6. On the Distribution
of Monochromatic Configurations

P. Frankl, R.L. Graham and V. Rdl

0. Introduction

Much of Ramsey theory is concerned with the study of structure which is
preserved under finite partitions, (eg., see (8], [9], [12]). Some of the earliest
results in the field were the following.

Schur’s Theorem (1916) [17]. For any partition of the set N of positive
integers into finitely many classes, say N = C, U...UC,, some C; must contain
a set of the form {z,y,z + y}.

Van der Waerden’s Theorem (1927) [19]. For any finite partition of
N = C,U...UC,, some C; must contain arbitrarily long arithmetic progressions.

Ramsey’s Theorem (1930) [16]. For any finite partition of the set () of
k-element subsets of N, say ( ) CyU...UC,, some C; must contain the set
( ) of all the k-element sets of some mﬁmte set X C N.

It is common in Ramsey theory to call the classes “colors”, the parti-
tion into r classes an “r-coloring”, and the objects belonging to a single class
“monochromatic” (cf. [8], [9]).

Each of these results in fact enjoys a “finite” form, which measures the
onset of monochromaticity. We abbreviate the interval {1,2,..., N} by [N].

Schur’s Theorem (finite form). For all r € N there is a least integer Sc(r)
such that in any r-coloring of [Sc(r)] there is a monochromatic set of the form
{z,y,z+ y}.

Van der Waerden’s Theorem (finite form). For any k and r in N there
is a least integer W (k,r) such that in any r-coloring of (W (k,r)] there is a
monochromatic k-term arithmetic progression.

Ramsey’s Theorem (finite form). For any k,! and r in N there is a least
integer R = R(k,l;r) such that in any r-coloring of ([ ]) there is an l-element
set X C [R] with ( ) monochromatic.
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The determination of the true orders of growth of the functions Se(r),
W (k,r) and R(k,!;r) are among the most difficult problems in combinatorics.
Indeed, each new factor of loglogn (or even 2!) is usually considered a signif-
icant achievement in this quest. A fairly complete survey of this work (as of
the time this article is being written) can be found in [10].

In this article we want to focus on somewhat different quantitative aspects
of these partition theorems. In one direction, we will ask not when the desired
monochromatic structure must occur, but rather how many monochromatic
structures we must have as the size of the set. We are partitioning tends to
infinity, and the parameters k,l and r are fixed {(cf. Theorems 1,2 and 3).

In another direction we will investigate a measure of the frequency of
occurrence of monochromatic structures first suggested for Schur’s theorem by
Bergelson (1] (cf. Theorems 4 and 5).

We feel that both types of results can contribute to a deeper understanding
of these (and other related) fundamental partition results and their various
generalizations.

1. Rado’s Theorem

In 1930, R. Rado [15] published a far-reaching generalization of Schur’s theo-
rem, which dealt with solution sets to systems of homogeneous linear equations
over Z. (In fact, this striking work formed the basis of Rado’s dissertation
written under Schur’s direction). To describe his results, we first need some
terminology.

For an I by k matrix A = (a;;) of integers, denote by £ = £(A) the system
of homogeneous linear equations

k
(1.1) Y ez =0, 1<i<l
e
We can abbreviate this by writing
z
_ T2
(1.2) Az =0, 1= = (z1,---,zk)}
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We say that L is partition regular if for any r-coloring of N, there is always
a solution to (1.1) with all z; having the same color.

The matrix A is said to satisfy the Columns Condition if it is possible to
re-order the column vectors @;,as,...,a; so that for some choice of indices
1<k <k2<...<kt=k,ifweset

k;
A= Z a;
J=ki—1+1

then
(1) Al = 6;
(ii) For 1 < ¢ < t, A, can be expressed as a rational linear combination of
a’j’ 1< .7 < ki—l-

A classical results of Rado asserts the following.

Rado’s Theorem ([15], [9]). The system AZ = 0 is partition regular if and
only if A satisfies the Columns Condition.

Let us call a set ¥ C N large if for any partition regular system Az = 0
and finite coloring of ¥, there is always a monochromatic solution to Az = 0.
It was shown by Deuber (3] (settling a conjecture of Rado) that large sets have
the following partition property: If ¥ is large and ¥ = ¥; U... U X, then for
some ¢, X; is large. We next introduce some notation due to Deuber 3].

Definition. D(m,p,¢,) := {(A1,...,Am) : for some i < m, A; = 0 for j <
t, Ay =¢>0and |X¢| < pfor k > 1}

A set S C Z* is called an (m, p, ¢)-set if

m
$ ={>_ Xvi: (A1, Azs--.,Am) € D(m, p,c)}
i=1
for some choice of y1,y2,...,ym > 0.

As shown by Deuber, sets of solutions for partition regular systems Az = 0
correspond to subsets of (m, p, ¢)-sets in the following way. Let A be an ! by k
matrix satisfying the Columns Condition, and let A;, A,,..., A; be the column
vector sums coming from the definition of the Columns Condition. We can
assume without loss of generality that A has rank I. Then there exist k — [

linearly independent solutions to AZ = 0 which (by the Columns Condition)
have the following form *:

* z' denotes the transpose of z; we will occasionally omit the ¢ if it is clear

from context.
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ky ky — ky ki — ki_y
wy  =(1,1,...,1, 0,0,...,0,...... 0,0,...,0)!
Wy =(az1,...,028,,1,1,...,1,... ... 0,0,...,0)}
wy Z(Qtl, atk'_l,l,l,...,l)t
Wit :(at+1,1, cee i e at+1,k)t
Wk_| =(ak_;,1, e e e ak_z,k)t

where all the o;; are rational. Multiplying all the entries by a sufficiently large
integer ¢, we obtain linearly independent vectors of the following form:

1 = (¢,¢,...,¢,0,...,0,...,0,...,0)
Uy = (,521,...,ﬂzlkl,c,...,C,O,...,O)t

(1.3)

_ ¢
Ut+1 = (Bes1,15- -5 Bet1,k)

k1= (Br=t,1,-- -, Bk—1.k)"

where all entries are integers. Set p = | max Bij|. Since every solution to AZ = 0
can be expressed as a linear combination of the vectors U1, 02,...,0k_q, say,

k—1
= E YU,
=1

then in fact each solution of Az = 0 is always a subset of some (k—1,p,c)-set,
and conversely, as claimed.

We are now ready to give the following quantitative version of Rado’s
Theorem.

Theorem 1. Let A be an | by k matrix of rank | which satisfies the Columns
Condition. Then for any r there exists ¢-(A) > 0 such that in any r-coloring
of [N], N > No there are at least ¢,(A) N*~! monochromatic solutions to the
partition regular system A% = 0.

If we let v;(N,r) denote the minimum possible number of monochro-
matic solution sets to a system L whenever [N} is r-colored (so that v, (N) =
vr(N,1)), then we have as an immediate consequence:

Corollary 1. If L is partition regular then for any r there exists ¢-(L) >0 so

that
lirinf 22 7)

Wy 2erd)
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Proof of Theorem 1. The proof will use the following version of Deuber’s
theorem ([3]).

Theorem. For every choice of m,p,c and r there exist M, P and C such that
for any r-coloring of

M
J={>_\Yi:(\1,...,\m) € D(M, P,C)}
t=1

there exist pairwise disjoint sets By, Ba, ..., By C [m] and
vi= Y, &Y, 1<|gI<P 1<i<m,
JEB;

such that all linear combinations
ZAiyi’ (AI)AZa---,’\m)ED(mapaC)
i1=1

are monochromatic.

Now, given our ! by k matrix A of rank [ satisfying the Columns Condition,
we know by the preceding remarks that the entries of the set of solution vectors
of Az = 0 all belong to some (k — I, p,c)-set. Set m = k —[ and let M, P and
C be the integers from Deuber’s theorem. Choose N > M to be very large.
Consider all the M-tuples (Y;,Ys,...,Yr) of integers Y; satisfying

(1.4) 0<Y; < A_/_I]\lc_ and Y; = (2P + 1)* mod(2P +1)M

for 1 < ¢ < M. There are at least ¢; N™ such M-tuples for some constant
¢1 > 0 not depending on N. For such an M-tuple (Y;,Y2,...,Yar), consider
the (M, P,C)-set

M
J(Y1,...,Ya) = {D_AYi: (Ar,..., M) € D(M, P,C)}
i=1

Let [N] = C1U...UC, be an r-coloring of [N]. By Deuber’s theorem we can find
disjoint subsets By,...,Bx_; C [M] and y; = ZjeB.- §Y;, 1 < ¢ < P,so
that all the linear combinations Y .-, Aiyi (A1, A2,...,Am) € D(m,p,c), have
the same color. In particular, Z = Z‘:—II yi; (from (1.3)) is a monochromatic
solution to the system AZ = 0. This therefore gives, with multiplicity, at least
¢1NM monochromatic solutions (one for each choice of (Yi,...,Ya)). Our
proof will be complete if we can show that each of these solutions can occur at
most NM~(*=1) times,

To see this, suppose (zi,...,Zk) is some solution obtained above, i.e., for
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some choice of (y;,... »Uk—1), the z; are fixed linear combinations of the Y;.
Then, we must show that the same monochromatic (m,p, ¢)-set is obtained
at most NM—(k=1) times. However, given y;, its residue modulo (2P + 1)M
uniquely determines the Ajy, 1 £ 7 < M from (1.4). Thus, the possible

Y1,..., Yy must satisfy k — [ linear equations which involve pairwise disjoint
sets of unknowns among them. This gives the required bound and the proof is
complete. o

2. Van der Waerden’s Theorem

A natural question raised in connection with van der Waerden’s Theorem by
Erdés and Turdn over 50 years ago was that of identifying which of the color
classes must contain the desired arbitrarily long arithmetic progressions. In
particular, they conjectured that the “largest” color class should always have
this property. To make this precise, for a set X C N, define the upper density
d(X) of X by:
d(X) := limsup 1X 0 [n]]
n—oo n

In 1975, Szemerédi finally settled the conjecture of Erdds and Tur4n, by proving
the following celebrated result.

Theorem of Szemerédi [18]. If X C N satisfies d(X) > 0 then X contains
arbitrarily long arithmetic progressions.

This result of course implies van der Waerden’s Theorem, and it was, in
fact, hoped that it might lead to improved estimates for W (k,r). This did not
happen (yet) though since Szemerédi’s proof in fact uses van der Waerden’s
Theorem. More recently, Furstenberg and Katznelson 6], [7] have given alter-
nate proofs and generalizations of Szemerédi’s Theorem using techniques from
ergodic theory and topological dynamics (which however, do not shed any light
on the true values of W (k,r)).

Observe that a k-term arithmetic progression (a,a+d,a+2d,...,a+ (k—
1)d) can be viewed as a solution z = (z1,Z2,...,2k) to the system of equations
(over N)

T3~ T1 =23 —Zp=...=T)—T_1 #0

In this section we establish the density analogue to Theorem 1 for the appro-
priate systems of linear equations.
The system

(2.1) A

8i
]
[=]]
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is said to be density regular if for any set X C N of positive upper density
there is a vector Z satisfying (2.1) and having all entries belonging to X.

If it happens that (2.1) has the vector Z =1 = (1,1,...,1) as a solution
then, of course, for any m € N, Z =m -1 = (m,m,...,m) is also a solution.
In this case, (2.1) is trivially density regular. However, the solution m -1 is
normally not considered to be very interesting. For example, for the density
regular system

1 — 220+ 23=0

the solutions (z1, z2,z3) are just the 3-term arithmetic progressions, provided
the z; are distinct.

With these considerations in mind, let us call the system (2.1) irredundant,
if (2.1) does not imply that z; = z; for ¢ # j. Also, let us call a solution
Z = (z1,...,2k) to (2.1) proper if all the z; are distinct.

Fact 2.1. If Az = 0 is irredundant then it has a proper solution.

Proof. For each choice of ¢ < j, let 2(#) = (xg"), n:g"), .o ,:c,(:’)) be a solution
to (2.1) with zg" )+ z‘g" ), which exists by hypothesis. Thus, for any integer
N, z* = (z},23,...,z}) with

ok = Z Nki+jzt(ij)
i<y

is also a solution to (2.1) by linearity. However, if N > max, j; (zgij)) then all
z; are distinct. =

Fact 2.2. An irredundant system Az = 0 has a proper solution in every set X
of positive upper density if and only if A-1 = 0.

Proof. First, since X has positive upper density then by Szemerédi’s The-
orem, X contains arbitrarily long arithmetic progressions. Suppose zy =
(by,ba,...,b;) is a proper solution of AZ, = 0, i.e., all the by are distinct.
Let B := maxj by and let P = {c¢ + Ad: A € [B]} be a B-term arithmetic pro-
gression in X. If 1 also satisfies A -1 = 0 then so does the linear combination

' =c-1+dZo=(c+bid,c+bad,...,c+ bnd)
which is proper, and furthermore, has all entries in P C X, as desired.

In the other direction, suppose AZ = 0 has a proper solution in every set
of positive upper density. Let N > Ei’j |ai;| where a;; ranges over all entries
of A. Consider the set Y = {Ny +1:y € N1} with (upper) density 1/N.
Suppose £ = (zy,...,z,) satisfies AZ = 0 where each z; = Ny, +1 € Y. Thus,

0= Z aijT; = Za;,~(Nyj +1) = NZ a;;y; + Zai:,-
j j j j
for 1 <1 < m. By the choice of N, this implies that ZJ- a;; = 0 for all 7. This
is exactly the statement that A1 = 0, as required. This completes the proof. o
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Theorem 2. Let A be anl by k matrix of rank | so that AZ = 0 is irredundant
and A1 = 0. Then for any € > O there is a constant ¢, = ¢.(A) > 0 so that
if N > No(A,e¢) and X C [N] with |X| > eN then X must contain at least
¢eN*=! proper solutions z to Az = 0.

Proof. Let € > 0 be arbitrary (but fixed) and let X C [N] with |X| > eN be
given, where it will be useful to think of N as being very large. Since A has
rank [, the space of all (rational) solutions Z to AZ = 0 has dimension k — .
Let %o = 1, ¥y,...,9,, be linearly independent integer solutions to AZ = 0
where m := k — 1 — 1 and for ¥; = (v;1,...,v:)%, we can assume without loss
of generality, all v;; > 0 (since if not, then we can repeatedly add 1 to v; until
this is true). Define ¢ := 1 + maxy; vi;.

For u € N and each vector § = (yi,...,ym) with y; € N, define the m-box
B, (7) to be the set

{(a’lylaa2y2)"'1amym) : 0 S a; <u, 1 S"S m}

Further, define the projection = : B, (§) — Z by
7[(a1y1,- .+, mym)] = Za;y.'
=1

By a theorem of Furstenberg and Katznelson ([6], [7]), there is an integer T
so that for any ¥ = (Y3,...,Y,,) with ¥; € N*, if X* C Bp(¥) with |X* >
$IBr(Y)| = £T™ then there exists a “translated” m-box 4 + B:(AoY) C X*,
where A = (A1Y1, “ee ,Amym) and AQ, Al, e ,Am € N+.

Now, consider the set of all integer vectors ¥ = (Y1,Y,...,Y,,) which
satisfy the following constraints:
(i) 0LY; < eN/mT, 1 <i< m;
(i) i=T"Ymod T), 1 < i < m.

Note that if P = (a1Y1,...,amYy) € Br(Y), P’ = (a}V4,...,a,, V) €
Br(Y) and n(P) = n(P’) then by (ii)

which in turn implies a; = a; for all 7, since 0 < gq;, a! < T. Thus, 7 is 1-to-1
on Br(Y). Also, by (i)
0 < 7(P) <N

Let us call an integer a € [N] “good” if
B(a) i= a+ 7(Br(¥)) C [N]

and .
|X N Bla)| > ET"‘
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It is easy to see that for a fixed constant § = §(¢) > 0, the set A = {a € [N]:
a is good } satisfies

|A| > 8N.
By the choice of T', for each a € A, XN B(a) contains the translated projection
Yo + W(Bt(AOY))

for some Yy, Ag € N. Furthermore, by the choice of ¢, this in turn contains all
components of the solution

5:=Yo-i+ZAan7,'
=1

to AZ = 0. Since there are ¢N™*! ways to choose the Yy, Y1,...,Y,, for a
positive constant ¢ (depending on € and A) then the theorem will be proved if
we can show that no solution Z to AZ = 0 can arise this way in more than a
bounded number of ways.

To see this, first note that since the (k — ) by k matrix V' = (v;;) formed
from the (linearly independent) solution vectors #;, 0 < ¢ < k—1[, has rank k—!
then we can assume without loss of generality (by relabelling, if necessary) that
the (k—1) by (k—1) submatrix V' = (vij)o<i,j<k—1 is non-singular. Suppose z =
(%1,...,zk) has all its components z; lying in some set Y, + 7(Br(Y)) C [N]
where Y = (Y7,...,Y,,) satisfies (i) and (ii). For each of the k! permutations
o on [k], consider the vector Z, = (z,(1),- -+, Zo(k))- If

m
I, = __>_ Yiv;
1=0

then by the non-singularity of V', the first k — | coordinates of z, determine
all the Y;. Thus, each such Z can arise from at most k! choices for the Y;.

Finally, we observe that almost all of these ¢/N*~! solutions Z to AZ =0
are proper solutions. This is because, by hypothesis, for ¢« # j, the space of
solutions Z with z; = z; corresponds to a non-trivial dependence between the
coefficients Y;, 1 < ¢ < m, resulting in at most O(Nk"_l) such solutions.

This completes the proof of the theorem. o

Let v7(N;e) denote the minimum possible number of proper solutions to
a system £ = L(A) which can belong to a set X C [N] having |X| > eN. The
following corollary is immediate.

Corollary. If A is irredundant and £ = L(A) is density regular (i.e., A-1 = 0)
then for any € > O there exists ¢} (L) > 0 such that

.. Vp(N;e) N
YeUVie)
minf ="y = (L)

where vp (N) denotes the total number of solutions L has in [N].
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When the Corollary is applied to the system
L 1Ty - T1=I3—Zy=...= T} — Ty

we obtain the desired qualitative form of Szemerédi’s Theorem, namely for
some ¢ = ¢;(L*) > 0, if N > N, then

vp.(N;€) > eN?,

which is, of course, up to the value of ¢, the best one could hope for here.

3. Ramsey’s Theorem

It turns out the analogues of the preceding results for Ramsey’s Theorem follow
rather easily from an averaging argument. We sketch it here for completeness.

Theorem 3. For all k,l and r in N there exists ¢ — c(k,1,7) > 0 such that for
any r-coloring of ([IZ]), N > R(k,l;r), there are at least c(];’) l-sets Y C [N]
for which ({) is monochromatic.

Proof. Let R = R(k,l;r), and suppose (“Z]) is arbitrarily r-colored with
N > R. Then for any R-set Z € ([%]) there is always some l-set Y € (f) with
(‘k,) monochromatic. Call such an l-set YV “good”. Now each good Y can occur

in at most (g__f) different Z ¢ ([1}\2’])_ Since there are (}}g) different Z € ([%])

then there must be at least
(%) N
() > ( )

R-1

good sets Y € ([7]), i.e., such that (:) is monochromatic. )
Note that as in Theorems 1 and 2, a positive proportion of the objects
under consideration is guaranteed to be monochromatic. This phenomenon
does not always occur, however, as the following example shows. It is known
(see [8]) that for each r there is an F(r) so that for any r-coloring of all the
subsets of [F(r)] we can always find nonempty disjoint sets A, B C [F(r)] so
that A, B and A U B all have the same color. Now, for a fixed N, consider the
2-coloring X of the subsets of [ N] given by:
0, if | X|<N/2,
H(X) = {1, if }X{ > N;2.
However, with this coloring there are only O(23N/2) monochromatic triples
{A,B, A U B} while in [N] there are (1 + 0(1))3¥. Thus, we do not get a
positive proportion in this case.
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4. An Iterated Density Theorem for the Strong van der Waerden
Theorem

The following strengthening of van der Waerden’s Theorem was used by Rado
[15] in his work on partition regular systems.

Strong van der Waerden Theorem. In any finite coloring of N there must
exist for all p € N, a monochromatic set of the form

{z,y,+y,2z+y,...,(p— Dz + y}.

Note that this set consists of a p-term arithmetic progression together with
its common difference. For the special case of p = 2, this reduces to the set
{z,y,z + y} which occurs in Schur’s Theorem. However, even in this case it is
clear that there is no direct density analogue to this theorem (as Szemerédi’s
Theorem was for the ordinary van der Waerden Theorem) since, for example,
the set of odd integers {2k+1 : k£ € N} has (upper) density 1/2 and yet contains
no set of the form z,y, z + y. Nevertheless, it is possible to prove a result which
asserts that in any finite partition of N, there are “many” monochromatic sets
of the form {z,y,z+y}. This was first done by Bergelson, who recently proved
the following.

Theorem 1. In any finite coloring of N, we have

(4.1) d{z: d{y : {z,y,z + y} is monochromatic > 0} > 0}

Actually, Bergelson proves the following somewhat stronger result which
does not, however, guarantee that either set has upper density bounded away
from 0 as a function only of the number of colors.

Bergelson’s Theorem (1986) [1]. In any finite coloring of N, there is always
some color class C with d(C) > 0 such that for any € > 0,

d{z:d{y: z,y,z+y is monochromatic } > d(c)®*—€e} >0

In this section we will prove an iterated density version of the strong van
der Waerden Theorem, which will imply, in particular, a strengthening of (4.1),
both in having explicit functions in the lower bounds, and in the replacement
of d by d. We first introduce a slightly modified form of the (m, p, ¢)-sets

introduced in Section 1, called (m,p,c)~sets, which will be useful in what
follows.
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For m,p and ¢ in N, we mean by an (m, p, c)'-set, a subset of N which can
be formed as follows, for suitable a1,az2,...,4, € N:

<apy...,0, >i= {/\1a1+...+/\,-_1+ca,-:0§z\j <p,1<7<i,1<i<m}.
We also define
[@1,...,am] = {A1a; t it Amam 10 < A < p},

where in both cases the values of p and ¢ will be understood from the context
if only the left-hand sides are used.

Thus,
(4.2) <818y >=<ay,...,0p,_1 > U{las,...,am-1] + can,}.

Suppose now that N is arbitrarily r-colored. A basic result of Deuber
[3] then implies that there exist M, P,C € N so that any (M, P, C)'-set must
always contain a monochromatic (m, p,c)'-set.

Our result will deal with (2,p,1)"-sets. These are just sets of the form
< z,y >= {z,y,z + y,2z + Yooy (p— )z + y}. In what follows, the inte-
gers M, P and C will denote the values needed in Deuber’s theorem to force
monochromatic (2, p,1)’-sets.

Theorem 4. (Iterated Strong van der Waerden Theorem). In any
r-coloring of N and for any p, there is a 6 = 6(r,p) > 0 such that

(4.3) d{z : d{y :< z,y > (is monochromatic)} > 6} > 6.

Proof. We assume p > 2 (the case p = 2 is very similar, and is omitted).
Define

B = B(6) := {z : dy :< z,y > is monochromatic < 6}

and let B := N\B, the complement of B in N. Assume to the contrary that
d(B) =1-d(B) < 6. Let B, ={d€B:<b>C B}, andlet a, € B, be the
least element in B;. Next, define

B2={b€B11[01]+CbgB1}
Thus, if b € By, then
[a1]+CbgB] C B and <a; >CB

so that < a;,b >C B. Next, select (if possible) a; € Bj so that < aj,a; >
contains no monochromatic (2, p,1)"-set. Define

Bj := {b € B,: [al,az] +ChC Bz}
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Thus, for b € B3, < a1,a3,b >C B. Continuing, we select (if possible) az € B3
so that < a1, a3,as > contains no monochromatic (2, p,1)’-set, and we define
By :={b€ B3 :|a1,as,as] + Cb C Bs}, etc.

In general, after
Bj:={be€ Bj_y:]a1,...,a;_1] + CbC B;_,}

is formed, we see that for b € B;, < a4,...,a;_1,b >C B. We then select (if
possible) a; € B; so that < a;,...,a; > contains no monochromatic (2, p,1)’-
set, and define B;y; := {b € B; : [a1,...,a;] + Cb C B,}, etc. (where, of
course, throughout this construction < ay,...,a; > denotes an (i, P, C)-set).
By Deuber’s theorem this process must terminate with the formation of B, for
some t < M. In order to guarantee that this is actual cause for termination,
we need to know that the various B;s are nonempty. This fact is implied by
the following elementary lemma.

Lemma. Let ACN, D CN, C € N with A finite, and define
D'={deD:Cd+ AC D}

Then

(4.4) 1-4d(D)<C|A|(1-d(D))

The proof of this result is elementary and will be omitted. Thus, by (4.4) and

(4.2) (with C in place of ¢), we have

(45)  1-d(Bjs1) <C|lar,.. a5 | (1~ d(Bj)) < CPI(1— d(By)).

Consequently,

(4.6) 1-d(B) < ctP(3) (1 - d(B)) < scMp(%)

so that for § sufficiently small, all d(B;) are at least 1/2 (say) for 1 <17 <.
Therefore, the set {a1,...,a:~1} has the properties:

(i) <ai,...,as—1 > contains no monochromatic (2, p,1)’-set;

(ii) For any b € B:, < ay,...,at—1,b >C B contains some monochromatic
(2,p,1) -set, say < z(b), y(b) >.
Thus,

(47) .'l:(b) =Aa;+...+ )\]‘_10.]'__1 + CaJ-

for some j = j(b) <t — 11. To see this, suppose otherwise, i.e., suppose that

I(b) =Aay+...+ X_1as4_1 + Ch.

Since p > 2 by hypothesis then < z(b),y(b) > contains the element 2z(b) +
y(b) > 2Cb. However, this is impossible if b is sufficiently large since we have
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assumed

< z(b),y(b) >C< ar,...,a1_1,b >

and the largest element of < a;,...,a;_1,b > is less than (a1+...4+a¢,)p+Cb.
On the other hand, we must have

(4.8) y(8) = Aa; +. o+ A_jai_1 +Ch

since, if not, say y(b) = Ma; +... + ,\;._laj_l + Ca; for some j < ¢, then no
element of < z(b),y(b) > is large enough to use b, so that < Q1,...,8¢-1 >
must have already contained < z(b),y(b) >, which is a contradiction.

Now, for each b € By, there are fewer than M P?M choices for ; (b), A(d) =
(A1,...) and X' (b) = (A%,...). Hence, for some choice of Jo(b), Ao(b) and Af(d),
the set of (large) b € By with j(b) = jo(b), A(b) = Xo(b) and X'(b) = A5(b) has
upper density at least d(B;)/MP?M, Call this set B*. Also

(4.9) d{y :y = y(b) for b€ B*} > éJ(B*) > d(By)/CMP*M
since y = y(b) = Ma; +...+ A,_,a;_; + Cb. Note that
Z(b) =XAa; +...+ /\]'oajo €<ayg,...,a;_1 >C B.

Therefore, d{y(b) : b € B*} < § since < z(b), y(b) > is monochromatic. This
implies

d(B:)/CMP™ < ¢,

ie.,
(4.10) d(B;) < 6MP*M(C

However, this contradicts (4.6) if 6 is sufficiently small. Hence, the initial
assumption that d(B) < § is untenable, and (4.3) must hold. This completes
the proof. o

Note that this proof shows that 6 can be chosen to be (M2CM+1p2M*)-1
for example.

]

5. An Iterated Density Ramsey Theorem

The obvious density version of the finite form of Ramsey’s theorem is clearly
false, as can be seen, for example, by considering the complete bipartite graph
Ky, n. This graph has more than half the possible number of edges for a graph
with 2n vertices but contains no triangle. However, there is an iterated density
version (in the spirit of Theorem 4) which is valid. This we now give.
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Fix k <1 and r, and suppose (’Z) is r-colored. For a; < ... < aj_;, define

T(a1,...,a1-1) == {z: (al’ o ;cal_l’x) is monochromatic},

and for0<i<!—1,

(5.1) L(a1,...,a;) :={z:d(l(ay,...,a:,z)) > 6}

where § = 6(k,l,r) = 27® and R := (k,l;r), the ordinary Ramsey number.
For 1 = 0, we denote the expression in (5.1) by T.

Theorem 5. For allk <! andr,
(5.2) d(T) > 6.

Proof. Assume d(T') < 8. Thus
d(N\l) >1-6.
Note that
z ¢ I'(ay,...,a;) = d(T(ay,...,a;, 7)) <6.
Define S;, 1 =1,2,..., as follows:
S1 = {s1} where s; € N\T is arbitrary.
Suppose S; = {s1,82,...,5;} has been defined. Form S;;; = S; U {sj;1} by
choosing s; 4 (if possible) so that:
(i) sj41 € N— UL Urciicocingy T(Siss- -5 8:,) = Cj,
(i) NoY € (sjl“) has (}) monochromatic.
Note that since

J(CJ~)21—{(g> + (Jl)++ (kil>}621—2f6

then we never get stuck because of (i). However, by Ramsey’s Theorem, we
must eventually halt because of condition (ii), say with the formation of S;,
for some t < R. By the definition of S;, for each ¢ € C;, there is a set
X(c) € (,‘i‘l) such that (X (i)uc) is monochromatic. Thus, there exists a set
Xo = {sj, <...<s;_,} € () such that
(5.3)

dceCy:X(c) = Xo} > J(Ct)/<l ¢ 1) > (1 “”)/(z ! 1) SoR_§

by the choice of §. However, by construction,
Sji_y & I‘(SJ} (RRRR} sja—z)

= J(F(sjl,...,s,-,_l)) <$§
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= d{u : (XOIU u) is monochromatic } < §

which contradicts (5.3). This proves the theorem. D

6. Concluding Remarks

There are a number of other examples known for which some of the preceding
extensions can be proved (cf. [4], [5]). These include several of the canonical
partition theorems, in which an arbitrary number of colors can be used (but
a wider class of colored objects is allowed); see [2], [11], [13], [14]. However,
we have barely scratched the surface for what might be looked at here. For
example, if << z,y,2 >>:= {z,y, z,z+y,z+2,y+ 2,2+ y+ 2} then is it true
that for any r-coloring of N there is a § > 0 such that

d{z:d{y:d{z:<< z,y,z >> is monochromatic } > 6} > 6} > 67

We also point out that we have very little idea as to the true values of
the various constants (6’s and ¢'s) appearing in our theorems. Of course, since
these typically depend on the corresponding values of the classical Ramsey
numbers Se(r), W(k,r) and R(k,l;r) which themselves are far from being
completely understood, (see [10]) then it is not surprising that our current
knowledge here is very incomplete.
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