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1. INTRODUCTION 

It has been discovered in the past few years that there is a surprisingly 
large class Z? of graph properties, all shared by random graphs, which are 
equivalent in the following sense: If a family of graphs satisfies some 
property in Q, then it must of necessity satisfy all the properties in Q. It 
was shown in [CGW89] (where these properties are termed quasi-random) 
that it is relatively easy to construct explicit families of graphs satisfying the 
quasi-random properties, which therefore imitate random graphs in many 
ways. Indeed, some of the most intransigent problems in combinatorics 
concern the explicit construction of graphs (and other combinatorial 
objects) satisfying particular properties known to be satisfied by almost all 
graphs of a particular size. For example, no one has yet come close to 
giving a construction for graphs on n vertices having no clique and no 
independent set of size more than clog n, even though almost all graphs 
on n vertices have this property (for the value c = 2)! The best current 
construction, due to Frank1 [Fr77] (also see [Ch8 1; FG85]) still only 
achieves exp( c fi). 

From this point of view, quasi-randomness offers a potential constructive 
alternative to the use of random graphs in certain circumstances. Previous 
results along these lines (providing much of the motivation for this work) 
can be found in Wilson [Wi72; Wi74], Erdos and Sos [ES82], Thomason 
[Th87a; Th87b; Th89], Haviland [Ha89], Haviland and Thomason 
[HT89], Rod1 [Ro86], Frank1 et al. [FRW88], Chung et al. [CGW89], 
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Chung and Graham [CG90; CG90a; CG91; CGc], Chung [Ch90], Chung 
and Tetali [Cal, Spencer and Tetali [STa], and [STa], and Simonovits 
and Sos [SSSl], where some of these papers deal with other structures 
besides graphs, such as matrices, hypergraphs, tournaments, and Boolean 
functions. 

In this paper we extend this approach to subsets of Z,,, the ring of 
integers modulo n. In particular, we describe a class of quasi-random 
properties for such subsets, relate these to quasi-random graph properties, 
and give explicit constructions for subsets satisfying these properties. 

2. NOTATION 

For SC H,, the indicator function xs of S is defined by 

xs(z) = 
1 if ZES, 
0 otherwise. 

The translate of S by x, denoted by S + x, is the set {s +x 1 s E S}, where 
here, as throughout the rest of the paper, addition of elements of Z, is 
always performed modulo n. By # {S c T} we mean 1 {x E Z, 1 S + x c T} I. 

For S c Z,, the graph G, has h, as its vertex set, and { {i, j} 1 i + jc S> 
as its edge set. 

3. THE MAIN RESULTS 

We next state a sequence of properties which a subset SC H, might 
possess. It will be noted that all of the properties we consider contain 
occurrences of the asymptotic “little oh” o( .) notation. In fact, each of 
these o( 1 )‘s (for example) can be replaced by an appropriate function f(n) 
which goes to 0 as n -+ co. So to say that P==- P’ for two of our properties 
means that if S c Z,, satisfies P = P( f(n)) then it also must satisfy 
P’ = P’(f’(n)). 

As usual, “almost all” x E X, abbreviated as a.a. x E X, means all except 
for o( 1x1) elements of X. We next list a collection of properties which might 
hold for subsets S, Tc Z,, where s := ISI, t := I TI. We will often abbreviate 
xs by x when S is understood. 

Our primary,result (Theorem 1) is that these properties are equivalent, 
i.e., any one implies any other. 

(WT) Weak translation. For a.a. x E Z,, 

ISn(S+~)I=s~/n+o(n). 
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(ST) Strong translation. For all Tc Z, and a.a. XE Z,, 

ISn(T+x)l =st/n+o(n). 

(P(2)) 2-pattern. For a.a. u,, u~EZ,,, 

CX(x+u,)X(x+u,)=s*/n+o(n). 
.Y 

(P(k)) k-pattern. For a.a. ul, u2, . . . . u~EZ,, 

k 

C n x(x + ui) = sk/nk- ’ + o(n). 
I i=l 

(R(2)) 2-representation. For a.a. x E Z,, 

1 X(ul)X(u2)=s2/n+o(n). 
u,+u2=r 

(R(k)) k-representation. For a.a. x E Z,, 

c fi X(ui)=sk/nkp’+o(n). 
u,+ +l$=* i=l 

(EXP) Exponential sum. For all j # 0 in Z,, 

xFz 
0 
x(x) exp (F) = o(n). 

(GRAPH) Quasi-random graph. The graph G, is quasi-random. 

(C(2t)) 2t-cycle. 

1 x(x,+-~*)x(x*+x,)~~ . X(X~~- 1 +x2,) x(x,, + xl) = s*‘+ o(n*‘). 
x, ) . q, 

(DENSITY) Relative density. For all T c if,,, 

C x7-(x) xAy) xs(x+ y) =st*/n + o(n*). 
.x. I 

THEOREM 1. For all subsets S c Z,, the preceding properties are 
equivalent. 

Proof: The flowchart shown in Fig. 1 will indicate the implications we 
will prove. The label @ indicates that the corresponding implication is 
proved in Fact x. 

Fact 1. (WT)=(ST). 
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FIGURE 1 

Let Tc Z,. For all UE Z, we have by (WT) for almost all bEi?,,, 

I(S--a)n(S-b)[ =s’/n+o(n). 

Thus, 

1 1 \(S-a)n(S-b)j =s2t2/n+o(n3) 
ueT heT 

so that 

11 c Xs(X + 0) Xs(X + b) XTta) XT(b) 

= 
c (~~S(x+c~xI(c))2 

.XEL, c 

=c l(S-x)n T12=s2t2/n+o(n3). 

Therefore, applying the Cauchy-Schwarz inequality, we have for a.a. 
XEL, 

ISn(T+x)( =st/n+o(n), 

since 

C j(S-x)nTI =st+o(n2). 
x 

Fact 2. (ST)* R(2). 

In (ST), choose T= -S, so that xT(z)=xS( -z). Thus, by (ST), a.a. 
x E Z, satisfy 

-,,g Xs(y)XT(Y-X)=CXs(y)Xs(x-Y) 

n Y  

= s’/n + o(n) 

which is just R(2). 
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Fact 3. R(2)=>R(k). 

We proceed by induction on k. Of course, the assertion holds for k = 2. 
Assume it holds for all values less than some fixed value of k 2 3. Thus, we 
need to prove that for a.a. x E Z,, , 

c X(u,)...X(Uk)=Sk/n+u(nk~‘). (3.1) 
u,+ ... +l.Q=i 

Now, 

=cjcxcx-u) c 

2 

x(u2) . X(Uk) 1 .Y \I q + + Uk = > / 

=~(ZX(x-Y)lsk-‘,n+ojn*~‘)))2+o(n’*’) by induction 

=ZiZ,ix-11)2(s2k~2,n2+o(n”‘))+oln”..-’) 
.Y I 

=~‘~/n+o(n~~~‘) 

which implies (3.1), since 

c c X(Ul ) ‘. id”k) 
x u,+ ... +u,,=.x 

~(“l)“.x(~k-,)x(x--,- “’ -uk-1) 

=c . . 1 ~*(x-u,- . . . -Uk--l)X(UI)...X(U/,_I)=Sk+u(nk). 
u, Uk-l r 

Fact 4. R(k)* (EXP). 
Define the matrix M= (mu), i, je Z,, by rnv := x(j-- i). Thus, M is a 

circulant and so has eigenvectors (e.g., see [Da79]) 

(1, 8’, e21, . ..) tVn ~ ’ “), 8 = exp( 2nil/n ), lE&, 

with corresponding eigenvalues 

A,:= 1 x(x) 8’“. 
rez, 
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Now, 

CMk)i,j= 1 mi.,,mv,,v2 . ..m._,,, 

"I."* . . . . . Vk-I 

=({vl,...,vkpL[ X(vc-i)=X(v2-V,)= 

. . =x(j-v,-,)= 111 

= c X(ul)X(u,)...X(u,)=sk/n+a(nk-‘) 
u,+ ... +rQ=/--i 

for almost all choices of i - i = x E Z,. Therefore, 

Tr(MA4”)k = s2k + o(n2”) = C A;“. 
i=O 

However, 

i.e., 

A, = c Xs(“) = $7 Y 

This implies for all j E Z, \ (0 1, 

~,i=Cxdx)exp 
2nijx ( ) - =o(n) 

.Y n 

which is just (EXP). 

Fact 5. (EXP) + (ST). 

Define, as before, the matrix M= (m,) = (x(j- i)). Thus A4 has eigen- 
values Aj = C, x(x) exp(2lcijxln), j E Z,. Let A := maxj, ,, IA,/. By hypothesis, 
1= o(n). Choose a fixed (arbitrary) Tc Z, of size t := ) T1. Observe that if 
s = o(n) or t = o(n) then (ST) holds trivially. Hence, we may assume s > an, 
t > dn for some 6 > 0. Define i = (1, 1, . . . . 1 )g the all i’s vector of length n, 

and 

XT= (XT(O), . . . . xAn - 1 I)” 

G7-= (v=(O), . ..) VT(n - l))“, where VT(i) := & (-1 +:x(i)). 

Thus, 

t(n-t) 
___ 

( 

1 - 
KT= n 

n--l+i% , 
> 
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where (i, VT) = 0. Also, we have 

and 

Now, suppose for some E > 0, 

(3.2) 

(3.3) 

(3.4) 

Define 

w:= y ISn(r+y)I-; >y . 
i I I i 

Then w  := I WI must satisfy w  > 2&s, since otherwise we would have 

<wt+%<3ESt, 
n 

which contradicts (3.4). 
We can assume without loss of generality (since the other case is 

essentially the same) that 

W’= YE WIISn(T+y)(> 
i 

(1 +t?)st 
n I 

has w’ := I W’I > ES. Thus, 

Jw, ISn (T+ Y)I > (1 + E) F. 

Let w” = - w’ and define 

- x W” := (xwsr(0), . . . . xws,(n - l))“, 

(3.5) 

1 
VW,, := (v;;, . ..) V;-‘yr, where VI)=- 

n-t 



QUASI-RANDOM SUBSETS OF z, 71 

As before, 

fw,, = 
w’(n-w’) 1 

( 
-.i+v,,, 

n n - w’ ) 

with (i, VW,, ) = 0, and 

Il~ws,Il =(-$+-&)‘.‘. 

Therefore, 

= C ITn(S+i)l 
ie W” 

=.,Fw ISn(T+g)[~(l+En)s’w’ (3.6) 

by (3.5). On the other hand, 

<XW~f, MjT)= f.i+w’(n-W’)fW.,St.i I t(n-t)~j, 
( n n n n ) 

w’st =-+ w’(n - w’) t(n - t) (v 
n2 W”, MVT) 

n 

w’st 

<----I- 

n 
w’(n - “,‘1 t(n - t )  I,,vw , , , ,  ,,vr,, 

by the Courant-Fisher theorem (cf. [Ga77]) 

w’st =--+ w’(n - w’) t(n - t) 

.~;+-$L+-g2 

w’st =-+ (w’(n - w’) t(n - t))“* 
n n . o(n) 

W’Sf W’Sf 

=n+O -’ ( > n 
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since s > 6n, t > 6n, and ~1’ > ES. This contradicts (3.6) and the proof of 
Fact 5 is complete. 

Fact 6. (ST)=>P(k). 

We proceed by induction on k. For k = 2, property P(2) follows at 
once from property (ST) by choosing T = - S. Assume the assertion holds 
for all values less than some k > 3. Let U= (u,, u2, . . . . uk} c Z,. Define 
T:= n::,’ (S-U,). By induction, ITI =skp1/nkS2 + o(n). Now apply the 
assumption (ST) to the sets S and T. Thus, 

1.3, (s-ui)i = ITn(S-Uk)I 

= l(T+u,)nSI =s”/n”-‘-to(n). 

This completes the induction step and Fact 6 is proved. 

Fact 7. P(k)* P(2). 

The desired result is immediate for k = 2. Assume that it holds for all 
values less than some k > 3. Then 

P(k)- c (~x(x+u,)-%(x+uk))2 
u I,..., u4 .r 

= s’k/nk - 2 + o(nk + 2) 

by the Cauchy-Schwarz inequality 

=-& c ((skp2 ( 1 
2 

+4nkp2)) ~x(x+~,)x(x+u~) 

U1.K 5 

by the induction assumption. Thus, 

However, since 

c cx(x+~dx(~+u2)=c Cx(x+u 1 Cx(x+u ) 
u,.q I r (., l )(.I 2) 

= s2n + o(n3) 

then P(2) follows. 
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Fuct 8. P(2) * (WT). 

Since P(2) * for a.a. U, , u2 E Z,, 

=ISn(S+u,--,)I 

then (WT) follows. 

Fact 9. P(2) o (GRAPH). 

Suppose P(2) holds for some subset SC Z,,. Thus, a.a. choices of 
U, , u2 E H, satisfy 

However, in the graph G(S), the sum in (3.7) just counts Ind(u,) n nd(u,)l, 
where rid(u) denotes the number of vertices in G(S) which are adjacent 
to U. A straightforward extension of a result in [CGW89] asserts that the 
condition: 

J, I Idu,) f-7 Mu*)l - s2nl = 4n3) (3.8) 
, ,. 

is a quasi-random graph property. Since (3.7) and (3.8) are equivalent then 
Fact 9 follows. 

The remaining two conditions, C(2t) and (DENSITY) are simply trans- 
lations of quasi-random graph properties in [CGWSS] into the corre- 
sponding results for subsets of Z, (where, as in Fact 9, the graph properties 
need to be extended to the case of a general edge probability p from the 
standard case of p = f), We state these two graph properties for a family 
B = {G(n)} of graphs, where G(n) has n vertices and e(G(n)) edges. For 
fixed t 2 2, let # (C,, c G(n)} denote the number of (ordered) 2t-cycles in 
G(n). Also, for a subset Xc V, the vertex set of G(n), let e(X) denote the 
number of edges of G(n) spanned by X. Let 0 < p < 1 be fixed. 

Fuct 10. The condition 

e(G(n))=(l +0(l))‘+, and #{C,,cG(n)}=(l +u(l))(pn)2’ 

is a quasi-random graph property. 
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Fact 11. The condition 

For all Xc V, and e(x)=! IXI’+o(n’) 

is a quasi-random graph property. 

It is not difficult to see that conditions C(2t) and (DENSITY) are 
immediate consequences of these. This completes the proof of 
Theorem 1. 1 

Sets S (or strictly speaking, families of sets with size tending to infinity) 
which satisfy any one, and therefore all, of the conditions of Theorem 1 will 
be called quasi-random. 

4. REMARKS ON RELATED RESULTS 

Let A = (a,) be an infinite sequence of integers. For an integer m, we say 
that A is uniformly distributed modulo m (abbreviated ud. (mod m)) if for 
every j E Z,, 

lim ${a,~<~~a,,=j(modm)}l =‘, (4.1) 
N+ I 

Also, A is said to be umformly distributed in Z if A is u.d. (mod m) for 
all m (see [KN74] for a thorough discussion of these concepts). One 
characterization of sequences A = (a,,) which are uniformly distributed in Z 
(abbreviated u.d. in Z) is the following. 

THEOREM [KN74]. A = (a,,) is u.d. in Z if and only ij’for all m 3 2, 

lim f F exp 
N-TZ n=l 

=0 for all jEZ,\{O}. (4.2 1 

Note that this condition is rather similar to the condition (EXP). They 
are related as follows. For SC Z,, and jE Z, with m fixed, define the 
quantity 

In one direction we have the following. 

PROPOSITION 1. If S is quasi-random then for all j E Z, , 

(4.3) 
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Proof Suppose for some m > 2 that (4.3) does not hold. Thus, we can 
assume without loss of generality that for a fixed E> 0, the residue 0 
modulo m occurs at least (l/m + E)S times where (as usual) we can assume 
that s > 6n for a fixed 6 > 0. Let us show that condition (ST) is violated. To 
do this, select T= (0, m, 2m, (In/m J - 1) ml c Z,. Choose n = ~s/2n and 
consider the rp translates T + jm, 0 < j < gn. A short calculation shows that 
for each such j, 

Since n > s6/2 > 0 is independent of n, and t := I T\ = n/m + o(n) then (ST) 
is violated. fi 

We should point out that the converse does not hold, however. One 
example showing this is given by the set S+ = {0,2, . ..) 2n - 2,2n + 1, 
2n + 3, . . . . 4n - 1) E Z,,. For m fixed, it is easy to see that for all je Z,, 

N,Jj) = (1 + o(l)Wdm). 

On the other hand, S+ does not satisfy the quasi-random property P(2). 
To see this, consider the two-point patterns (0, 2u + 1 }, 0 < u < ln for a 
small fixed { > 0. A simple calculation shows that each of these 5n patterns 
occurs at most 25n times, violating P(2) (strongly). 

One natural way to form sets from an infinite sequence A = (ak) is the 
following. For the integer n, define 

S,:={u,,,EA(a,<njcZ,,. 

One reason why S, might not be quasi-random even though A is u.d. 
in Z is because A does not have an asymptotic density; that is, 
6(A) := lim,, m (l/N)1 {USE A 1 a, 6 N}I does not exist. However, even if 
6(A) exists, S, can fail to be quasi-random, as the following example 
shows. 

EXAMPLE. Let 4 := (1 + .\//5)/2 and define A* = (a,*, UT, a:, . ..). where 

a,* := Lnq5 J. 

Let F,,, denote the mth Fibonacci number, defined by 

F0 = 0, F,=l, F,,,=F,+,+Fr, r > 0. 

Finally, define 

S,* := {a$, a:, . . . . a&,_,}. 
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It is not difficult to verify the following facts (e.g., see [GKP89]): 

0) S?CZ~~~+,; 
(ii) {iF,,(mod FTk+ ,): 0 <j-c F2kJ. = S,* 

(iii) F1, L Fzk = 1 (mod FZk + , ). 

Now, A * is u.d. in Z by Theorem 1.5 of [KN74]. (In fact, any sequence 
of the form (Lncl J). c( irrational, is u.d. in Z.) Also, 6(A*) = l/d. However, 
the set S,* is not quasi-random. To see this, we check that (EXP) is 
violated for the choice j = Fzk ~, Indeed, we have 

by tii) 

= lim ~ 1 - eXP(2ziFx/Fx + I ) 
k + % F 2kf I 1 - exp(27dF,, + I ) 

= 1 sin n = 0.296675... > 0, 
rc 4 

which shows that S,* is not quasi-random. 

Thus, while the concepts of quasi-randomness and uniform distribution 
in Z are related, they are in fact rather different. 

Finally, we remark that for any S c Z,, since 

2nijx 
is(A :=t C xs(s) exp - 

\-GE, ( > n 

is just the Fourier transform of xs, then by the Plancherel formula (e.g., see 
[ Se77]), we have 

i.e., 

=t C Ix&)l*=~/n; 
rsz, 

1:: /Jz 
n 

Xs(x)exp(~)12=S(n--5). (4.4) 

However, for s > on, with c > 0, (EXP) requires that each term of (4.4) has 
size o(n2); i.e., no unusual clustering can occur. 
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5. RESTRICTIONS OF QUASI-RANDOM SETS 

Suppose for a fixed S > 0 we take m > 6n and restrict a quasi-random set 
SC Z, to the set S’ = Sn [0, m) c Z,. Is S’ also quasi-random? The 
answer turns out to be in the affirmative, and this forms the topic of this 
section. In order to prove this we first need the following preliminary 
result, which essentially asserts that if S is quasi-random then S’ has nearly 
the same density as S, i.e., s’ := IS’1 satisfies 

s’ 
-=5+0(l). 
m n 

(As usual, we can restrict ourselves to the case that s#o(n), since the 
results hold trivially otherwise.) More precisely, consider the following two 
conditions (where 0 < E < 6): 

For all Tc Z,, with t := 1 TI, and for all except at most en 
XEL, 

~SC-I(T+X)~ -f <En; (5.1) 

s s’ 

I I 
--- 
n m 

<20-$&. 

LEMMA. (5.1) =P (5.2). 

ProoJ It will be enough to prove that for m <n/2, (5.1) implies 

s ST 

I I 
--- 
n m 

,10-$&. 

(5.2) 

(5.2)’ 

Assume the contrary, and in particular, assume that (5.1) holds but we 
have 

(5.3) 

(the other case is similar and is omitted). Then, straightforward calculation 
gives 

and 

s’ --s--s)> 10-&G 
m n-m (5.5) 
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Let Q denote an interval of length fi n in [0, m) and define Q’ = Q n S, 
where q’ := IQ’I. By (5.1) for all except at most en, x E Z,, we have 

Define 

Note that (P,,( = n - m - ,,I% n. 
We next consider the following sum over all intervals Q of length J n 

in [0, m) (with Q’ = Q n S): 

= I Q’JE PQ 

ISn(Q’+x)l-$ <m(n-mm)&n+m.uz.m 

-c 2Emn’. (5.6) 

On the other hand, now consider an interval R of length &n in [m, n), 
and set R’ = R n S, Y’ := (R’(. Again, by (5.1 ), for all except at most En 
Y~Cl, 

,Sn(R’+y)l-; <En. 

Define 

PX,:={y~Z~l(R’+y)c[O,rn)}. 

Note that IPk.1 = m - & n. Thus, summing over all such R (with 
R’ = R n S), we have 

c I R’, ? t Pp.. 

ISn(R’+y)I-c <(tz-m)m.En+(n-m).uz.m 

-c 2cmn’. (5.7) 

Now, since 

Q‘..rs PQ R~, y E Pk. 

(both sums count the total number of intersections of an interval in [0, m) 
with a translated interval from [m, n)), then by (5.6) and (5.7) we obtain 

i(n-m-&n)~~-(m-&n)~~J<4Emn’ 
R’ 
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i.e., 

5 ((n - m) 2 q’ - m 1 r’ ( < 6cmn2. 
Q' R’ 

79 

(53) 

Since 

and 

lZq’-J;nst142,1Pn.~n=2in’ 
Q' 

then we have from (5.8), 

sm(n-m)J i-* 
I I 

< 10&n2; 
n-m 

i.e., 

10n3 & < 10n3 & 
sm(n-m) 7’ 

since we are assuming m <n/2. However, this contradicts (5.4), and the 
lemma is proved. 1 

THEOREM 2. If SC if’,, is quasi-random and S’ = Sn [0, m) c if’, with 
m > 6n, 6 > 0 fixed, then S’ is quasi-random. 

Proof: We will show that if S satisfies (5.1) then it also satisfies the 
following form of (WT): 

ZI 
,yn(Sr+x), -UT <22n3A \ lE& m s . (5.9) 

In applying (5.1) we will choose T to be of the form S n [a b) for various 
intervals [a, b) c 27,. We first partition [0, m) into 1= l/,,& disjoint inter- 
vals II, . . . . I,, each of length essentially Am. Let Ti denote Zi n S’ and 
ti := ) TiJ. Clearly, for each fixed x E H,, 

jS’n(S’+x)i=~S’n(~ (Ti+X))I 

=I IS’n(T,+x)l 

(where addition is taken in Z,). 
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Observe that S’ n (r, + x) (mod m) and S n (T, + x) (mod n) consist of 
the same elements except possibly for a single index i. Therefore by (5.1), 
all but at most sn of the x E Z,,, satisfy 

IS’n(Tj+x)l-~ <En for all but at most one index i. 

By the lemma we have 

s s’ 

I I 
--- < 20n3 Ji. 
nm m2s 

Thus, we obtain for these x, 

20n3t. ,sn(ri+x), -z <En+--+. 
m2s 

(5.10) 

Consequently, by (5. lo), 

as claimed. This completes the proof of Theorem 2. 1 

Since S quasi-random implies S + t is quasi-random for all t E Z,, , thus 
in fact Theorem 2 holds when [0, m) is replaced by any interval of length 
m. More generally, the same general results hold if we interact S with a 
bounded number of disjoint intervals of total length m, and concatenate 
them where some may have been reflected to form a subset of H,. Also, 
one can get other quasi-random sets s’ for S by defining xss (i) = xs(c + di), 
0 < i < m, where m > 6n and g.c.d. (d, n) = o(n). 
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6. EXAMPLES OF QUASI-RANDOM SETS 

A standard example for exhibiting random-like behavior with a well- 
defined structure is to use the quadratic residues modulo some prime (e.g., 
see [GS71; BT81; CGW891). For us, this means forming the subset 

Qp= (x21x~.Zp, p prime} cZ,. 

There are many ways of showing that Qp is quasi-random. One is to check 
the (EXP) condition. In this case, 

(6.1) 

which is closely related to Gauss sums modulo p (see [IR72]). In par- 
ticular, it is known that for any j # 0 (mod p), the sum in (6.1) is O(p”*), 
which implies that (EXP) holds for Qp. This construction is actually a 
special case of the following general situation. For a fixed integer r > 0, let 
p = mr + 1 be prime and let A c Z; consist of t non-zero residues which 
belong to distinct rth power characters modulo p, i.e., for any distinct 
a, beA, ab-’ is not an rth power in Zp*. Let Q,= {x~(xEH~*} denote the 
rth powers in Z: and define 

S=AQr={aqIa~A,q~Q,}cz,. 

We claim that S is quasi-random. To see this, we check the (EXP) 
condition. Thus, for [ = e2ni’p, j # 0, 

t(r-1) r 
<; 1 (r-l)&=- 

rrcA r Jp 

=0(&h (6.2) 

since t < r, where we have used a well-known rth power character sum 
estimate in bounding IC, [““‘I (e.g., see [BS66]). Note that in this case S 
has density t/r + o( 1). 

We next exhibit a large (but more elementary) class of quasi-random 
sets. For a fixed integer n > 1, arbitrarily fix Xc Z, with x := 1x1 satisfying 
0 <x < n. For t > 1, each z E Z,, can be expressed uniquely as z = cf:A zini, 
0 <zi< n (this is just the standard base n expansion of z). Define 
S,(W = G by 

S,(X) := {Z E h,, I an odd number of 2, belonging to X}. 
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PROPOSITION 2. For all j # 0 in Z,{, we have 

;I 1 expqo(l) as t+cCi. 
ZE S,(X) 

(6.3 1 

This implies in particular that the sets S,(X) are quasi-random subsets of 
E,,,. In general, IS,(X)1 = (1 + o(l))(n’/2). We will only give the proof of 
(6.3) in the simplest case n = 2, X= (11, since the general case follows 
much the same lines but with somewhat more complicated notation. In this 
case, S, consists of all ZE.Z~, which have an odd number of l’s in their 
binary expansion (there are 2’ ’ such 2). 

CLAIM. For all j # 0 in Z2!, 

(6.4) 

for an absolute constant c. 

Proof. Let w  m := exp(2+2”) and let wt(*z) denote the number of l’s in 
the binary expansion of 2. For jE Zzm, define 

Observe that 

C(j):= C w$. 
m :eZzm 

WI(Z) odd 

if j f 0 (mod 2”), 
if j = 0 (mod 2”). (6.5 1 

Each 2~7,~ can be written uniquely as z = x + 2y with x E (0, 1 }, 
y E Zzrnml. Thus, we have the basic recurrence 

C(j) = c w:’ 
, z E s, 

= c wf” + w< c I w 21) 
I.ES,-, I.EZpl\S,~, 

= ,F, (3 + { 
w<(-C,-~ (A) if j f O(mod2’-I) 
w’(2’-2) if j-0 (mod 2’-‘), jf0 (mod 2’) 

(l-dCr-, 0) if j f O(mod2’-‘) 
= 

0 if j=O(mod2’-‘),jf O(mod2’) (6.6) 
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by (6.5). Iterating this argument, we obtain 

?j)=(l-~{)(l--M.<~i) 1 (j) if jfO(mod2’-2) 
r-2 

and 0 otherwise, j f 0 (mod 2’), etc. Continuing this process we find that 
for j f 0 (mod 2’), 

C (A = 
-rI:=2 (1 - w’k) if j is odd, 

, 0 if j is even. (6.7) 

Our next job is to estimate In:=, (1 - wd)l. To begin, write j= xi:; ji2i, 
jj = 0, 1, for a fixed odd j E iz,! and define 

Note that 

m-l 
‘(m)= J C j,2’. 

i=O 

2nij w’,=exp - =wt’. ( ) 2” 

Focusing on the term 11 - wt’l, we want to consider the three initial 
“digits” j,,- i j,,-* jrnej of J ‘(m) Easy geometrical computations show the . 

following bounds on 11 - w<t’l, depending on j, ~ I j, ~ z j, ~ 3 (see Table I). 

For example, if jmP, jmP2 j,_3=OO0 then jcm)<Cy=!04 1 .2’~2”-~. 
Thus, 

[l-w’,/< l-exp / (:)I =Jm, etc. 

TABLE I 

A-, Upper bound E on 1 I - w:‘[ 

0 0 0 $3 

0 0 1 4 

0 1 0 A.3 

0 1 1 2 

1 0 0 

1 0 1 J&5 

1 1 0 G 

1 1 1 JG 
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10 

FIGURE 2 

Finally, we construct the transition arc digraph G shown in Fig. 2 (cf. 
[KN81]). The interpretation of G is the following. Each edge a/I + /?y 
indicates the triple a/?~ occurs as j, ~ i j, _ 2 j, _ 3 as the initial pair of digits 
go from j,,_ i j,,- 2 = c$ to j,_ 2 jmP3 = By. The bound B for c& is also 
shown in the edge. It is now simply a matter of finding the (simple) cycle 
C in G for which the ICI th root of the product of the corresponding edge 
bounds is as large as possible. This turns out to be the cycle 01 -+ 10 -+ 01 
which has (average) value dm. Since we start with j= j(” and walk 

the maximum possible value we can obtain is bounded by 
some absolute constant c. This proves the claim. 1 

7. CONCLUDING REMARKS 

In the preceding sections we have only managed to hint at the variety of 
properties of subsets of h, which are quasi-random. It would be of great 
interest to expand this list substantially. For example, Erdijs [Er(x)] has 
suggested that the following sets S, should be quasi-random. Call an 
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integer n “good” if it has at least log log n prime factors. Define 
S, := {m < n: m is good} c H,. No doubt other number-theoretic functions 
possessing a “normal order” would work as well (cf. [HW65]). 

Of course, it is possible in ‘principle to replace all occurrences of o( 1 ), 
etc., by explicit functions of n. Indeed, we hope to do this soon in a 
forthcoming paper. In this quantitative form, one could measure more 
explicitly the extent to which a specific set behaves like a random subset 
of 27,. 

A natural direction one might pursue is the extension of this philosophy 
to other groups, e.g., finite abelian groups, permutation groups over finite 
fields, etc. Also it is natural to explore the possible links of these ideas to 
the well-studied subject of (infinite) pseudo-random sequences (e.g., see 
[Kn81 I). There clearly remains much to be done. 
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