
CSE202 Greedy algorithms

Fan Chung Graham

Announcement

• Reminder: Homework #1 has been posted, due
April 15.

• This lecture includes material in Chapter 5 of
Algorithms,
Dasgupta, Papadimitriou and Vazirani,
http://www.cs.berkeley.edu/~vazirani/algorithms/
chap5.pdf

Queue Stack

FIFO

LIFO

tree

Trees with at most 4 edges

A binary tree

complete binary tree

A k-level complete binary tree has ?? vertices.

Greedy Algorithms

• Minimum Spanning Trees

• The Union/Find Data Structure

A Network Design Problem

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

3

3

2 122

A Network Design Problem

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

3

3

2 122

A Network Design Problem

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the
cost of T is minimum and all nodes are
connected in (V, T)

3

3

2 122

A Network Design Problem

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the
cost of T is minimum and all nodes are
connected in (V, T)

Can U contain a cycle?

3

3

2 122

A Network Design Problem

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the
cost of T is minimum and all nodes are
connected in (V, T).

Can U contain a cycle?
Solution is connected and acyclic, so a tree.

3

3

2 122

Trees

A connected, undirected and acyclic graph is called a tree.

Trees

A connected, undirected and acyclic graph is called a tree.

Tree Not Tree Not Tree

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Tree Not Tree Not Tree

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Proof. By induction.

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Proof. By induction.

Base Case:
n nodes, no edges,
n connected components.

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Proof. By induction.

Base Case:
n nodes, no edges,
n connected components.

Inductive Case:
Add edge between two
connected components.
No cycle created.
#components decreases by 1

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Proof. By induction.

Base Case:
n nodes, no edges,
n connected components.

Inductive Case:
Add edge between two
connected components.
No cycle created.
#components decreases by 1.

At the end: 1 component.

Trees

A connected, undirected and acyclic graph is called a tree

Property 1. A tree on n nodes has exactly n - 1 edges

Proof. By induction.

Base Case:
n nodes, no edges,
n connected components

Inductive Case:
Add edge between two
connected components
No cycle created
#components decreases by 1

At the end: 1 component

How many edges were added?

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Is any graph on n nodes and n - 1 edges a tree?

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Is any graph on n nodes and n - 1 edges a tree?

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.

Is any graph on n nodes and n - 1 edges a tree?

Property 2. Any connected, undirected graph on n nodes
and n - 1 edges is a tree.

Trees

A connected, undirected and acyclic graph is called a tree.

Property 1. A tree on n nodes has exactly n - 1 edges.
Property 2. Any connected, undirected graph on n nodes
and n - 1 edges is a tree.

Proof: Suppose G is connected, undirected, has some cycles.

Trees

A connected, undirected and acyclic graph is called a tree

Property 1. A tree on n nodes has exactly n - 1 edges
Property 2. Any connected, undirected graph on n nodes
and n - 1 edges is a tree

Proof: Suppose G is connected, undirected, has some cycles.
While G has a cycle, remove an edge from this cycle.

Trees

A connected, undirected and acyclic graph is called a tree

Property 1. A tree on n nodes has exactly n - 1 edges
Property 2. Any connected, undirected graph on n nodes
and n - 1 edges is a tree

Proof: Suppose G is connected, undirected, has some cycles.
While G has a cycle, remove an edge from this cycle.
Result: G’ = (V, E’) where E’ is a tree. So |E’| = n - 1

Trees

A connected, undirected and acyclic graph is called a tree

Property 1. A tree on n nodes has exactly n - 1 edges
Property 2. Any connected, undirected graph on n nodes
and n - 1 edges is a tree

Proof: Suppose G is connected, undirected, has some cycles.
While G has a cycle, remove an edge from this cycle.
Result: G’ = (V, E’) where E’ is a tree. So |E’| = n - 1.
Thus, E = E’, and G is a tree.

Minimum Spanning Trees (MST)

Problem: Given distances between a set of computers, find the
cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the
cost of T is minimum and all nodes are
connected in (V, T).

Goal: Find a spanning tree T of the graph G with minimum total cost

3

3

2 122

We’ll see a greedy algorithm to construct T.

Properties of MSTs

For a cut (S, V\S), the lightest edge in the cut is the minimum cost edge
that has one end in S and the other in V\S.
Assume all edge costs are distinct.

V\SS
e

e’

T

Property 1. A lightest edge in any cut always belongs to an MST

Properties of MSTs

Property 1. A lightest edge in any cut always belongs to an MST

Proof. Suppose not.

Let e = lightest edge in (S, V\S), T = MST, e is not in T

V\SS
e

e’

T

For a cut (S, V\S), the lightest edge in the cut is the minimum cost edge
that has one end in S and the other in V\S.
Assume all edge costs are distinct.

Properties of MSTs

Proof. Suppose not.

Let e = lightest edge in (S, V\S), T = MST, e is not in T.

T U {e} has a cycle with edge e’ across (S, V\S).

V\SS
e

e’

T

Property 1. A lightest edge in any cut always belongs to an MST.

For a cut (S, V\S), the lightest edge in the cut is the minimum cost edge
that has one end in S and the other in V\S.
Assume all edge costs are distinct.

Properties of MSTs

Proof. Suppose not.

Let e = lightest edge in (S, V\S), T = MST, e is not in T.

T U {e} has a cycle with edge e’ across (S, V\S).

Let T’ = T \ {e’} U {e}.

V\SS
e

e’

T

Property 1. A lightest edge in any cut always belongs to an MST.

For a cut (S, V\S), the lightest edge in the cut is the minimum cost edge
that has one end in S and the other in V\S.
Assume all edge costs are distinct.

Properties of MSTs

Proof. Suppose not.

Let e = lightest edge in (S, V\S), T = MST, e is not in T.

T U {e} has a cycle with edge e’ across (S, V\S).

Let T’ = T \ {e’} U {e}.

cost(T’) = cost(T) + cost(e) - cost(e’) < cost(T) V\SS
e

e’

T

Property 1. A lightest edge in any cut always belongs to an MST.

For a cut (S, V\S), the lightest edge in the cut is the minimum cost edge
that has one end in S and the other in V\S.
Assume all edge costs are distinct.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST unless all
edges in the cycle has the same cost.

T2T1

e’

e

T

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

T2T1

e’

e

T

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T
Suppose that cost(e) is greater than the cost of other edges in the cycle.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Delete e from T to get subtrees T1 and T2 .

T2T1

e’

e

T

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T.
Suppose that cost(e) is greater than the cost of other edges in the cycle.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Delete e from T to get subtrees T1 and T2.

T2T1

e’

e

T
Let e’ = lightest edge in the cut (T1, V \ T1).

Then, cost(e’) < cost(e).

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T.
Suppose that cost(e) is greater than the cost of other edges in the cycle.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Delete e from T to get subtrees T1 and T2

T2T1

e’

e

T
Let e’ = lightest edge in the cut (T1, V \ T1)

Let T’ = T \ {e} + {e’}.

Then, cost(e’) < cost(e)

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T
Suppose that cost(e) is greater than the cost of other edges in the cycle.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Delete e from T to get subtrees T1 and T2 .

T2T1

e’

e

T
Let e’ = lightest edge in the cut (T1, V \ T1).

Let T’ = T \ {e} + {e’}.

Then, cost(e’) < cost(e).

cost(T’) = cost(T) + cost(e) - cost(e’) < cost(T)

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T.
Suppose that cost(e) is greater than the cost of other edges in the cycle.

Contradiction.

Summary: Properties of MSTs

Property 1. A lightest edge in any cut always belongs to an MST.

Property 2. The heaviest edge in a cycle never belongs to an MST.

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Does this output a tree?

S V\S

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Does this output a tree?

Why does this produce a MST?

At each step, no cycle is created.
Continues while there are
disconnected components.

S V\S

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

T2T1

e

e’

T

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.

T2T1

e

e’

T

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.
Suppose we add e to X at t=k+1.

T2T1

e

e’

T

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.
Suppose we add e to X at t=k+1.
Suppose e is not in T. Adding e to T forms a cycle C.

T2T1

e

e’

T

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.
Suppose we add e to X at t=k+1.
Suppose e is not in T. Adding e to T forms a cycle C.
Let e’ = another edge in C across (S, V\S), T’ = T \ {e’} U {e}.

T2T1

e

e’

T

A Generic MST Algorithm

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it

X = X + {e}, where e is the lightest edge across (S, V\S).

Proof of correctness by induction.
Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.
Suppose we add e to X at t=k+1.
Suppose e is not in T. Adding e to T forms a cycle C.
Let e’ = another edge in C across (S, V\S), T’ = T \ {e’} U {e}.
cost(T’) = cost(T) - cost(e’) + cost(e) <= cost(T).

T2T1

e

e’

T

X = { }
For each edge e in increasing order of weight:

If the end-points of e lie in different components in X,
Add e to X

Kruskal’s Algorithm

Why does this work correctly?

X = { }
For each edge e in increasing order of weight:

If the end-points of e lie in different components in X,
Add e to X

Kruskal’s Algorithm

Why does this work correctly?

Efficient Implementation: Need a data structure with properties:
- Maintain disjoint sets of nodes
- Merge sets of nodes (union)
- Find if two nodes are in the same set (find)

The Union-Find data structure

�network connectivity

�quick find

�quick union

� improvements

� applications

1

Union-Find Algorithms

Network connectivity

Basic abstractions

• set of objects

• union command: connect two objects

• find query: is there a path connecting one object to another?

4

merge two sets
objects/nodes

Union-find applications involve manipulating objects of all types.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Variable name aliases.

• Pixels in a digital photo.

• Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

• Hide details not relevant to union-find.

• Integers allow quick access to object-related info.

• Could use symbol table to translate from object names

5

Objects

use as array index

0 7

2 3

8

4

6 5 91

stay tuned

6

Union-find abstractions

Simple model captures the essential nature of connectivity.

• Objects.

• Disjoint sets of objects.

• Find query: are objects 2 and 9 in the same set?

• Union command: merge sets containing 3 and 8.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

0 1 { 2 3 4 8 9 } { 5-6 } 7

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

8

Network connectivity: larger example

find(u, v) ?

u

v

9

Network connectivity: larger example

63 components

find(u, v) ?

true

11

�network connectivity

�quick find

�quick union

� improvements

� applications

12

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

13

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,
change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

14

Quick-find example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change

16

Quick-find is too slow

Quick-find algorithm may take ~MN steps

to process M union commands on N objects

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 1010 edges connecting 109 nodes.

• Quick-find takes more than 1019 operations.

• 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

a truism (roughly) since 1950 !

17

�network connectivity

�quick find

�quick union

� improvements

� applications

18

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

keep going until it doesn’t change

19

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes

p q

keep going until it doesn’t change

20

Quick-union example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall

22

Quick-union is also too slow

Quick-find defect.

• Union too expensive (N steps).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N steps)

• Need to do find to do union

algorithm union find

Quick-find N 1

Quick-union N* N worst case

* includes cost of find

23

�network connectivity

�quick find

�quick union

� improvements

� applications

24

Improvement 1: Weighting

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each component.

• Balance by linking small tree below large one.

Ex. Union of 5 and 3.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2
p

q

4 211 1 1size

25

Weighted quick-union example

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem: trees stay flat

26

Weighted quick-union: Java implementation

Java implementation.

• Almost identical to quick-union.

• Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

• merge smaller tree into larger tree

• update the sz[] array.

27

Weighted quick-union analysis

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

• Fact: depth is at most lg N. [needs proof]

Stop at guaranteed acceptable performance? No, easy to improve further.

Data Structure Union Find

Quick-find N 1

Quick-union N * N

Weighted QU lg N * lg N

* includes cost of find

28

Path compression. Just after computing the root of i,

set the id of each examined node to root(i).

Improvement 2: Path compression

2

41110

2

54

7

8

1110

root(9)

0

1

0

3

6

9

9

78

136

5

Path compression.

• Standard implementation: add second loop to root() to set

the id of each examined node to the root.

• Simpler one-pass variant: make every other node in path

point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

29

Weighted quick-union with path compression

only one extra line of code !

public int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

30

Weighted quick-union with path compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat

31

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact:

• In theory, no linear linking strategy exists

because lg* N is a constant
in this universe

number of times needed to take
the lg of a number until reaching 1

N lg* N

1 0

2 1

4 2

16 3
65536 4

265536 5

