

Made by Fan Chung Graham and Lincoln Lu in 2002.

Announcement

- Reminder: Homework #1 has been posted, due April 15.
- This lecture includes material in Chapter 5 of *Algorithms*,

Dasgupta, Papadimitriou and Vazirani, http://www.cs.berkeley.edu/~vazirani/algorithms/ chap5.pdf

Trees with at most 4 edges

A binary tree

A k-level complete binary tree has ?? vertices.

Greedy Algorithms

- Minimum Spanning Trees
- The Union/Find Data Structure

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer Edge = Pair of computers Edge Cost(u,v) = Distance(u,v)

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the cost of T is minimum and all nodes are connected in (V,T)

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the cost of T is minimum and all nodes are connected in (V,T)

Can U contain a cycle?

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the cost of T is minimum and all nodes are connected in (V,T).

```
Can U contain a cycle?
```

Solution is connected and acyclic, so a **tree**.

A connected, undirected and acyclic graph is called a **tree**.

A connected, undirected and acyclic graph is called a **tree**.

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.

Proof. By induction.

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.

Proof. By induction.

Base Case:

n nodes, no edges, n connected components.

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.

Proof. By induction.

Base Case: n nodes, no edges, n connected components.

Inductive Case:

Add edge between two connected components. No cycle created. #components decreases by I

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.

Proof. By induction.

Base Case: n nodes, no edges, n connected components.

Inductive Case:

Add edge between two connected components. No cycle created. #components decreases by 1.

At the end: I component.

A connected, undirected and acyclic graph is called a **tree**

Property I. A tree on n nodes has exactly n - I edges

Proof. By induction.

Base Case: n nodes, no edges, n connected components

Inductive Case:

Add edge between two connected components No cycle created #components decreases by I

At the end: I component How many edges were added?

A connected, undirected and acyclic graph is called a **tree**. **Property I.** A tree on n nodes has exactly n - I edges. Is any graph on n nodes and n - I edges a tree?

A connected, undirected and acyclic graph is called a **tree**. **Property I.** A tree on n nodes has exactly n - 1 edges. Is any graph on n nodes and n - 1 edges a tree?

A connected, undirected and acyclic graph is called a **tree**. **Property I.** A tree on n nodes has exactly n - 1 edges. Is any graph on n nodes and n - 1 edges a tree?

Property 2. Any **connected**, undirected graph on n nodes and n - I edges is a tree.

A connected, undirected and acyclic graph is called a **tree**.

Property I. A tree on n nodes has exactly n - I edges.Property 2. Any connected, undirected graph on n nodes and n - I edges is a tree.

Proof: Suppose G is connected, undirected, has some cycles.

A connected, undirected and acyclic graph is called a **tree**

Property I. A tree on n nodes has exactly n - I edges **Property 2.** Any **connected**, undirected graph on n nodes and n - I edges is a tree

Proof: Suppose G is connected, undirected, has some cycles. While G has a cycle, remove an edge from this cycle.

A connected, undirected and acyclic graph is called a **tree**

Property I. A tree on n nodes has exactly n - I edges **Property 2.** Any **connected**, undirected graph on n nodes and n - I edges is a tree

Proof: Suppose G is connected, undirected, has some cycles. While G has a cycle, remove an edge from this cycle. Result: G' = (V, E') where E' is a tree. So |E'| = n - I

A connected, undirected and acyclic graph is called a **tree**

Property I. A tree on n nodes has exactly n - I edges **Property 2.** Any **connected**, undirected graph on n nodes and n - I edges is a tree

Proof: Suppose G is connected, undirected, has some cycles. While G has a cycle, remove an edge from this cycle. Result: G' = (V, E') where E' is a tree. So |E'| = n - 1. Thus, E = E', and G is a tree.

Minimum Spanning Trees (MST)

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer

Edge = Pair of computers

Edge Cost(u,v) = Distance(u,v)

Find a subset of edges T such that the cost of T is minimum and all nodes are connected in (V,T).

Goal: Find a spanning tree T of the graph G with minimum total cost We'll see a greedy algorithm to construct T.

For a cut (S,V\S), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in V\S. Assume all edge costs are distinct.

Property I. A lightest edge in any cut always belongs to an MST

For a cut (S,V\S), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in V\S. Assume all edge costs are distinct.

Property I. A lightest edge in any cut always belongs to an MST

Proof. Suppose not.

Let $e = lightest edge in (S,V\S), T = MST, e is not in T$

For a cut (S,V\S), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in V\S. Assume all edge costs are distinct.

Property I. A lightest edge in any cut always belongs to an MST.

Proof. Suppose not.

Let $e = lightest edge in (S,V\S), T = MST, e is not in T.$

T U {e} has a cycle with edge e' across (S,V\S).

For a cut (S,V\S), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in V\S. Assume all edge costs are distinct.

Property I. A lightest edge in any cut always belongs to an MST.

Proof. Suppose not.

Let $e = lightest edge in (S,V\S), T = MST, e is not in T.$

T U {e} has a cycle with edge e' across (S,V\S).

Let T' = T e' U e.

For a cut (S,V\S), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in V\S. Assume all edge costs are distinct.

Property I. A lightest edge in any cut always belongs to an MST.

Proof. Suppose not.

Let $e = lightest edge in (S,V\S),T = MST, e is not in T.$

T U {e} has a cycle with edge e' across (S,V\S).

Let T' = T e' U e.

```
cost(T') = cost(T) + cost(e) - cost(e') < cost(T)
```


The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST unless all edges in the cycle has the same cost.

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T Suppose that cost(e) is greater than the cost of other edges in the cycle.

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T. Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_1 and T_2 .

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T. Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_1 and T_2 .

Let e' = lightest edge in the cut $(T_1, V \setminus T_1)$.

Then, cost(e') < cost(e).

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in TSuppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_1 and T_2 e Let e' = lightest edge in the cut $(T_1, V \setminus T_1)$ Then, cost(e') < cost(e)

Let T' = T \ $\{e\}$ + $\{e'\}$.

The heaviest edge in a cycle is the maximum cost edge in the cycle.

Property 2. The heaviest edge in a cycle never belongs to an MST.

Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T. Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_1 and T_2 .

Let e' = lightest edge in the cut $(T_1, V \setminus T_1)$. Then, cost(e') < cost(e). Let T' = T \ {e} + {e'}. cost(T') = cost(T) + cost(e) - cost(e') < cost(T)

Contradiction.

Summary: Properties of MSTs

Property I. A lightest edge in any cut always belongs to an MST.

Property 2. The heaviest edge in a cycle never belongs to an MST.

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Does this output a tree?

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Does this output a tree?

At each step, no cycle is created. Continues while there are disconnected components.

Why does this produce a MST?

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Proof of correctness by induction.

Base Case: At t=0, X is in some MST T.

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Proof of correctness by induction. Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T.

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Proof of correctness by induction. Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T. Suppose we add e to X at t=k+1.

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it
X = X + {e}, where e is the lightest edge across (S,V\S).

Proof of correctness by induction. Base Case: At t=0, X is in some MST T.

Induction: Assume at t=k, X is in some MST T. Suppose we add e to X at t=k+1. Suppose e is not in T. Adding e to T forms a cycle C.

X = { }
While there is a cut (S, V\S) s.t. X has no edges across it
X = X + {e}, where e is the lightest edge across (S,V\S).

X = { } While there is a cut (S, V\S) s.t. X has no edges across it X = X + {e}, where e is the lightest edge across (S,V\S).

Proof of correctness by induction. Base Case: At t=0, X is in some MST T. Induction: Assume at t=k, X is in some MST T. Suppose we add e to X at t=k+1. Suppose e is not in T. Adding e to T forms a cycle C. Let e' = another edge in C across (S,V\S), T' = T \ {e'} U {e}. cost(T') = cost(T) - cost(e') + cost(e) <= cost(T).

Kruskal's Algorithm

X = { }
For each edge e in increasing order of weight:
 If the end-points of e lie in different components in X,
 Add e to X

Why does this work **correctly**?

Kruskal's Algorithm

X = { }
For each edge e in increasing order of weight:
 If the end-points of e lie in different components in X,
 Add e to X

Why does this work **correctly**?

Efficient Implementation: Need a data structure with properties:

- Maintain disjoint sets of nodes
- Merge sets of nodes (union)
- Find if two nodes are in the same set (find)

The Union-Find data structure

Union-Find Algorithms

network connectivity
quick find
quick union
improvements
applications

1

Network connectivity

Basic abstractions

- set of objects/nodes
- union command: merge two sets
- find query: is there a path connecting one object to another?

Objects

Union-find applications involve manipulating objects of all types.

- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Variable name aliases.
- Pixels in a digital photo.
- Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

- Hide details not relevant to union-find.
- Integers allow quick access to object-related info.
- Could use symbol table to translate from object names

use as array index

Network connectivity: larger example

8

Network connectivity: larger example

network connectivity

quick find

quick union
improvements
applications

Quick-find [eager approach]

Data structure.

- Integer array ia[] of size N.
- Interpretation: p and q are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i]	0	1	9	9	9	6	6	7	8	9	2, 3, 4, and 9 are connected

Quick-find [eager approach]

Data structure.

- Integer array ia[] of size N.
- Interpretation: P and q are connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 9 9 6 6 7 8 9 5 and 6 are connected 2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 6 3 and 6 not connected

Union. To merge components containing p and q, change all entries with id[p] to id[q].

union of 3 and 6 2, 3, 4, 5, 6, and 9 are connected

Quick-find example

3-4	0	1	2	4	4	5	6	7	8	9
4-9	0	1	2	9	9	5	6	7	8	9
8-0	0	1	2	9	9	5	6	7	0	9
2-3	0	1	9	9	9	5	6	7	0	9
5-6	0	1	9	9	9	6	6	7	0	9
5-9	0	1	9	9	9	9	9	7	0	9
7-3	0	1	9	9	9	9	9	9	0	9
4-8	0	1	0	0	0	0	0	0	0	0
6-1	1	1	1	1	1	1	1	1	1	1
problem: many values can change										

Quick-find is too slow

Quick-find algorithm may take ~MN steps to process M union commands on N objects

Rough standard (for now).

- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10¹⁰ edges connecting 10⁹ nodes.
- Quick-find takes more than 10¹⁹ operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

🗩 a truism (roughly) since 1950 !

network connectivity quick find quick union improvements applications

Quick-union [lazy approach]

Data structure.

- Integer array ia[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

- Integer array ia[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9

Union. Set the id of q's root to the id of p's root.

Find. Check if p and q have the same root.

3's root is 9; 5's root is 6 3 and 5 are not connected

Quick-union example

	0 1 2 4 5 6 7 8 9
3-4 0 1 2 4 4 5 6 7 8 9	
4-9 0124956789	
8-0 0 1 2 4 9 5 6 7 0 9	
2-3 0 1 9 4 9 5 6 7 0 9	
5-6 0 1 9 4 9 6 6 7 0 9	
5-9 0 1 9 4 9 6 9 7 0 9	
7-3 0 1 9 4 9 6 9 9 0 9	
4-8 0 1 9 4 9 6 9 9 0 0	
<mark>6-1</mark> 1 1 9 4 9 6 9 9 0 0	3 5
	2 4 6 7 3 5 problem: trees can get tall

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

algorithm	union	find				
Quick-find	Ν	1				
Quick-union	N*	N ←	— worst case			
* includes cost of find						

network connectivity
quick find
quick union
improvements
applications

Improvement 1: Weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.

Weighted quick-union example

Weighted quick-union: Java implementation

Java implementation.

- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

- merge smaller tree into larger tree
- update the sz[] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }</pre>
```

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of ${\tt p}$ and ${\tt q}.$
- Union: takes constant time, given roots.
- Fact: depth is at most lg N. [needs proof]

Data Structure	Union	Find
Quick-find	Ν	1
Quick-union	N *	Ν
Weighted QU	lg N *	lg N

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root(i).

Weighted quick-union with path compression

Path compression.

- Standard implementation: add second loop to root() to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression

3-4	0 1 2 3 3 5 6 7 8 9	0 1 2 3 5 6 7 8 9
4-9	0 1 2 3 3 5 6 7 8 3	4 0 1 2 3 5 6 7 8 4 9
8-0	8 1 2 3 3 5 6 7 8 3	
2-3	8 1 3 3 3 5 6 7 8 3	
5-6	8 1 3 3 3 5 5 7 8 3	
5-9	8 1 3 3 3 3 5 7 8 3	8 1 3 5 7 0 2 4 9 6
7-3	8 1 3 3 3 3 5 3 8 3	
4-8	8 1 3 3 3 3 5 3 3 3	
6-1	8 3 3 3 3 3 3 3 3 3 3	(6)
		8 2 4 5 7 9 0 6
	no problem: trees stay VERY flat	→ @ <u>1 2 4 5 6 7 9</u> 0

WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes O(N + M lg* N) time.

- Proof is very difficult.
- But the algorithm is still simple!

number of times needed to take the lg of a number until reaching 1

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

because lg* N is a constant in this universe

Amazing fact:

• In theory, no linear linking strategy exists