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ABSTRACT

In nearest neighbor random walk on an n-dimensional cube a particle moves to one of its
nearest neighbors (or stays fixed) with equal probability. The particle starts at 0. How long
does it take to reach its stationary distribution? In fact, this occurs surprisingly rapidly.
Previous analysis has shown that the total variation distance to stationarity is large if the
number of steps N is < inlogn and close to 0 if N> jnlogn. This paper derives an
explicit expression for the variation distance as n— « in the transition region N ~ ;n log n.
This permits the first careful evaluation of a cutoff phenomenon observed in a wide variety
of Markov chains. The argument involves Fourier analysis to express the probability as a
contour integral and saddle point approximation. The asymptotic results are in good
agreement with numerical results for n as small as 100.
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1. INTRODUCTION

Let Z5 denote the group of binary n-tuples under coordinatewise addition modulo
2. Nearest neighbor random walk on the n-cube Z; is based on the probability
distribution

[Um+1) if|x=1,
Q(")_{ 0 iflx=2 (1.1
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where x=(x,,...,x,)EZ, and |x|:=x,+---+x, (ordinary addition). The
walk is allowed to stay where it is or move to nearest neighbor with equal
probabilities (where the nearest neighbors y of a point x are those y with
lx—y[=1).

Repeated steps in the walk correspond to convolutions:

0*0( =2 0x~y)Q(); 0™:= 0* 0.

This random walk approaches the uniform distribution U(x) = 1/2". In this paper
we give bounds on the speed of approach to uniformity. We show that roughly
inlogn steps are necessary and sufficient to reach stationarity. Approach to
stationarity will be measured by the total variation distance

1P= 0l = sup |P(4) - Q(4)|
where for a probability P on a space X D A, P(A) denotes X ., P(a).

Theorem 0. For nearest neighbor random walk (1.1) let N = X(n + 1)(log n + ¢).
If ¢ >0 then

o™ -UlIP=3(e" " -1).
As n— o, for any € >0 there is a C <0 such that ¢ < C and N as above imply
o™ -Ul=1-¢€.

Theorem 0 is proved in Diaconis and Shahshahani [5]. It is closely related to a
body of classical work surveyed in Letac and Takacs [11]. Aldous [2a, b] develops
an application of random walk to the analysis of algorithms. Mathews [14, 15]
proves theorems like Theorem 0 by “pure probability” arguments.

Nearest neighbor random walk on the cube is essentially the same process as
the Ehrenfest model of diffusion. Kac [9, 10] gives a motivated treatment of this.
Siegert [18] is an early paper linking the Ehrenfest model with random walk.
Diaconis [4] describes much of this background and other applications. The
present paper refines Theorem 0 by deriving an asymptotic approximation to the
variation distance in the transition region where N ~ n log n. The main result is:

Theorem 1. For nearest neighbor random walk (1.1), let N= inlogn + cn.
Then for fixed ¢ € (—», ®), as n— =,

Q™ - Ul| ~ Erf(e */V8) .

Here, Exf(z)=2/v7 L e dt denotes the error function (e.g., see Ref. 13, p.
349).

Theorem 1 allows us to explore what Aldous and Diaconis [3] have called the
“cutoff phenomenon.” To explain, consider V(N) = ||Q™ — U|| as a function of
N. As N increases, of course, V(N) decreases. However, V(N) stays quite close
to its maximum value 1 for N up to jn log n — cn, where ¢ >0. Then, as N moves
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Fig. 1. The variation distance V as a function of N, for n =10"
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Fig. 2. The variation distance as a function of the iteration N, for n = 100.
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from fnlogn — cn to jnlog n + cn, V(N) moves rapidly from close to 1 to close
to 0. It then tends to 0 exponentially fast as N increases further.

Theorem 1 implies that a plot of V vs. N would look like the picture in Figure
1, which corresponds to n = 10" ThlS is indeed the case for n large. If the plot is
drawn on a scale that goes from 0 to in log n, the cutoff from 1 to 0 occurs on a
scale of n.

Figures 2, 3, and 4 show the result of an exact computation of V(N) for
n =100, 1000, and 10,000. These computations were carried out by A. M.
Odlyzko using a clever iterative scheme. They show the same general shape but
also show that for finite n, the cutoff is not as sharp as in Figure 1. To explain the
disparity, observe that the factor differentiatmg the lead term, ;n log n, from the
next term, cn, is ; log n. When n = 10,000,  logn=2.3. ... This is supposed to
be large compared to |c|. For n=10" }logn=6.9..., which is sufficiently
large. Figures 2, 3, and 4 suggest a smooth limiting Value although a close look
shows the effect of the parity of N. Comparison with the numerical results
underlying Figures 2, 3, and 4 shows fairly close agreement with the limiting value
guaranteed by Theorem 1 when n =100, and very close agreement when n =
1000.
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Fig. 3. The variation distance as a function of the iteration N, for n = 1000.
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Fig. 4. The variation distance as a function of the iteration N, for n = 10,000.

Section 2 contains some elementary preliminary material. It also contains an
analysis of the continuous time version of Theorem 1. The computations here are
easy and “explain” the appearance of the error function through probabilistic
considerations.

Theorem 1 is proved by expressing the exact probabilities as a contour integral.
An asymptotic approximation to this integral is then derived by the method of
steepest descent (the saddle point method). This is carried out in §3. In the
Appendix the behavior of the paths of steepest descent from the real saddle
points is investigated. The asymptotic approximation to the variation distance is
derived in §4.

The random walk starts at the origin 0 and as time goes on, the probability
spreads out over the cube. By symmetry the probability at any time at some point
x depends only on |x|. Furthermore, as is noted in Lemma 2, this probability for
any fixed number of steps is a monotone decreasing function of |x|. In numerical
work we observed that the distance W at which points after N steps have
probability “above average,” i.e., greater than 1/2" grows linearly with N for
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N < an where a =0.32756 . . . satisfies a2'* = e, and then slows down abruptly.
For N=An and n—», we have W/n— p for some p. In §2 it is shown by
elementary arguments that p = A for 0<A < a. In §5 a parametric relationship is
obtained between p and A for A>a. Comparison with numerical results of
Odlyzko [16] shows W/n is already very close to its limiting value for n = 1000.

2. ELEMENTARY FACTS

In this section we derive an exact formula in Lemma 1 for the underlying
probabilities P, (x) using Fourier analysis on Z;. These probabilities are shown to
be monotone in |x| for fixed N in Lemma 2. The exact crossover point W where
Py(x) =1/2" is discussed in Lemma 3. Finally, Proposition 1 carries out a proof of
Theorem 1 in the continuous time case. This may serve as motivation for the
argument used in the proof of Theorem 1.

Lemma 1. For P defined on Z; by Eq. (1.1), let P, denote the N-fold convolu-
tion. Then for x€Z5, |x|=x,+ -+ + x,,

r=%S(-2) (M) e

l

Proof. For y € Z3, the Fourier transform of P at y is given by
P(y) =2 (-D)"P@).

For P defined by Eq. (1.1),
5 2ly|
P(y)=<1— n+1>'

Since P is invariant under permutations, P(x) and P(y) are functions of |x| and |y],
respectlvely The Fourier transform converts convolution into products. Thus,
P = P". Now, the Fourier inversion theorem gives

Py(x) = 2( 17 Py(y)

n+1/ 5,

(2.2)

MacWilliams and Sloane [12] or Diaconis [4] give the inversion theorem in this
form. These sources also show that the inner sum of Eq. (2.2), namely the
transform of a “shell” of radius j, is just the Krawtchouk polynomial K"(|x|, ).
The formula for this appears in the inner sum in Eq. (2.1). .

In general for an integer k, 0=k =n, we define P,(k) to be P,(x) where
XxEZ, has |x| = k. This notation is well defined by our previous remarks and
should cause no confusion.



RANDOM WALK ON A HYPERCUBE 57

Lemma 2. For P defined on Z; by (1.1), the Nth convolution P, (k) is monotone
decreasing in k.

Proof. More precisely, define

Ay(k):=Py(k)— Py(k+1), O<k<n.

We show
Ay(k)=0. 2.3).
Assume without loss of generality that x= (0, x,, . . ., x,,). For such x, define
x'1=(1,x,,...,x,); then |[x —x'| = 1.
Thus, by Eq. (1.1)
Pya)=— 3 P
N (X)) = n+1,% - ~(Z)

and consequently
AN+1(x) = PN+1(X) - PN+1(X,)

- {2 - 2 P

nt+l ly—x|=1 |lz—x'|=1

- {hw+ T Am-re- 3 P

n+ ly—x{=1 |z—x"|=1
S { Py(y)— X P }
- n+1 ly—al= N(y) “~ N(z)
y—x|=1 lz—x'|=1
y#x’ ZFX
— >
= An(y) -
n+l "
y#Ex'

Since A,(y) =0 for all y then by induction A,(y)=0 for all y and all N=0. =

Lemma 3. (B. Poonen [17]). Let W denote the largest value w for which
Py(w)=2"" Then for N=2An with 0<A<a where a=0.32756. .. satisfies
a2''*= e, we have Win— A as n— .

Proof. Any point x € Z; with |x| = w >0 has w neighbors y with |y|=w — 1.
Thus,

P (w)= ﬁ |y—%:1 P,_(w—1). (2.4)

lyl=w—1

Since Py(0) =1 then we obtain the explicit expression
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0=N=n. (2.5)

Set N = An with 0 < A < a. We show that in this case

(ni/—!l)]vzz"", s, (2.6)
which implies W= N.
Since N!=(N/e)" (e.g., see Ref. 7), it will suffice to show
(NeYX=z(n+1)"2™", now
ie.,
N(logN—-1)=Nlog(n+1)—-nlog2,
Alog An—1)=Alog(n+1)—log2,
or
log)\+ 10g2~1>10g(n+1)—logn n— o, 2.7)

However, x2''* is monotone decreasing for 0 < x <log2, and log2 <1, so that

2" >e  for 0<i<a<log?,

ie.,
log A + — log2> 1.

Since the RHS of Eq. (2.7) goes to 0 as n— o, then Eq. (2.6) follows, and we
have W= N = An, which in particular implies that W/n— A as n— o, .

The final result in this section develops random walk on the n-cube where jumps
take place in continuous time. This variant turns out to be easy to analyze and
understand. The results help explain our findings for the discrete time case.

Consider the n-cube Z;. For 0=<t¢<, let X, be nearest neighbor random
walk: a particle starts at 0 and jumps to one of its nearest neighbors at the times
of occurrence of a Poisson process running at rate 1. Thus, there is an exponential
wait between jumps with density e”*. Of course, there are ¢ jumps expected in
[0, ¢].

By standard properties of the Poisson distribution, the coordinates
(X;,...,X7) are independent binary processes with

PriX,=1}=1i1-e*"), 1=i=n. (2.8)

It follows that
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Pr{X =x}= 21 (1= e 2/myxl(1 4 g7 2/myn=Ixl (2.9)

From this, for fixed ¢, Pr{X, = x} is decreasing in x| so 0 is always the most likely
point, followed by points at distance 1, etc. The monotonicity of the binomial
distribution in p implies that for any fixed j, Pr{|X,| <j} is decreasing in ¢.

The stationary distribution is uniform on the cube. As will emerge, it takes
znlogn + cn steps to get close to uniform. The main result of this section gives
the asymptotics of the total variation distance as a function of c.

Proposition 1. Let t = tnlogn + cn. For P, the law of nearest neighbor random
walk on Z we have as n— x,

|P* = U|| = Exf(e */V8) + o(1) , (2.10)

where Erf(z):= 2/v7) f§ e™" dt denotes the error function, U(x)=1/2" is the
uniform distribution and ||P' ~ U|| = sup , |P'(A) — U(A)|.

Proof. The total variation distance to uniform can be represented as

2 (Pr{X,=x} ~1/2") summed over x with Pr{X, =x) =1/2".
(2.11)

From Eq. (2.9), Pr{X,=x} =1/2" if and only if

nlog (1+e2'")
log(l+e—2t/n)_log (l_e*ZI/n) N

x| =

(2.12)

Set t = ;nlog n + cn. Straightforward calculation now gives Pr{X,=x}=1/2"if
and only if

—2c

n
2 4

x| =

(2.13)

Denote the largest value of |x| consistent with Eq. (2.12) by j* = j*(n, ¢). Let
Y(p) be a binomial random variable with parameters n and p. From Eq. (2.11)

we have
17~ = P v(1(1- ‘i/;)) <if-rlv(})=r). @

From the central limit theorem for coin tossing with the standard normal
cumulative ®(z) = (1/V27) %, e "'? dt, we obtain

[P = Ull = ®(3¢7) — ®(= 3¢ 7*) + o(1)
=20(1e™*) -1+ 0(1).

Converting from & to Erf completes the proof. n
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Remarks

A. This argument explains where the normal distribution comes from. Under
the uniform distribution, the number of ones is binomial (n, 1/2); under P’,
the number of ones is binomial (1, (1 — e”*'")). For n large, each of these
is approximately normal, and the variation distance is well approximated by
the variation distance between these two normal limits.

B. If ¢ is large and positive,

—2c

72C e
Erf(e */V'8) Vs

This gives exponential convergence to 0. If c is large and negative,

2¢
de —e~%8

V2 ¢

This tends to 1 extremely rapidly. In general, the limiting form exhibits a
sharp cutoff as shown in Figure 5.

C. The continuous time argument is related to the discrete time argument in
§3 and §4. If P’ denotes the law of the continuous process at time ¢, and P*
denotes the law of the discrete time process at time k, then

Erf(e >/V8)~1—

= >, Pe k).
k=0

The Poisson mixing measure e t*/k! is peaked at k = ¢, and most of its
mass is within ¢V7 of ¢. Our argument determined the behavior of P’ for
large ¢. It is possible to use Tauberian arguments for Borel summability to
draw conclusions about P* for large k. The argument of the next section is
an even closer parallel [compare Egs. (3.3) and (2.9)].
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Fig. 5. The variation distance V as a function of ¢ = N/n — 1 log n, for n =100 (broken
curve) and n = 1000 (solid curve).
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D. Here is a feature of the random walk that is quite different in discrete and
continuous time. To bound variation distance, it is important to determine
the largest value W of |x| such that Pr{X, =x} =1/2". As we have seen for
the discrete time process, W= N up to about N = an, at which time the
behavior changes.

In the continuous case, Pr{X,=x}=1/2" if and only if Eq. (2.12) is
satisfied. For ¢ of the order }n log n + cn, the continuous and discrete cases
give the same answer. However, for ¢ < n they differ. For example, if t = 1,
the RHS of Eq. (2.12) is asymptotic to n log 2/log n. Now, if t = 1 only one
step is expected. If X} is the discrete time process, Pr{X* =x}=1/2" if
and only if |x|=1. This shows the need for a careful argument in the
discrete case.

3. AN ASYMPTOTIC APPROXIMATION

We start from the explicit expression for the probability P, (w) of being at a point
x of weight w = |x| on the n-dimensional cube after N steps,

PN(W)z%]é)[ (n+'1)] 120( 1)< )(,_7) o=w=n. (3.1)

We let j = s + i, and note that the second binomial coefficient in Eq. (3.1) is zero
unless 0= s=n — w. Hence we obtain

rw=z 2 I [T () e

5=0

It follows from Eq. (3.2) that

> & D s = & V- e ()
Consequently, from Cauchy’s formula, we have
Py(w)= Z(—n—% fc e® sinh” z cosh” ™" z % , 3.4)
where C is a contour enclosing the origin.
We consider
n»l, w=pn, 0=p=1 and N=An, A>p, (3.5)
and let
G(z)=plogsinh z + (1 - p)logcoshz — Alog z . (3.6)

Then from Eq. (3.4),
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N! J' dz

P,(w)= ————— | €€ =, 3.7

V) = 5o - (3.7)

We will obtain an asymptotic approximation to the integral in Eq. (3.7) by the
method of steepest descents [6]. The saddle points are given by G'(z) =0. But,

G'(z)=pcothz+(1-p)tanhz— A/z, (3.8)
and
G"(z)= (1 - p)sech® z — p cosech® z + A/z” . 3.9)

Since A>p and sinh x > x for x >0, it follows that G"(x) >0 for x >0. But,
G'(x)— —x as x— 0+, since A > p, and G'(x)— 1 as x— +. Hence there is a
unique positive zero of G'(x), which we denote by 8. Consequently, there are two
real saddle points z = =3, where

pcothB+(1—p)tanh B—A/B=0, B>0. (3.10)

Next,
iG'(lyy=pcoty—(1—p)tany—Aly=g(y). (3.11)
Since A>p, g(y)— Fo as y—0x. For 0<p=1, g(y)— x> as y—>max, for
m==*1 *2 .... Also, for 0=p<1, g(y)>*» as y—>(m+1/2)y7=x, for
m=20,+*1,.... Hence there are infinitely many saddle points on the imaginary

axis. We note that alternate saddle points are not present if p =0 or p = 1. Now,

Re G(iy) = p log |sin y| + (1 — p) log |cos y| — Alog | y| . (3.12)
Since A>p, Re G(iy)—>+» as y—0x. For 0<p=1, Re G(iy)—> —x as
y—=mux form==x1,+2, ...  Also, for0=p<1,Re G(iy)—» —xasy— (m+
1/2)w=x, for m=0,*1,.... Hence there are infinitely many ‘“sinks” on the
imaginary axis, and alternate sinks are not present if p =0 or p = 1.

The steepest paths are curves along which Im G(z) is constant. From Egq.
(3.6), the curve Im G(x + iy) =0 is given by

ptan~' (coth x tan y) + (1 — p) tan™ ' (tanh x tan y) — Atan™' (y/x) = 0(. )
3.13

For x >0 a solution is y =0. Another solution, in polar coordinates
x=rcosf, y=rsinf, —w/2<0<mw/2, (3.14)
is given by

p tan”" [coth (r cos §) tan (r sin 8)] + (1 — p) tan" ' [tanh(r cos 6) tan ( sin )]
=A0. (3.15)
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We note that the solution r(#) is a symmetric function of 6. In view of (3.10), this
curve passes through the saddle point at r =8, # =0, and corresponds to the
paths of steepest descent from this point, since G"(8)>0.

The behavior of the curve given in Eq. (3.15) as 8 — 7/2~— is investigated in
the Appendix. We write

A=k+up, O0<pu=1, k anonnegative integer. (3.16)

It is shown that the curve in general goes to a sink on the imaginary axis,
corresponding to Re G(re”)— —o, but goes to a saddle point on the imaginary
axis when k is even and u=p (0<p=1), or when k is odd and u=1—p
(0=p <1). Since the steepest paths are given by Im G(z) = const., it follows
from Eq. (3.6) that the paths of steepest descent from the saddle point at z = — 8
are given by the image in the imaginary axis of the curve corresponding to Eqs.
(3.14) and (3.15). Consequently, we take the contour of integration C in Eq.
(3.7) as the union of these two curves.

Since n > 1, the main contributions to the integral in Eq. (3.7) arise from the
neighborhoods of the saddle points at z = £8. These contributions may be
evaluated asymptotically by Laplace’s method [6], and, to leading order, are
found to be

I 2 1/2{ s 2 1/28_—5 Gp)
’[“c"(/s)n"} g ’[G"(—B)n] g - G

respectively. But, from (3.9), G"(—B8)= G"(B) and, from Egs. (3.5) and (3.6),
enG(—B) — ein(p—/\)'nenG(B) — (_1)N+wenG(3) . (318)

It follows from Egs. (3.5)-(3.7) that, for n>1,

N!sinh”™ B8 cosh™” ™"
(n+1)"B""'27G"(B)n]

Py(w) ~ s [ef + (=1)""™e7F], (3.19)

where B is given by Eq. (3.10), and G"(8) by Eq. (3.9). Although further terms
in the asymptotic expansion may be derived, the approximation in Eq. (3.19)
suffices for our purposes.

4. THE VARIATION DISTANCE

According to Lemma 2, Py(w) is a nonincreasing function of w, and the crossover
point is defined to be

W =max{w|Py(w)=2""}. (4.1)

The variation distance, from Eq. (2.11), is
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w
n —n
v=3 (")ipym -271. (42)
w=0 ‘W
We will derive the limiting value of V as n— « when
A=jlog(bn), 0<b,=b=0(). (4.3)

We first use Eq. (3.19) to obtain an asymptotic approximation to P,(w), subject
to Eq. (4.3). Since A>1, it follows from Eq. (3.10) that 8 >1 and

AB~1+2(12p—1)e * +2e *F +.... (4.4)

The inversion of Eq. (4.4) leads to

B~A[l+2(1-2p)e * —2ke ™™ +--1], k=1+2(1-2p)*(2A—1).
(4.5)

With the help of Eqs. (4.3) and (4.5) it is found that, for N=An and n>1,

1/2

(€>N~exp{2(1 — 2p))¢<%> - 27)\ [« +(1- 20)2]} ) (4.6)

(1 _ e—ZB)pn(l + 6*213)(1—9)"

~exp{(1 —2@(%)1/2 - -zlb [1+8(1 —2p)2)\]}, (4.7)
nB~N+2(1—2p)A<%)”2— —2%, (4.8)
<1+ %>N~e‘, (4.9)

and, from Eq. (3.9),

G'(B)~1/r. (4.10)
But, from Stirling’s formula [13, p. 12],
N!~@2mwN)"*Ne™" . (4.11)

Consequently, from Egs. (3.5), (3.19), and (4.6)-(4.11), we obtain the asymp-
totic approximation

Py(w)~2"exp {(1 - 2p)<%>1/2 - % [1+4(1— 2p)2)q} . (412)

We now consider 0<p <1, with w=pn>1and n —w=(1—p)n>1. Then,
again from Stirling’s formula,
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(1)~ o1 - nl ™ exp(=nlplog o+ (1= p) og (1= o)} .

(4.13)
We define
flp)=log2+plogp+(1-p)log(l—p). (4.14)
Then, from Egs. (4.12)-(4.14), we obtain
(2)Puon) ~ 2ot~ oy exp {1~ 2)(2)
- % [1+4(1 -2p)°A] — nf( p)} . (4.15)
Also,
", _ 1 1
ro=oe(5). -1+ i (4.16)

Hence f(3)=0, f'(3) =0 and f"(p) >0 for 0< p <1. It follows from Eq. (4.15)
that () Py(w) is exponentially small unless

1-2p=% | where x=0(1). (4.17)

Also, from Eq. (4.12),
P 27" (i - i) 4.18
N (W) €xp Vb 26/ (4.18)

Hence, from Egs. (3.5), (4.1), (4.17), and (4.18), it follows that

w 1 Y 1
7 = 5 < - W) , Wwhere Y~ m . (419)
From Egs. (4.14) and (4.17) we find that
oo y 2
nf(p)=2 = F(x,n). (4.20)

=0 (21 + 1)(21 + 2)

Then, from Eq. (4.15), we have

(%) Putw) = [ = x) 1217 exp [% ~ o (e 2 ) - Foem |
(4.21)

Also, from Egs. (4.17) and (4.19),

X=%(W— w)y+y. (4.22)
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From the Euler—Maclaurin summation formula [1], we obtain the approximation

g: <:,>PN(W) ~ (277)_1/2e_1/2b

w=0

(1

%

Following Friedman [8], we let

%(4—20)=F(x,n)—%="f[%(“%)]‘%’

from Eqs. (4.17) and (4.20), where { = o when y = ¢, and

Ao 2

).

t-o=smx-w| g 0=+l (1- &) 1|3 (1- &

Hence,

2

-l

Sls
g

and the transformation is analytic in the neighborhood of y = .
From Egs. (4.16) and (4.25) we find that

¢r=\/ﬁtanh<\/%>~%.

Hence, from Egs. (4.17), (4.20), and (4.26), it follows that

b
Sl

and, from Eq. (4.24), that

dg
{~x, dx~1'

Finally, from Eqgs. (4.19), (4.23), (4.24), (4.29), and (4.30), we obtain

n
w

§ ( )PN(W)""(QJT)_“Ze_l/Zb J"” e—{({—2¢r)/2 dg
w=0 Y

© ©

~(27T)~1/2J' e—(;—a)Z/z d£~77_1/2f

¥ —(8b)71/2

Next, from Egs. (4.13), (4.14), (4.17), and (4.20), we find that

VT 2
X 2 ]_di_
x f €xp [\/B nb F(x, n) i)

7)

(4.23)

(4.24)

(4.25)

(4.26)

1/2

ki

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

e € d¢ .
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2_"<$> ~[m(n = x*) /127" exp [~ F(x, n)]. (4.32)

Hence, from Eq. (4.22) and the Euler—Maclaurin summation formula, we obtain
the approximation

& n 1/2 " dX
n - - _ . 4.33
W2=0 2 <w> 2m) J; exp [~ F(x, n)] (1- Xz/n)l/z ( )
We now let
in®=F(x,n), (4.34)

so that, from Eq. (4.20),
n~x, ——~1. (4.35)

Consequently, from Egs. (4.19) and (4.33)—(4.35), we obtain

©

w w
E 2_,.< n ) _ (277)—1/2 J- e 2 dn~a ' f e & dé. (4.36)
w=0 Y

w (Sb)—l/Z

Finally, from Egs. (4.2), (4.31), and (4.36), we have

(Sb)—l/z , 2 (8b)_1/2 s
V~aq 12 f_(%)_m et dé= = fo e ¢ dé =Erf[(8b)"""*],

(4.37)

in terms of the error function [13, p. 349]. With b = e* we obtain Theorem 1.

The expression in Eq. (4.37) gives the limiting value of the variation distance V
as n— o, when N/n= A= §log(bn), 0<b,=<b=0(1). Odlyzko [16] has ob-
tained numerical values of V, for various values of n, by calculating the prob-
abilities Py(w), w=0, ..., n, iteratively with respect to N. The value of V is
depicted in Figure 5 as a function of

N 1 1
c——;—zlogn—zlogb. (4.38)

The broken curve corresponds to n =100 and the solid curve to n = 1000. The
limiting value corresponding to Eq. (4.37), that is

V. =Erf[(8b) "*] = Erf(8 ' %e™*), (4.39)
and the numerical value corresponding to n = 10,000 are graphically indistinguish-

able from each other for the range of ¢ in Figure 5, and are essentially
indistinguishable from the solid curve.



68 DIACONIS, GRAHAM, AND MORRISON

5. THE CROSSOVER POINT

We now turn our attention to the crossover point W defined by Eq. (4.1), and
consider N=An>1. According to Lemma 3, W/n— A as n—= for 0< A< q,
where @ =0.32756. .. satisfies a2'/*=e. In order to determine the limiting
crossover point for A > «, we will use the asymptotic approximation Eq. (3.19) to
Py(w), subject to Eq. (3.5), where B is given by Eq. (3.10), and G"(8) by Eq.
(3.9). Thus, using Egs. (4.9) and (4.11),

An

1/2
] [ef + (—1)N+We_”]<%> sinh®” B cosh® ™" g .
(5.1)

In the limit n— o, the crossover point corresponds to W/n— p where 0=<p <1
satisfies

A
G"(B)

Py~ |

(é) sinh” B cosh'™” B = % , (5.2)
i.e.,
Alog (A/B)— A+ plog(tanh B) +1log (2cosh B)=0. (5.3)

The relationship between p and A is given by Eqgs. (3.10) and (5.3). We may
rewrite Eq. (3.10) in the form

. A .
p =sinh B<E cosh B —sinh B) . (5.4)
We let
A=1+ % sinh B cosh B log (coth B8) +log B, (5.5)
and
B =log (2 cosh B) + sinh® B log (coth B) . (5.6)

Then, from Egs. (5.3)-(5.6), we obtain
F(A)=AMA-logA)-B=0. 5.7

If we solve Eq. (5.7) for A as a function of B, then Eq. (5.4) gives p as a
function of B, and the relationship between p and A is given parametrically. But,
from Eq. (5.6),-B >0 since 8 >0, coth 8 >1 and cosh B >1. Hence, from Eq.
(5.7), F(0) = =B <0, and F(A)— —» as A— +x. Also, F'(A)= A —1—1log A, so
that F'(A)=0=>A=¢""">0. Hence F(A) has either no or two positive zeros.
Since the crossover point exists, F(A) must have two positive zeros, one smaller
and one larger than e*~'. From Eq. (5.4), since 8 >0, 0< p =1 implies that
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Btanh B=A=pBcoth B. (5.8)
But, from Eq. (5.5),
A—1>log(coth B)+logB, e '>BcothB. (5.9)
Hence the limiting crossover point corresponds to the zero of F(A) which satisfies
Eq. (5.8).
Before discussing the numerical results, we investigate the limiting crossover

point for B>1, and for 0< B <1. First, for B> 1, it is found from Egs.
(5.5)-(5.7) that

%[1+$(1—%e“‘"+---)—log<%)]~1+%( .1 e_4B+--->(.5'10)

It follows from Eq. (5.8) that

AMB~1+e ™ +-.., B>1. (5.11)
Then, from Eq. (5.4), we obtain

11,726 4 ..,

p~2 48 + 5 B>1 (512)
Hence,

p~i—l1eP 4. A1, (5.13)
We note that this is consistent with Eq. (4.19) for A = } log (bn).

Next, for 0< 8 <1, it is found from Egs. (5.5)-(5.7) that
B’ B’
A[1+ 3 (1-2logB)+---—log /\]~log2+ > (1-2logB)+---.
(5.14)

It follows from Eq. (5.8) that A— a as B — 0+. More precisely,

%;(2;!%3[ +lg<[13>]+---, 0<pB<1. (5.15)

Then, from Eq. (5.4), we obtain

A~a+

p~A—(1-2a/3)B*+---, 0<pB<1. (5.16)
From Egs. (5.15) and (5.16) it is found, for —log 8> 1, that

2(A—a)loga +

P Toga—a) T

for —log(A—a)>1. (5.17)

Hence dp/dA—1 as A— a+, but d’p/dA* — —.
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Fig. 6. The limiting crossover point p as a function of A = N/n, corresponding to the
limit of W/n as n— .

The limiting crossover point is depicted in Figure 6, that is p is plotted as a
function of A, where N = An and W/n— p as n— «. As pointed out earlier, p = A
for 0<A<a =0.32756. ... Numerical values of W, as a function of N, were
obtained by Odlyzko [16], for different values of n. For n = 1000 the values of
W/n are very close to the corresponding values of p depicted in Figure 6, and for
n = 10,000 they are extremely close.
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APPENDIX

We investigate here the behavior of the curve given by Eq. (3.15) as 6 > #/2—.
We first note from Eq. (3.15) that if »>0 and 0=6<#/2, and m is a
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nonnegative integer, then rsin@=mw=>A0=mm, and rsinf=(m+
1/2)w = A8 = (m + 1/2)m. Hence, from (3.16),

rsin0=s—2’f:>w=%”, s=0,... k. (A.1)

We now let 6 = w/2 — ¢, and use Eq. (A.1) with s = k. Then, from Egs. (3.15)
and (3.16), we obtain

p tan”' [coth (7 sin ¢) tan (r cos ¢)] + (1 — p) tan™* [tanh(r sin ¢) tan (r cos ¢)]
k
=A<g—¢)—7ﬂ=%-—)\d), if k is even , (A.2)

and

p cot™ ! [coth (r sin @) tan (r cos ¢)] + (1 — p) cot™ " [tanh (r sin ¢) tan (7 cos $)]
kar

KT M7 _p) = = P e
=3 A(z ¢>> Ad > if k is odd . (A.3)

Also, from Eq. (3.15), we have

tanh (r sin ¢) tan (r cos ¢) = tan [/\(72—7 - d))] , ifp=0, (A4)

and
coth (r sin ¢) tan (r cos ¢) = tan [)\(% - q‘))] , ifp=1. (A.5)
There are three possibilities as ¢—0+, ie., as 6—>7m/2—;

1) tan r—0,2) tan r— *o, 3) tan r remains finite and does not tend to zero.
Since A > p, it follows from Egs. (A.2) and (A.3) that r does not tend to zero, as
is otherwise evident, since Eq. (3.15) gives the paths of steepest descent from the
saddle point at z = B, and Re G(re”®)— +» as r— 0. Hence tan r—0=> r— mr,
where m is a positive integer, and Eq. (A.4) implies that p #0, so that in this
case, from Eq. (3.12), Re G(re”)— — as §— m/2—, corresponding to a sink.
Next, tanr— o= r-—>(m+1/2)m, where m is a nonnegative integer, and
Eq. (A.5) implies that p 1, so that in this case, also, Re G(re”)— —x as
0— w/2—. It remains to consider the third case. If k is even then, from Eq.
(A.2), as ¢ =0+ we obtain

T ré ) wr
B — + o)~ — — . .
p< > tany +(1- p)(ré tan r ) > pY ) (A.6)
Hence u = p, which implies that 0<p =1, and
A=prcotr—(1—p)rtanr, (A.7)

which, from Eq. (3.11), corresponds to a saddle point on the imaginary axis. If k
is odd then, from Eq. (A.3), as ¢ — 0+ we obtain
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p< ré +~->—(1—p)<g+r¢tanr+---)~)«¢—%. (A.8)

tan r

Hence u =1— p, which implies that 0 =< p <1, and Eq. (A.7) holds.

To summarize, in the first two cases the curve given by Eq. (3.15) goes to a
sink on the imaginary axis, but in the third case it goes to a saddle point on the
imaginary axis when k is even and w=p (0<p=1), or when k is odd and
nu=1-p(0=p<). ()
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