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PRIMITIVE PARTITION IDENTITIES

P. DIACONIS, R. L. GRAHAM and B. STURMFELS

Let us call a subset A C (Z™, +) primitive if:

() Yacae= 0, the all-zero vector;

(it) If B is a nonempty proper subset of A then Zbe gb# 0.
In general, we allow repeated elements in A and B.

In this note we investigate properties of primitive subsets of various sets
in Z". For example, if A C {1,...,n} C Z is primitive then |A] < 2n — 1, and

this is best possible. Similarly, if A C {(1,i,i2,...,id) 11<i<n}C zd+1
d+1

then |A] < cdn( 2 ) for a suitable constant c; depending only on d (which is
also best possible up to the choice of ¢y).

1. INTRODUCTION

This paper offers generalizations of the identity 1+1 = 2. To begin, consider
identities of the form ay + --- +ar = by +--- + b with 0 < ai,b; < n
and all parts integers. Such identities arise in the study of Grobner bases,
computational statistics, and integer programming as explained below. Such
an identity is called primitive if no subset sum of terms on the left equals
a subset sum of terms on the right. Thus, 1 +1 = 2 is primitive with
largest part 2. We show that there are only finitely many primitive partition
identities with largest part n. In particular, the number of terms is bounded
by k+1 < 2n —1 and this is sharp.

The main results are proved for vector summands. Let A be a finite
spanning subset of the integer lattice Z?. By a partition identity with parts
in A we mean any identity of vector sums

aj+az+az+--+ar = by+by+by+---+by, (1.1)
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where ay,...,ax,b1,...,b € A (generally not distinct). The number k + [
is called its degree. The partition identity (1.1) is called primitive if there
is no proper subidentity

@iy tag, +--+a;, = bj +bj,+--+bj, (1.2)

where 1 <r+s < k41 —1. If £k =1 then the identity (1.1) is called homo-
geneous. It is homogeneous primitive if, in addition, no proper subidentity
(1.2) with » = s exists. The homogeneous case can be reduced to the inho-
mogeneous case by adding an extra coordinate 1 to each vector in A.

Our main results give bounds on the size of the set of primitive identi-
ties.

Theorem 1. Let A be a spanning subset of Z? of cardinalitv n. Let D(A)
denote the largest absolute value of the determinant of any d x d-minor of
the integer n x d-matrix (a : a € A). Then any primitive partition identity
(1.1) satisfies

k+1 < 2d)%d+ 1) . D(A). (1.3)

Earlier work on this problem is in Sturmfels [14] who proved k +1 <
n - (n —d) - D(A). This is better than (1.3) for large d, but not as effective
when d is fixed and n grows. Our proof of Theorem 1 uses results of Lagarias
and Ziegler {11} on lattice polytopes, and of Grinberg and Sevast’yanov [9]
on the Steinitz constant of a finite-dimensional normed space. These ideas
and the proof of Theorem 1 are explained in Section 3.

Theorem 1 is a general result. Specializing to the opening example,
take d = 1 and A = {1,2,3,...,n}. Then D(A) = n and the bound from
Theorem 1 gives k£ + 1 < 8n. In Section 2 we improve this to k+1 < 2n — 1
and show that this is sharp. We also show that when d = 1 and A =
{1,2,3,...,n}, any homogeneous primitive identity satisfies k +1 < n —1
and this is sharp. In Section 4 we carry out a more careful study when

A = {(1,i,3%,... % :i=1,2,...,n} C Z%.

This is the classical number theory problem of multigrades. It also arises in
statistical applications.

The present paper began in applied work. Three applications are de-
scribed in Section 5. The first uses Theorem 1 to give a bound on the
maximum degree for a universal Grobner basis of the toric ideal generated
by the set A. The second gives an application to statistics: the primitive
identities give the steps for a random walk on a class of contingency tables
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arising in logistic regression. The third gives an application to integer pro-
gramming: the primitive partition identities give a minimal set of moves for
checking feasible solutions for knapsack problems.

2. SCALAR PARTITION IDENTITIES

Fix a positive integer n. A scalar partition identity is an identity (1.1) where
a;.b; are integers between 1 and n. It is primitive if no proper subidentity
(1.2) exists. To illustrate these concepts we list all primitive scalar partition
identities for n = 5. The primitive partition identities for all smaller values
of n appear in the beginning.

I4+1=2 242=1+3,2+2+2=3+3,14+2=3,14+1+1=3,
343=2+4,34343=1444+4,3+3+3+3=4+4+4 2+3=1+4,
243+4+3=4+4, 2+2=4, 143=4, 3+3=1+1+4, 1+1+2=4,
I+1+14+1=4, 444=3+54+4+4=2+5+5,
44+44+4+4=1+5+5+5 A4+4+4+4+4=5+5+5+5,

34+4=2+45 34+4+4=14+5+5 3+4+4+4=5+5+5,3+3=1+35,
3434+44=5+5 3+3+3=4+5 3+3+3=2+2+5 3+3+3+3=2+5+5,
343+34+3+3=5+5+5 24+4=1+5 2+44+4=5+5, 2+3=5,
2424+4=3+5 2+24+2=1+5, 2+2+2+4=5+5 2+2+2+2=3+5,
24242424+2=5+5 14+4=5 1+3+3=2+5 1+3+3+3=5+5,
44+4=1+2+45 1+2+2=5 3+4=14+1+5 4+4+4=1+1+5+35,
L+143=54+4=141+14+5 1+1+14+2=5 1+1+1+1+1=5.

Table 1. Primitive partition identities for n < 5.

We computed this list up to n = 13 with the computer algebra system
MACAULAY, using the technique to be described in Section 5. This com-
putation suggested that the maximum degree should be 2n — 1. Here is the
proof of this result.

Theorem 2. For d =1 and A = {1,2,3,...,n}, any primitive partition
identity (1.1) satisfies k +1 < 2n — 1. This is sharp since

n+tn+n+---4+n = (n-1)+n-1)+---+(n—-1). (2.1)

-

-~

n—1terms n terms

is the unique primitive identity with k +1 = 2n — 1.
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Proof. Suppose that (1.1) is primitive. We may assume that n does not
appear on the right hand side of (1.1). But it can appear on the left hand
side. We run the following algorithm, starting with x := 0 and the multisets
P:={a1,...,ax} and N := {by,..., b }:
While PUAN is non-empty do
if >0
then select an element v € N, set x:=z—v and N =N\ {v}
else select an element w € P, set v:=z+7 and P:= P\ {x}.

At each step in the while-loop the value of x is an integer between 1 —n
and n — 1. Thus the total number of possible values for x is 2n — 1. Since
(1.1) is primitive, no value can be attained more than once. Otherwise
a proper subidentity (1.2) is created whenever a value is reached for the
second time. Therefore the total number of iterations in our loop is at most
2n — 1, which proves the first part of Theorem 2.

The maximum degree 2n — 1 can be attained only if all possible values
for = are attained in the above loop. We add the requirement that in each
step the largest element v in A or 7 in P is to be selected. Then 7 =n—11in
the first step. Otherwise the value x = n—1 will never be reached. The next
time we enter the “then”-case, we must jump from r = -1 with 7 = n — 1.
Otherwise the value x = n — 2 will never be reached. The next time we enter
the “then”-case, we must jump from x = —2 with 7 = n — 1. Otherwise the
value x = n — 3 will never be reached. Iterating this argument, we see that
by =by =...=b =n—1and ! = n. This proves that (2.1) is the only
primitive identity of maximum degree. =

The upper bound in Theorem 2 can be strengthened as follows:

Corollary 1. Suppose that (1.1) is a scalar primitive partition identity
whend =1 and A= {1,2,3,...,n}. Then

E+1l < max{a; :i=1,...,k} + max{b; : j=1,....1}
Proof. Let a;, be the maximum of the ¢;’s and let b, be the maximum of
the b;’s. In our algorithm in the proof of Theorem 2, the value of x is always
an integer between —bj, and a;, — 1. So, the number of possible values for
x equals a;, + bj,, which is the right hand side of the claim. m

A homogeneous scalar partition identity is an identity (1.1) where k =
I and a;,b; are integers between 1 and n. It is primitive if no proper
subidentity (1.2) with r = s exists. We list all homogeneous primitive
partition identities for n < 6.



Primitive Partition Identities

177

Note that homogeneous primitive identities need not be primitive in the

inhomogeneous sense.

24+2=1+3,

3+3=24+4,3+3+3=1+4+4,

The identity 1 +4+4+4 = 2 + 2 + 5 shows this.
Underlined are the four identities of maximum degree 10 = 2-6 — 2.

4+4=3+5 44+4+4=24+54+5 4+4+4+4=1+5+5+5
344=2453+4+4=1+5+5 2+4+2+2+2=1+1+1+5,

2+4=1+5,

242+3=1+1+5,

243=1+4,2+4+2+4+2=1+1+4,

1+44+4=242+5,34+3+3=2+2+5,

3+3=1+4+5,5+5=44+6, 5+5+5=3+6+6, 54+5+5+5=2+6+6+6,
5+5+5+5+5=14+6+4+6+6+6,4+5=3+6, 4+54+5=2+6+6,

4454+5+5=14+6+6+6, 4+4=2+6 4+4+4+4=1+3+6+6,
4+4+4=34+3+6,4+4+4=1+5+6,34+5=2+6,3+5+5=1+6+6,
3+3+4=2+246,24+5+5=3+3+6, 44+44+4+44+4=14+1+6+6+6,
2+5=1+6,34+3+5=1+4+6,3+4=1+6, 34+3+3+5=1+1+6+6,
34+3+3=1+2+46,3+3+3+3=24+24+2+6,3+3+3+3=1+1+4+6,
3+3+3+3+3=141+14+6+6, 2+4+4=1+3+6, 2+3+3=1+1+6,

24+4+44+4=1+4+146+6,24+24+4=1+1+6,2+24+24+3=1+14+1+6,
2+2+24+2+2=1414+14+1+46, 14+5+5=2+3+6, 1+44+5=2+2+6,

1+5+5+5=24+24+6+6, 44+4+5=14+6+6, 1+1+5+5=2+24+2+6.

Table 2. Homogeneous primitive partition identities for n < 6.

In the next table we present a count by degree of all homogeneous
primitive partition identities for n < 12:

degree 4
n=3 1
n=4 ( 3
n=25 7
n==6 13
n=7 22
n=2~§8 34
n=29 50
n =10 70
n=11 95
n=12 125

Table 3.

7
22
54

118
230
418
710
1150

2
12
36

110

276
646
1374
2788

10 12 14 16 18 20 22

4
13 2
54 18 6

155 60 23 4

406 182 78 24 6

965 462 207 T4 25 4
2260 1228 602 264 108 34 10

total #

1
5
16
51
127
340
798
1830
3916
8569

Degree distribution of homogeneous primitive partition identities

This table suggests that the maximum degree should be 2n — 2. Here

is the proof.
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Theorem 3. For d = 2 and A = {(1,1),(2,1),...,(n,1)}, any primitive
partition identity (1.1) satisfies k =1 < n — 1. This is sharp since

1+14+--4+14+n = 2424 --+2
—_— S—_—
n—2terms n-1terms

There are exactly ¢(n—1) (the Euler phi-function) such maximal identities.

For n > 5, there are n + 2¢(n — 1) + 2¢(n — 2) — 6 primitive identities with

k=l=n-2.

Proof. We sort the left and right hand sides of (1.1) as follows:
a1§a2_<_a3§...§ak and b1Sb2_<_b3S§bk

Consider the differences 6; :=a; — b;, i = 1,...,k. In the equation

bh+6+...+86 = 0 (22)

we separate the positive terms and the negative terms. The result is an
inhomogeneous primitive partition identity of degree k. Let Ay = max{é; :
6; > 0} and A_ = max{—6; : §; < 0}. By Corollary 1 applied to (2.2) we
have £k < A; +A_.

We now choose indices ig and jg such that b;, —a;, = A_ and aj,—b;, =
A4. We distinguish two cases. If ip < jp then

1+A_ < aj+A- =bjy <bj, =aj,— Ay <n—-AL. (2.3)
If 79 > jo then
n—A_ 2> by, —-A_ = a; > aj, = bjp +AL > 1+A,. (2.4)
In either case we have A, + A_ < n — 1, and therefore
degree of (1.1) = 2k < 2A4+A) < 2n-2 (2.5)

This proves the first part of the claim.

To establish the second part of Theorem 3, we must characterize all

primitive identities of maximal degree 2n — 2. Let e1,e9,... denote the
positive 6;’s and let fi, fa,... denote the negated negative §,’s. Thus (2.2)
s written as e; +ex+ ... = f1 + fo+.... This is a primitive identity.

We apply the add-subtract algorithm from the proof of Theorem 2. Since
equality holds in (2.5), the variable  must attain each integer value between
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—A_ and Ay — 1 exactly once. In fact, this must be the case for every
permutation of e1,ey,... and of fi, fo,... respectively.

We claim that e; = ey = ...and f; = fo = .... We assume the contrary,
say €1 # ey. For our add-subtract algorithm we permute the e;’s so that e
is last and e; is second to last. Between the addition step with 7 = e; and
the addition step with 7 = e; there may be several intermediate subtraction
steps, say v = fi1, fa,..., fi. Let § > 0 be the z-value immediately after
the addition of 7 = ey. At this point the variable x has visited each integer
between —A_ and 0 and each integer between S and A, — 1 exactly once,
and it only has to run down from S to 0. The last negative value visited in
this run equals x = S — e2. We now change the positions of e; and e; in the
permutation of the e;’s. Otherwise we leave the permutations untouched.
Running the algorithm again, after the addition step with 7 = ey there is
only one more negative value left to be visited. It is the same one as before,
namely, x = S — e3. Therefore we have precisely the same subtraction steps
v = f1, fa,..., ft between the addition of m = ey and the later addition of
m = e;. This implies e; = e; and the claim is proved.

The equations e; = ep = ... and f; = fo = ... show that every
homogeneous primitive identity of maximum degree must have the form

I+1+ - 4+1l+n+n+-+n = (+D)+L+D)+--+({+1)
en n—l‘trerms

n—£{—1terms £ terms
(2.6)

for some integer £ between 1 and n — 1. The homogeneous identity (2.6) is
seen to be primitive if and only if gcd(n—1—¢,¢) =1 = ged(n —1,¢). The
number of integers £ with these properties equals ¢(n — 1), the value of the
Euler phi-function. A similar (but more complicated) argument applies to |
give the result we state for degree 2n — 4.

We remark that the slightly more complicated construction in the first
part of Theorem 3 is really needed. Direct reduction to Theorem 1 for
the inhomogeneous identity (2.2) is not possible: it would give only k <
2(n — 1) — 1 and hence the degree bound 2k < 4n — 6, which is off by a
factor of two.

The results above bound the number of terms in primitive scalar iden-
tities. It is also useful to have bounds on their number. The upper bound
in the following result is due to Noga Alon.

Theorem 4. Ford=1and A = {1,2,3,...,n}, let g(n) denote the number
of primitive partition identities (1.1). Then there exist absolute constants
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¢y, ¢o such that

eIV <« g(n) < ec2v/n(logn)®/2

for allm > 2.

Proof. For the lower bound, any value ¢; < 74/2/3 can be chosen since
we can take all identities of the form

n=b+b+--+b

where the right-hand side runs over all p(n) partitions of n, and it is known
that

p(n) ~ e"\/%/4n\/§
(e.g., see [12]).

For the upper bound, we give the argument of Alon. Suppose
ar+-+a =b+---+b,1<a;,0; <n

is a primitive partition identity. Let C denote the set of distinct elements
among the a; and suppose |C| > c3n!/?(logn)'/? for a large constant cj.
A result of Freiman [8] then implies that the set of subset sums from C
contains, for some d < 3n/|C|, a run of at least c4|C|? consecutive multiples
of d centered about 1/2 Y a.
a€C
On the other hand, by grouping the b; together in (disjoint) sets B;

where §; = 3. b = 0 (mod d), we see that the multi-subset sums of
beB;

by, by, ... contain Sy, S + S, Sy + Sg + S3, ... (which are all multiples of d).
Since |S;| < nd and n < ¢4|C|? = cqc3nlogn for large n, then some (proper)
subset sum from C is equal to a multi-subset sum for {b;,...bs}, which is a
contradiction to primitivity.

Thus we must have |C| < czn'/%(logn)'/2. Since r + s < 2n — 1 then
a simple calculation shows that there are at most ecvnllogn)*? choices for
the a; and bj;, for a suitable constant c¢. This bound also applies to the
homogeneous case (for a different value of ¢). m

It would be interesting to know if g(n) < V™ for some constant ¢
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3. VECTOR PARTITION IDENTITIES

In this section we consider vector partition identities with parts in an
arbitrary set of lattice points. Our main result is Theorem 1. For its proof
we need two lemmas. The first is a basic property of convex sets which is
an easy consequence of a result due to Lagarias and Ziegler [11]. Let A be
any spanning subset of Z%. We abbreviate

A = A-A = {ai—a]-:ai,ajGA},

and we write vol(A*) for the (usual d-dimensional Euclidean) volume of its
convex hull.

Lemma 1. For all finite subsets A C Z%, we have the inequality
vol(A*) < 24d+1)%1/d! - D(A). (3.1)

Proof. Let P and P* denote the convex hulls of A and A* respectively.
The polytope P* is centrally symmetric and it has dimension d. However,
P may have dimension d — 1. In that case we replace A by A U {0} to get
dim(P) = d as well.

Let S be a d-simplex of maximal volume in P. Lagarias and Ziegler
[11, Thm. 3] prove the following result about this simplex:

(1) The d-simplex S may be chosen to have vertices in vert(P) C A.

(2) After a translation we have the inclusion P C d- S.

(3) After a translation we have the inclusion —P C (d+2)- S.
Properties (2) and (3) imply vol(.A*) = vol(P*) < (2d + 2)% - vol(S).

Property (1) implies that S can be covered by the union of at most d + 1

d-simplices, each having the origin as a vertex and its other d vertices in A.

Consequently vol(S) is bounded above by d;—!l - D(A). Combining both
inequalities we get (3.1). m

The second lemma needed for our proof of Theorem 1 is due to Grinberg
and Sevast’yanov [9]. We include its proof for completeness. For other
references on the Steinitz constant, the reader is referred to [2].

Lemma 2. (Grinberg and Sevast’yanov, 1980) Let x1,29,...,2, be vec-

tors in R? such that £1+x9+...+x, = 0. Then there exists a permutation
w in S, such that

Tr1) o+ Tag) € d-conv{zy,Ty,...,Tn} for allk=1,2,...,n. (3.2)
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Proof. We will construct a decreasing chain of index sets {1,2,...,n} =
A DA 1 DAn2D - D Ay D Ay and numbers A\, k=d,...,n,i €
Ay such that

#(A) =k, 0< X <1, > Ap=k—d,and > Ajpz; =0, for alli k. (3.3)
€A, 1€ A

We start the construction for £ = n by setting A4, := {1,2,...,n} and
Ain = (n —d)/n for all i € A,,.

The inductive step (k +1 — k) goes as follows. Consider the convex
polytope

Peyp = {(pisi€4py) | 0<pu; €1, Z i =k —d. Z i =01,

1€ AL €A1
This polytope lies in R*+1. Tt is non-empty, e.g.. take y; = ﬁ}—’_’w D YR

for i € Agy1. The polytope Py 41 lies in a subspace of dimension > & — d
inside R¥*! and inside this space it is defined by 2k + 2 linear inequalities.
Let i = (s : ¢ € Agyy) be any vertex of Pr,y. Then at least k — d
of the 2k + 2 inequalities y; > 0 and pu; < 1 are binding for . Since
Z'iEAM fti = k — d, this implies that there exists an index j with fi; = 0.
We put Ay := Apy \ {7} and A\p; = ; for i € A4, which completes the
inductive step.

To complete the proof of Lemma 2, we define the permutation 7 by
requiring {m(k)} = Ap \ Ak fork=d+1..... nand {7(1),.... m(d)} =
Ag in any ordering. For k < d the desired conclusion is obvious. For
E>d+1 we have

k
Z Try = Z (L=Xig)-zi € d-conv{xy,...,xn}
i=1 i€ Ay,
becanse 3 oy (1-Aix) =k —(k—d) =d m
Proof of Theorem 1. The primitive partition identity (1.1) can be
rewritten as

x1+a2+ ... +apy = 0 with z, € A*.

Since the identity is primitive, the partial sums xz; + 23 + ... + x; must be
distinct for different values of i. After a permutation as in Lemma 2, we
may assume that z1 +xy +... +2; € d- conv(A*) for all i. Therefore
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the degree k + [ of (1.1) is bounded above by the number of lattice points
in the convex polytope d - conv(A*), which can be bounded above by d!
times the volume of that polytope (by a result of Blichfeldt [3]). But
vol(d - conv(A*)) = d?- vol(A*), and consequently Lemma 7 gives

k41 < d%d vol(A*) < (2d)4(d + 1)*"1D(A)

as desired. =

4. MULTIGRADES

A multigrade of type (d,n) is a pair of multisets of non-negative integers not
exceeding n, say {i1,12,...,%} and {J1,72,...,jk}, such that

T O ) T LA S LA R 14 for v=0,1,2,...,d. (4.1)
We abbreviate (4.1) by

. . d .. .
11,725« 4 2k - Ns12,-- 5k (4.2)

The multigrade (4.2) is primitive if no proper sub-multisets have the same
property. Here is a little example: there are precisely seven primitive
multigrades for n = 5,d = 2.

[leo

1,1,1,3,3,3,3,3,3 2,2,2,2,2,2,2,2,5

[feo

1,1,3,3,3,4 2,2,2,2,2,5

e

1,3,3,3 2,2,2,4

I

1,4,4,4,4,4,4,4,4 3,3,3,3,3,3,5,5,5

IIv

1,4,4,4,4,4 2,3,3,3,5,5

e

1,4,4 2,2,5

Hee

2,4,4,4 3,3,3,5

Table 4. The seven primitive multigrades for n = 5,d = 2.

Multigrades of order d = 1 are precisely the homogeneous scalar par-
tition identities studied in Section 2. Multigrades of any higher order fit
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into the general framework of Section 3: they correspond to the partition
identities with parts in the set

A = A = {(1,4,4%...,i%:i=1,2,....n} C Z¢.

The classical results on multigrades can be found in [10]. Our main result is
Theorem 5. Our proof proceeds in two parts, first the upper bound (which
is now easy) and then the lower bound (which is harder).

Theorem 5. For each integer d > 0 there exist constants ¢ and ¢, (de-
pending on d but not on n) such that

d-‘gl) d+l)

cd-n( <k< éd-n(‘z

where k denotes the maximum number of terms on each side in any primitive
multigrade (4.1).

Proof (upper bound). By Theorem 1, it suffices to show that

D(A,q4) < cdn(d?) for some constant cg. (4.3)

To see this inequality, we note that D(A, 4) is equal to

1 11 ... 1

g 11 g ... id

2 2 2 2 C

o oo Yy = H (is —ip) (4.4)
A N 0<r<s<d

d  :d id d

2 i 1y ... ’Ld

for some (d + 1)-tuple of indices 1 < iy < 43 < ... < ig < n. The
Vandermonde determinant (4.4) clearly satisfies the inequality (4.3). =

Proof (lower bound). We need to exploit specific arithmetic properties

of the set A, 4 for our lower bound. To begin, we require the following
elementary result:

Fact. There is a function f : Z>g — Z> satisfying
(i) f(k) < k3 for all k;.
(ii) All slopes determined by the points (¢, f(i)) € R? are distinct.

Proof. Define f(0) =0, f(1) =1 and suppose f(0),... f(k — 1) have been
defined. Then f(k) = v needs to be chosen so that

= (VISP (GLY C)
-1 r—s

0<i, r#s<k-1.
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Since there are fewer than k3 choices for i,7, and s then some value for
v = f(k)in {0,...,k3} must be valid. =

Assume now for convenience that n = (d + 2)N, N € Z, and define
Xk :=kN + f(k), 0<k<d+1.

We want to form a primitive multigrade of the form

HES

Xo, ..., Xo, Xo,.oy Xa, ... X1,..., X1, X3y, X3, ...
S——— N——— N—- 7 N— 4

ag az al a3

where the a; are positive integers. Now, the condition that this is a multi-
grade is equivalent to the set of linear equations

d+1
awX] = Y (-1)aX], 0<j<d. (4.5)
i=1
Solving this system of linear equations in a1, ..., a4y, we find by (4.4) that
—1 Pe(Xo)
a = (—-1)*! a 4.6
k=(-1) Bu(X) ™ (4.6)

where Pk(.l) = (Xd+1 - fl:)(Xd - .’L‘) cee (Xk_+_1 - ”E)(.’E - Xk.—l) s (:L - Xl).
Since X < X1 < -+ < Xgy1, all the a;, are positive if aq is.

We now fix d and consider N very large. The basic idea will be to
show that the integers P(Xp) and P,(X}) have relatively small ged’s, as do
Pr(Xy) and Pi(X;), so that ap must be very large if each ay, is to be integer.
Now,
gcd(Xi - X]',Xk - Xl)
ged((k — D(X; = X;), (i — 5)(Xe — X1))
ged((k — (X — X;) — (1 = j)(Xx — X1), (¢ — 5)(Xi = X0))
= ged((k = D(f(E) = (7)) = = HUk) = F0), (i = ) (X — X0)) -

By the definition of f,

(k=O(F@) - FG) — G- (k) - f(I) #0.

IN

Thus,

ged(Xs = X, X = X)) < [(k=D(f &)= FG) - G =HNFKR) - FD) < d* (4.7)
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fori#£ j, k #1. Let
wpi o= (X — Xi)/ ged( Xy — Xy, Pe(Xo)), for i <k.
By (4.7) we have
Tr > (X — X;)/dM . (4.8)
Since each xy; divides ag and
ged(an iz y) < ged(Xp — X3, X — X;) < d¥fori < k,j <1,(i,k) # (5,1)
by (4.7). we conclude by (4.8) that

ag Z H .17]“1'/(]4((1;1)

1<i<j<d+1
> I - /@) el
1<i<j<d+1 (4.9)
> a2 T (G =05 +£6) - 1G))

1<i<j<d+1
Z/(?dn(d_’gl)

for a suitable constant 4. Finally, we choose for ag the smallest positive
value so that all the aj are integers. Thus, the corresponding multigrade
will be primitive, which shows by (4.9) that

d+1

— (d+1)
Eai > ag 2 cgn\ 2
1=0

and the theorem is proved. =

In view of the lower bound in Theorem 5, it is natural to wonder whether
the analogous lower bound holds even in the general situation of Theorem 1.
The subsequent remark shows that this is not the case: the upper bound
va - D(A) is best possible for multigrades (of fixed order d) but is not best
possible for general sets A.

Remark. There does not exist any constant ¢y such that, for all finite
subsets .4 of Z¢ there is a primitive partition identity of degree > ¢4- D(A).
Proof. Let d = 1. Linearly order the set of all prime numbers p; < py <
p3 <p4 < ... and set p™ = pipy---pn. Let AW = {a1,a9,...,a,} CZ
where a; = p(”)/pi. The only primitive partition identities in this case are

gitait ta = aitait-+a;. (4.10)

—

v
p; summands pj summands
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Then the maximum degree of a primitive partition identity is p, + pn_;
while D(A™) = p(")/p, = paps -+ pn. The ratio D(AM)/(pry + pp_1) is
unbounded asn — occ. N

5. APPLICATIONS

In this section we present applications of our combinatorial results to ques-
tions in Grobner bases theory, in statistics, and integer programming. These
applications are interconnected by the sampling algorithms introduced in [6],
and the Grobnerian methods for integer programming introduced in Conti
& Traverso [4] and Thomas [15].

5.A. Grobner bases. This subsection addresses readers who are interested in
computational commutative algebra. We assume familiarity with Grébner
bases and toric ideals; see [5], [7], [14] and the references given therein. We

fix an n-element set of lattice points A = {a1,...,a,} in 7%, and we intro-
duce indeterminates t,...,tq4,21,...,2,. BEach point a; = (a;1, ai2,- - ., aiq)
is identified with a Laurent monomial t* := tJ*'..-¢3*. Given any field

K, we consider the K-algebra homomorphism

¢« Koy, 2o, a0 — K[t ta,t7 ot (5.1)
xi o b = PG '
The kernel of ¢ is denoted I 4 and called the toric ideal associated with A.
It is well known (see e.g. [14, Lemma 2.5]) that I4 is spanned as a K-vector
space by all binomials of the form

Ty Tjy Xy, — T Xj, - xj,  where  a; 4+ 4a;, = aj, +---+aj,. (5.2)

In other words, the toric ideal I4 is spanned by all (binomially coded)
partition identities with parts in .A. The following proposition is proved in
[7]. Slightly different but essentially equivalent variants can be found in [14,
Cor. 2.6] and [15, Thm. 3.2.3].

Proposition 1. (cf. [7]) The set of binomial relations (5.1) arising from

primitive partition identities is a universal Grébner basis for the toric
ideal I 4.

From Theorem 1 we get the following corollary.
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Corollary 2. For each integer d there exists a constant 4, depending only

on d = dim(I4), such that every reduced Grobner basis of I 4 has degree at
most vq - D(A).

Here dim(J4) denotes Krull dimension of the residue ring
Klz1,...,2,]/I4. The bound in Corollary 2 is better than the bound in
Proposition 1 in the sense that it does not depend on n, the embedding
dimension of the toric variety defined by I4. The statement becomes even
more succinct when formulated for projective toric varieties. By a projective
toric variety we will here mean an irreducible projective variety X = X 4 in
P"~1 whose homogeneous vanishing ideal is of the form I4. (For experts in
algebraic geometry we note that such toric varieties X need not be normal.)
Clearly, generators of homogeneous toric ideals correspond to homogeneous
partition identities.

Corollary 3. The maximum degree in any reduced Grébner basis of the
ideal of a projective toric variety X is bounded by deg(X) - ~v(dim(X)), for
some function v : N — N,

Corollary 3 follows from Theorem 1, Lemma 1, and the well-known fact
that deg(X), the degree of X, is equal to the normalized volume of the
polytope P = conv(.A).

A projective toric variety of dimension 1 is called a monomial curve.

For curves we have the following bound. Note that this bound is tight for
all rational normal curves.

Corollary 4. The maximum degree in any reduced Grébner basis of the
ideal of a monomial curve X is bounded above by the degree of X.

Proof. Theorem 2 and Proposition 1 give the upper bound for the rational
normal curve of degree n — 1 in P*~1. Every monomial curve X is obtained
from a rational normal curve by a degree-preserving coordinate projection.
Hence the upper bound for general X follows by the elimination property
of the universal Grébner basis. m

5.B. Statistics. Another motivation for the study of the partition identities
considered here comes from a problem in applied statistics. The statistical
problem is called binary logistic regression. It involves fitting curves to
predict binary outcomes based on an observable vector of covariates. The
models are of the form

P{Y =1|z} = ¢"%/(1 +€%%)

P{Y =0|z} = 1/(1 +¢"%) . (5.3)
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In (5.3), # € R? is a parameter to be estimated, and z € Z% is a known
vector. As an example, if z = (1, 5), the model becomes

P{Y =1|j} o eN1H+i%

This might be appropriate if the probability depends on a distance, dose or
educational level, which arises in equally spaced intervals.

Going back to generalities, data consists of pairs (y1,21),(y2, 22), . . .,
(yN, zn). Let

Wi(z)=Wi:zi==z}, Wilz):=|{i:2i=2z19y =1}.
The chance of seeing such data is

ef-ziv

P{Yi=y;,1<i<N|z1<i<N} = ETZD)

_ H 1 8- 2Wi(2)
- , (1+60~Z)W(Z) € :

From this description we see that a sufficient statistic for 8 is

{W(2)}.ez and = ZzW1(z) :

z

We will assume a fixed finite A C Z% such that all covariates z lie in A.
Set n = #(A). Data from these problems usually are summarized as a
2 X n-array
A
0 [ Wo(z1) Wo(z2) - - - Wo(zn)
(5.4)
1\ Wi(21) Wi(zg)--- Wi(zn)

For inference, the task becomes one of generating random arrays with the
same row and column sums, and the same value of t; = ) zWj(z). Note

z

that this automatically fixes tg = 3 2Wp(z2).

z

A partition identity based on A is of the form
zi4 oz =2+ 42, oz €A (5.5)

Such an identity is primitive if no proper subset sum of terms on the left-
hand side equals a sum of terms on the right-hand side. The sum k + [ is
called the degree of the identity (5.5). It is not regarded as fixed.
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Let G(A) be the set of primitive partition identities based on .A. This
gives a set of steps with which to run a random walk. The random walks
takes values on the space of all tables with fixed values of {W(z)}.c4 and
t; = Y zWi(z). If the walk is currently at the table z, it proceeds by picking

an identity in G(z) at random (uniformly), choosing one of the two sides
(left and right) at random with probability 1/2. Then W;(z) — Wi(z) — 1
for each z on the left-hand side, and Wi(z) — W;(2) + 1 for each z on
the right-hand side. The counts Wy(z) are then adjusted to preserve the
column sums. If all these adjustments result in a table with nonnegative
entries satisfying the constraints, the walk moves to the new table. If not,
the walk stays at z.

In [6] it is shown that this walk is connected and aperiodic, and so
converges to the uniform distribution on the space of tables. Modifications,
similar to the Metropolis algorithm, are provided for generation using other
classical distributions on the space of tables. It follows from [6, Corollary
4.2] and the results in {7] that this walk remains connected even if structural
zeros are prescribed.

The present paper gives bounds on the maximum degree of any such
identity. Obviously, such bounds are crucial to implementation. Further
details and examples can be found in [6].

5.C. Integer Programming. We consider the following family of knapsack
problems:

n

Minimize E Cj Tj

Jj=1
n (5.6)
subject to Zj -x; = 3, x; integral and 0<z; <d;fori=1,...,n,
j=1
where c1,...,¢p,d1,...,d, and [ are parameters ranging over the positive
integers. A feasible solution (zj,...,z,) to an instance of (5.6) can be
written as a pair of partitions:
inside the knapsack outside the knapsack
1,1,...,12.2,...2...n,m,...,n | 1,1,...,12,....2 ... n,...,n (5.7)
N — N — N — N e e — S
Ty, T2 Tn dy—x do—xo dp—Tn

Each scalar partition identity (1.1) gets directed by the cost functional
(c1,...,¢,) via

a1,a2,a3, @ — b1,b9,b3,---,bywhenevercy, +---+cq, >cp, +-+cp, (5.8)
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provided lexicographic tie breaking is used if a tie occurs. We say that
(5.7) can be improved along (5.8) if ay,ag,---,a; appear on the left side
(“inside the knapsack”) and by, by, - -, by appear on the right side (“outside
the knapsack”). In this case the feasible solution (5.7) can be improved
by the exchange step (5.8). We claim that the primitive scalar partition
identities are a universal test set for the general knapsack problem (5.6).

Corollary 5. Let the ¢;,d; and 3 be arbitrary integers. A feasible solution
(5.7) to (5.6) is not optimal if and only it can be improved along some
primitive partition identity.

Corollary 5 is an immediate consequence of Proposition 1 and the
known identification (see [4], [15]) of Grobner bases for toric ideals and test
sets for integer programs. For general background on test sets in integer
programining see also {13, §17.3].

REFERENCES

[1] N. Alon, (personal communication).

[2] W. Banaszczyk, A note on the Steinitz constant of the FEuclidean plane,
C. R. Math. Rep. Acad. Sci. Canada 12(1990), 97-102.

(3] H. F. Blichfeldt, Notes on geometry of numbers, Bull. Amer. Math. Soc. 27(1921),
150-153.

[4] P. Conti,and C. Traverso, Buchberger algorithm and integer programming, in: Pro-
ceedings AAECC-9 (New Orleans), Springer LNCS 539(1991), 130-139.

[5} D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag,
New York, 1993.

[6] P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional
distributions. to appear in Annals of Statistics.

[7] B. Sturmfels and R. Thomas, Variations of cost functions in integer programming,
Manuscript. 1994.

[8] G. A. Freiman, New analytical results in subset-sum problem, Discrete Math.
114(1993). 205-218.

[9] V. S. Grinberg and S. V. Sevast’yanov, Value of the Steinitz constant, Functional
Analysis Appl. 14(1980), 125-126.

(10} G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford
Univ. Press, London, 4th ed., 1960.

[11] J. C. Lagarias and G. M. Ziegler, Bounds for lattice polytopes containing a fixed
number of interior points in a sublattice, Canadian J. Math. 43(1991), 1022-1035.

[12] H. Rademacher, On the partition function, Proc. London Math. Soc. 43(1937), 241~
254.



192 P. Diaconis, R. L. Graham, B. Sturmfels

[13] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, 1986.
[14] B. Sturmfels, Grobner bases of toric varieties, T6hoku Math. J. 43(1991), 249-261.

[15] R. Thomas, A geometric Buchberger algorithm for integer programming, Mathemat-
ics of Operation Research 20(1995), 864-884.

P. Diaconis R. L. Graham

Harvard University, ATET Bell Laboratories,
Cambridge, MA 02138 Murray Hill, NJ 0797/
USA USA

e-mail: rlgQ@research.att.com

B. Sturmfels

Unaversity of California,
Berkeley, CA 97420
USA



