

Announcement

- Reminder: Homework \#I has been posted, due April 15.
- This lecture includes material in Chapter 5 of Algorithms, Dasgupta, Papadimitriou and Vazirani, http://www.cs.berkeley.edu/~vazirani/algorithms/ chap5.pdf

FIFO

LIFO

tree

Trees with at most 4 edges

A binary tree

A k-level complete binary tree has ?? vertices.

Greedy Algorithms

- Minimum Spanning Trees
- The Union/Find Data Structure

A Network Design Problem

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

A Network Design Problem

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer
Edge = Pair of computers
Edge Cost(u,v) = Distance(u,v)

A Network Design Problem

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer
Edge = Pair of computers
Edge Cost(u,v) = Distance(u,v)
Find a subset of edges T such that the cost of T is minimum and all nodes are
 connected in (V, T)

A Network Design Problem

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer
Edge = Pair of computers
Edge Cost(u,v) = Distance(u,v)
Find a subset of edges T such that the cost of T is minimum and all nodes are
 connected in (V, T)

Can U contain a cycle?

A Network Design Problem

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node = Computer
Edge = Pair of computers
Edge Cost(u,v) = Distance(u,v)
Find a subset of edges T such that the cost of T is minimum and all nodes are
 connected in (V, T).

Can U contain a cycle?
Solution is connected and acyclic, so a tree.

Trees

A connected, undirected and acyclic graph is called a tree.

Trees

A connected, undirected and acyclic graph is called a tree.

Tree

Not Tree

Not Tree

Trees

A connected, undirected and acyclic graph is called a tree.

Property I. A tree on n nodes has exactly n - I edges.

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Proof. By induction.

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Proof. By induction.
Base Case:
n nodes, no edges, n connected components.

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Proof. By induction.

Base Case:

n nodes, no edges, n connected components.

Inductive Case:

Add edge between two connected components. No cycle created. \#components decreases by l

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Proof. By induction.

Base Case:

n nodes, no edges, n connected components.

Inductive Case:

Add edge between two connected components. No cycle created. \#components decreases by I.

At the end: I component.

Trees

A connected, undirected and acyclic graph is called a tree
Property I. A tree on n nodes has exactly n - I edges
Proof. By induction.

Base Case:

n nodes, no edges, n connected components

Inductive Case:

Add edge between two connected components No cycle created \#components decreases by l

At the end: I component

How many edges were added?

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Is any graph on n nodes and n - I edges a tree?

Trees

A connected, undirected and acyclic graph is called a tree. Property I. A tree on n nodes has exactly n - I edges.
Is any graph on n nodes and n - I edges a tree?

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Is any graph on n nodes and n - I edges a tree?

Property 2. Any connected, undirected graph on n nodes and n - I edges is a tree.

Trees

A connected, undirected and acyclic graph is called a tree.
Property I. A tree on n nodes has exactly n - I edges.
Property 2. Any connected, undirected graph on n nodes and n - I edges is a tree.

Proof: Suppose G is connected, undirected, has some cycles.

Trees

A connected, undirected and acyclic graph is called a tree
Property I. A tree on n nodes has exactly n - I edges
Property 2. Any connected, undirected graph on n nodes and $\mathrm{n}-\mathrm{I}$ edges is a tree

Proof: Suppose G is connected, undirected, has some cycles. While G has a cycle, remove an edge from this cycle.

Trees

A connected, undirected and acyclic graph is called a tree
Property I. A tree on n nodes has exactly n - I edges
Property 2. Any connected, undirected graph on n nodes and $\mathrm{n}-\mathrm{I}$ edges is a tree

Proof: Suppose G is connected, undirected, has some cycles. While G has a cycle, remove an edge from this cycle.
Result: $G^{\prime}=\left(V, E^{\prime}\right)$ where E^{\prime} is a tree. So $\left|E^{\prime}\right|=n-I$

Trees

A connected, undirected and acyclic graph is called a tree
Property I. A tree on n nodes has exactly n - I edges
Property 2. Any connected, undirected graph on n nodes and $\mathrm{n}-\mathrm{I}$ edges is a tree

Proof: Suppose G is connected, undirected, has some cycles.
While G has a cycle, remove an edge from this cycle.
Result: $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ where E^{\prime} is a tree. So $\left|\mathrm{E}^{\prime}\right|=\mathrm{n}$ - I.
Thus, $\mathrm{E}=\mathrm{E}$, and G is a tree.

Minimum Spanning Trees (MST)

Problem: Given distances between a set of computers, find the cheapest set of pairwise connections so that they are all connected.

Graph-Theoretic Formulation:

Node $=$ Computer
Edge = Pair of computers
Edge Cost(u,v) = Distance(u,v)
Find a subset of edges T such that the cost of T is minimum and all nodes are
 connected in (V, T).

Goal: Find a spanning tree T of the graph G with minimum total cost We'll see a greedy algorithm to construct T.

Properties of MSTs

For a cut ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in VIS.
Assume all edge costs are distinct.
Property I. A lightest edge in any cut always belongs to an MST

Properties of MSTs

For a cut ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in VIS .
Assume all edge costs are distinct.
Property I. A lightest edge in any cut always belongs to an MST
Proof. Suppose not.
Let $\mathrm{e}=$ lightest edge in $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S}), \mathrm{T}=\mathrm{MST}, \mathrm{e}$ is not in T

Properties of MSTs

For a cut $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S})$, the lightest edge in the cut is the minimum cost edge that has one end in S and the other in $\mathrm{V} \backslash \mathrm{S}$.
Assume all edge costs are distinct.
Property I. A lightest edge in any cut always belongs to an MST.
Proof. Suppose not.
Let $\mathrm{e}=$ lightest edge in $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S}), \mathrm{T}=\mathrm{MST}, \mathrm{e}$ is not in T .
$\mathrm{T} U\{e\}$ has a cycle with edge e' across ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$).

Properties of MSTs

For a cut $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S})$, the lightest edge in the cut is the minimum cost edge that has one end in S and the other in $\mathrm{V} \backslash \mathrm{S}$.
Assume all edge costs are distinct.
Property I. A lightest edge in any cut always belongs to an MST.
Proof. Suppose not.
Let $\mathrm{e}=$ lightest edge in $(\mathrm{S}, \mathrm{V} \mathrm{V}), \mathrm{T}=\mathrm{MST}, \mathrm{e}$ is not in T .
$\mathrm{T} U\{e\}$ has a cycle with edge e^{\prime} across (S, VIS).
Let $\mathrm{T}^{\prime}=\mathrm{T} \backslash\left\{\mathrm{e}^{\prime}\right\} \cup\{\mathrm{e}\}$.

Properties of MSTs

For a cut ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$), the lightest edge in the cut is the minimum cost edge that has one end in S and the other in VIS .
Assume all edge costs are distinct.
Property I. A lightest edge in any cut always belongs to an MST.
Proof. Suppose not.
Let $\mathrm{e}=$ lightest edge in $(\mathrm{S}, \mathrm{V} \mathrm{V}), \mathrm{T}=\mathrm{MST}, \mathrm{e}$ is not in T .
$\mathrm{T} U\{e\}$ has a cycle with edge e^{\prime} across (S, VIS).
Let $\mathrm{T}^{\prime}=\mathrm{T} \backslash\left\{\mathrm{e}^{\prime}\right\} \cup\{\mathrm{e}\}$.
$\operatorname{cost}\left(\mathrm{T}^{\prime}\right)=\operatorname{cost}(\mathrm{T})+\operatorname{cost}(\mathrm{e})-\operatorname{cost}\left(\mathrm{e}^{\prime}\right)<\operatorname{cost}(\mathrm{T})$

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST unless all edges in the cycle has the same cost.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST.
Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T Suppose that cost(e) is greater than the cost of other edges in the cycle.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST.
Proof. Suppose not. Let T = MST, e $=$ heaviest edge in some cycle, e in T . Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_{1} and T_{2}.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST.
Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T. Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_{1} and T_{2}.
Let $\mathrm{e}^{\prime}=$ lightest edge in the cut $\left(\mathrm{T}_{1}, \mathrm{~V} \backslash \mathrm{~T}_{1}\right)$.
Then, $\operatorname{cost}\left(\mathrm{e}^{\prime}\right)<\operatorname{cost}(\mathrm{e})$.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST.
Proof. Suppose not. Let T = MST, e $=$ heaviest edge in some cycle, e in T Suppose that $\operatorname{cost}(\mathrm{e})$ is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_{1} and T_{2}
Let $e^{\prime}=$ lightest edge in the cut $\left(T_{1}, V \backslash T_{1}\right)$
Then, $\operatorname{cost}\left(\mathrm{e}^{\prime}\right)<\operatorname{cost}(\mathrm{e})$
Let $T^{\prime}=T \backslash\{e\}+\left\{e^{\prime}\right\}$.

Properties of MSTs

The heaviest edge in a cycle is the maximum cost edge in the cycle.
Property 2. The heaviest edge in a cycle never belongs to an MST.
Proof. Suppose not. Let T = MST, e = heaviest edge in some cycle, e in T. Suppose that cost(e) is greater than the cost of other edges in the cycle. Delete e from T to get subtrees T_{1} and T_{2}.
Let $\mathrm{e}^{\prime}=$ lightest edge in the cut $\left(\mathrm{T}_{1}, \mathrm{~V} \backslash \mathrm{~T}_{1}\right)$.
Then, $\operatorname{cost}\left(\mathrm{e}^{\prime}\right)<\operatorname{cost}(\mathrm{e})$.
Let $T^{\prime}=T \backslash\{e\}+\left\{e^{\prime}\right\}$.
$\operatorname{cost}\left(\mathrm{T}^{\prime}\right)=\operatorname{cost}(\mathrm{T})+\operatorname{cost}(\mathrm{e})-\operatorname{cost}\left(\mathrm{e}^{\prime}\right)<\operatorname{cost}(\mathrm{T})$

Contradiction.

Summary: Properties of MSTs

Property I. A lightest edge in any cut always belongs to an MST.

Property 2. The heaviest edge in a cycle never belongs to an MST.

A Generic MST Algorithm

$X=\{ \}$
While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across $(S, V \backslash S)$.

Does this output a tree?

A Generic MST Algorithm

$X=\{ \}$
While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across $(S, V / S)$.

Does this output a tree?
At each step, no cycle is created.
Continues while there are disconnected components.

Why does this produce a MST?

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$).

Proof of correctness by induction. Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$).

Proof of correctness by induction. Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.

Induction: Assume at $\mathrm{t}=\mathrm{k}, \mathrm{X}$ is in some MST T.

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across $(S, V \backslash S)$.

Proof of correctness by induction. Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.

Induction: Assume at $\mathrm{t}=\mathrm{k}, \mathrm{X}$ is in some MST T. Suppose we add e to X at $\mathrm{t}=\mathrm{k}+\mathrm{l}$.

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$).

Proof of correctness by induction.
Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.
Induction: Assume at $\mathrm{t}=\mathrm{k}, \mathrm{X}$ is in some MST T.
Suppose we add e to X at $\mathrm{t}=\mathrm{k}+\mathrm{l}$.
Suppose e is not in T. Adding e to Torms a cycle C.

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across $(S, V \backslash S)$.

Proof of correctness by induction.
Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.
Induction: Assume at $\mathrm{t}=\mathrm{k}, \mathrm{X}$ is in some MST T.
Suppose we add e to X at $t=k+1$.
Suppose e is not in T. Adding e to T forms a cycle C.
 Let $\mathrm{e}^{\prime}=$ another edge in C across $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S}), \mathrm{T}^{\prime}=\mathrm{T} \backslash\left\{\mathrm{e}^{\prime}\right\} \cup\{\mathrm{e}\}$.

A Generic MST Algorithm

$$
X=\{ \}
$$

While there is a cut (S, VIS) s.t. X has no edges across it $X=X+\{e\}$, where e is the lightest edge across $(S, V \backslash S)$.

Proof of correctness by induction.
Base Case: At $\mathrm{t}=0, \mathrm{X}$ is in some MST T.
Induction: Assume at $\mathrm{t}=\mathrm{k}, \mathrm{X}$ is in some MST T.
Suppose we add e to X at $t=k+1$.
Suppose e is not in T. Adding e to T forms a cycle C.
 Let $\mathrm{e}^{\prime}=$ another edge in C across $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S}), \mathrm{T}{ }^{\prime}=\mathrm{T} \backslash\left\{\mathrm{e}^{\prime}\right\} \cup\{\mathrm{e}\}$.
$\operatorname{cost}\left(\mathrm{T}^{\prime}\right)=\operatorname{cost}(\mathrm{T})-\operatorname{cost}\left(\mathrm{e}^{\prime}\right)+\operatorname{cost}(\mathrm{e})<=\operatorname{cost}(\mathrm{T})$.

Kruskal's Algorithm

$X=\{ \}$
For each edge e in increasing order of weight:
If the end-points of e lie in different components in X , Add e to X

Why does this work correctly?

Kruskal's Algorithm

$X=\{ \}$
For each edge e in increasing order of weight:
If the end-points of e lie in different components in X , Add e to X

Why does this work correctly?
Efficient Implementation: Need a data structure with properties:

- Maintain disjoint sets of nodes
- Merge sets of nodes (union)
- Find if two nodes are in the same set (find)

The Union-Find data structure

Union-Find Algorithms

- network connectivity
- quick find
- quick union
improvements
- applications

Network connectivity

Basic abstractions

- set of objects/nodes
- union command: merge two sets
- find query: is there a path connecting one object to another?

Objects

Union-find applications involve manipulating objects of all types.

- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Variable name aliases.
- Pixels in a digital photo.
- Metallic sites in a composite system.

When programming, convenient to name them O to $\mathrm{N}-1$.

- Hide details not relevant to union-find.
- Integers allow quick access to object-related info.
- Could use symbol table to translate from object names

Union-find abstractions

Simple model captures the essential nature of connectivity.

- Objects.

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { grid points }
\end{array}
$$

- Disjoint sets of objects.

$$
\left.01\left\{\begin{array}{llllllllll}
& 2 & 3 & 9
\end{array}\right\} \quad \begin{array}{llll}
5 & 7 & 4 & 8
\end{array}\right\} \quad \text { subsets of connected grid points }
$$

- Find query: are objects 2 and 9 in the same set?

```
0 1 {239}{56} 7 {4 8}
- Union command: merge sets containing 3 and 8.
\[
\begin{array}{lllllllllllllll} 
& 1 & 2 & 3 & 4 & 8 & 9 & \} & \{ & 6 & \} & 7 & \begin{array}{l}
\text { add a connection between } \\
\text { two grid points }
\end{array}
\end{array}
\]

Network connectivity: larger example


Network connectivity: larger example


\section*{network connectivity}
> quick find
quick union
improvements
> applications

\section*{Quick-find [eager approach]}

Data structure.
- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.
```

cllllllllll
5 and 6 are connected
$2,3,4$, and 9 are connected

```

\section*{Quick-find [eager approach]}

Data structure.
- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.
\[
\begin{array}{cllllllllll}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { id[i] } & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
\]

5 and 6 are connected
\(2,3,4\), and 9 are connected

Find. Check if p and q have the same id.

Union. To merge components containing p and q , change all entries with id[p] to id[q].

union of 3 and 6
\(2,3,4,5,6\), and 9 are connected

Quick-find example
```

3-4 0 1 2 4 4 5 6 7 8 9
4-9 01 1 2 9 9 5 6 7 8 9
8-0 0 1 2 9 9 5 6 7 0 9
2-3 0 1 9 9 9 5 6 7 0 9
5-6 0 1 9 9 9 6 6 7 0 9
5-9 0 1 9 9 9 9 9 7 0 9
7-3 0 1 9 9 9 9 9 9 0 9
4-8 0 1 0 0 0 0 0 0 0 0
6-1
problem: many values can change

```
```

(0) (1) (2) (4) (5) (6) (7) (8) (9)

```
(0) (1) (2) (4) (5) (6) (7) (8) (9)
(1) (1) (2) (3) \(\left.^{9}\right)^{(4)}\) (5) (7) (8)
```

(1) (1) (2) (3) $\left.^{9}\right)^{(4)}$ (5) (7) (8)

```


```

 (1) (2) \(^{\text {(3) }}\) (4) (5) (5) (7)
    ```
    (1) (2) \(^{\text {(3) }}\) (4) (5) (5) (7)
    (1) (3) (3) (4) (5) (3) (9)
    (1) (3) (3) (4) (5) (3) (9)
(1) (3) (4) (5) (6) (3)
(1) (3) (4) (5) (6) (3)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) (2) (3) (4) (5) (6) (7) (8)-(9)
```

(1) (2) (3) (4) (5) (6) (7) (8)-(9)

```



Quick-find is too slow
Quick-find algorithm may take ~MN steps to process \(M\) union commands on \(N\) objects

Rough standard (for now).
- \(10^{9}\) operations per second.
- \(10^{9}\) words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
- \(10^{10}\) edges connecting \(10^{9}\) nodes.
- Quick-find takes more than \(10^{19}\) operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
- New computer may be \(10 x\) as fast.
- But, has \(10 x\) as much memory so problem may be \(10 x\) bigger.
- With quadratic algorithm, takes \(10 x\) as long!

\section*{network connectivity}
quick find

\section*{> quick union}
improvements
applications

Quick-union [lazy approach]
Data structure.
- Integer array id[] of size N .
- Interpretation: id[i] is parent of \(i\).
- Root of \(i\) is id[id[id[...id[i]...]]].
\[
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
\]


3 's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.
- Integer array id[] of size N .
- Interpretation: id[i] is parent of \(i\).
- Root of \(i\) is id[id[id[...id[i]....]]].
```

cllllllllll

```
(0)

(7)


3's root is 9; 5's root is 6
3 and 5 are not connected
Union. Set the id of \(q\) 's root to the id of \(p\) 's root.


\section*{Quick-union example}
\[
\begin{array}{lllllllllll}
3-4 & 0 & 1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 & 9 \\
4-9 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 8 & 9 \\
8-0 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
2-3 & 0 & 1 & 9 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
5-6 & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 0 & 9 \\
5-9 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 7 & 0 & 9 \\
7-3 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 9 \\
4-8 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0 \\
4-1 & 1 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0
\end{array}
\]


Quick-union is also too slow
Quick-find defect.
- Union too expensive ( N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be \(N\) steps)
- Need to do find to do union
\begin{tabular}{ccc} 
algorithm & union & find \\
Quick-find & N & 1 \\
Quick-union & \(\mathrm{N}^{*}\) & \(\mathrm{~N} \longleftarrow\) worst case \\
* includes cost of find
\end{tabular}
> network connectivity
quick find
quick union
> improvements
applications

\section*{Improvement 1: Weighting}

Weighted quick-union.
- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.
- Quick union: link 9 to 6 .
- Weighted quick union: link 6 to 9.
size


\section*{Weighted quick-union example}
\[
\begin{aligned}
& 3-4 \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \\
& 4-9 \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5 \quad 6 \quad 7 \quad 8 \quad 3 \\
& 8-0 \quad 8 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5 \quad 6788 \\
& 2-3 \quad 8 \quad 1 \quad 3 \quad 3 \quad 3 \quad 5 \quad 6 \quad 7 \quad 8 \quad 3 \\
& \begin{array}{lllllllllll}
5-6 & 8 & 1 & 3 & 3 & 3 & 5 & 5 & 7 & 8 & 3
\end{array} \\
& \begin{array}{lllllllllll}
5-9 & 8 & 1 & 3 & 3 & 3 & 3 & 5 & 7 & 8 & 3
\end{array} \\
& 7-3 \quad 8 \quad 1 \quad 3 \quad 3 \quad 3 \quad 3 \quad 5 \quad 3 \quad 8 \quad 3 \\
& 4-8 \quad 8 \quad 1 \quad 3 \quad 3 \quad 3 \quad 3 \quad 5 \quad 3 \quad 3 \quad 3 \\
& 6-1 \quad 8 \quad 3 \quad 3 \quad 3 \quad 3 \quad 3 \quad 5 \quad 3 \quad 3 \quad 3 \\
& \text { (1) (1) (2) (3) (5) (6) (7) (3) (9) } \\
& \text { (1) (1) (2) (4) } \left.{ }^{3}\right)^{(5)} \text { (6) (7) (3) } \\
& \text { (8) (1) (2) } \text { (4) }^{3} \text { (9) }{ }^{(5)} \text { (6) (7) }
\end{aligned}
\]

Weighted quick-union: Java implementation
Java implementation.
- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at \(i\).

Find. Identical to quick-union.
Union. Modify quick-union to
- merge smaller tree into larger tree
- update the sz[] array.
```

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }

```

Weighted quick-union analysis
Analysis.
- Find: takes time proportional to depth of \(p\) and \(q\).
- Union: takes constant time, given roots.
- Fact: depth is at most \(\lg \mathrm{N}\). [needs proof]
\begin{tabular}{ccc} 
Data Structure & Union & Find \\
\hline Quick-find & \(N\) & 1 \\
Quick-union & \(N^{*}\) & \(N\) \\
Weighted QU & \(\lg N^{*}\) & \(\lg N\)
\end{tabular}
* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

\section*{Improvement 2: Path compression}

Path compression. Just after computing the root of \(i\), set the id of each examined node to root(i).


Weighted quick-union with path compression

Path compression.
- Standard implementation: add second loop to root() to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.
```

public int root(int i)
{
while (i != id[i])
{
id[i] = id[id[i]];
i = id[i];
}
return i;
}

```

In practice. No reason not to! Keeps tree almost completely flat.

\section*{Weighted quick-union with path compression}
```

3-4 0

```

```

8-0 8 1 2 3 3 3 5 6 6 7 8 3
2-3}808[143\mp@code{3
5-6 8
5-9 8
7-3 8
4-8}384143\mp@code{3
6-1
no problem: trees stay VERY flat

```
\(\qquad\)
(1) (1) (2) (3) (5) (6) (7) (8) (9)
```

(1) (1) (2) (4) $\left.^{3}\right)^{(9)}$ (5) (5) (7) (3)
(8) (1) (2) (4) ${ }^{3}$ (9) ${ }^{(5) ~(6) ~(7) ~}$
(8) (1) ${ }^{(2)}{ }^{3}$ (4) (9) ${ }^{(5) ~(6) ~(7) ~}$

```




```

no problem: trees stay VERY flat
(8)(1) (2) (4) (5) (6)

```

\section*{WQUPC performance}

Theorem. Starting from an empty data structure, any sequence of \(M\) union and find operations on \(N\) objects takes \(O(N+M \lg N)\) time.
- Proof is very difficult.
- But the algorithm is still simple!
number of times needed to take
the \(l g\) of a number until reaching 1

Linear algorithm?
- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

\begin{tabular}{cc}
\hline\(N\) & \(\lg ^{*} N\) \\
\hline 1 & 0 \\
2 & 1 \\
4 & 2 \\
16 & 3 \\
65536 & 4 \\
265536 & 5 \\
\hline
\end{tabular}

Amazing fact:
- In theory, no linear linking strategy exists```

