,) = j, so that
ty+t,=t =t Then [X| =3s +w + ¢, + 2t, so that 1, = |[X| — 35 —
w —t and t, = 2t' + 35 + w — |X|. Therefore,

n>6s +4w + 1, + 31,

=6s +4w + 20 +3s +w — X)) + 3(X| =35 —w — ¢)

2w + 2x| - ¢
=2w + 2|X| —¢
= 2w + 2|X| — 2)Y] + 3x| - 3w
=4w + ¥x| - 2n,

from which it follows that
3n > 2X| + iw.
Hence |X| < 9n/14, contrary to our assumption. 1
By a similar but more complicated argument, it can be shown that 3(T) =
12n/19 for every highly irregular tree T of order n = 2, which provides a slight

improvement over the result presented in Theorem 7. Although we do not be-
lieve 12n/19 is the best possible bound for B(T), where T is a highly irregular
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tree of order n, this bound cannot be far from best possible since there exist
highly irregular trees of order n with approximately 13n/21 independent ver-
tices, which we next show.

Consider the trees A and B shown in Fig. 5. (Note the vertices  and u' in A
and vertices v and v’ in B). The tree A is highly irregular, has order 26, and

FIGURE 5. A highly irregular tree and a tree that is not highly irregular.

contains 16 independent vertices (indicated by solid circles). The tree B is not
highly irregular since each vertex of degree 4 or 5 is adjacent to two vertices of
degree 3. The tree B has order 58 and 36 independent (solid) vertices. For
k =1, we contruct a highly irregular tree 7, by taking k + 1 copies
A, Ay, ... A of A, k copies By,B,,...,B,of B and fori = 1,2,... k,
joining v in B; to u in A; and joining v’ in B; to ' in A,,,. Then the tree T, has
order 84k + 26 and 52k + 16 independent vertices. Consequently, the ratio of
the number of independent vertices of T, to its order is for large

52k + 16 13

84k + 26 21

It would be quite interesting to know what the “truth” is in this case.
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