

## Announcements

- Homework due today before the class.
- About homework, write your own homework, allowing oral discussion with one fixed partner.
- Fan's office hour will be held at CSE2126 this week.
- Olivia's office hour will be changed.



## Chapter 4

## Greedy Algorithms

## PEARSON <br> Addison <br> Wesley

Slides by Kevin Wayne. All rights reserved.

### 4.4 Shortest Paths in a Graph



Shortest path tree in Bay area

## Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)


Trees with at most 4 edges


## A useful fact about trees

Any tree on $n$ vertices contains a vertex $v$ whose removal separates the remaining graph into two parts, one of which is of sizes at most $n / 2$ and the other is at most $2 n / 3$.


## A useful fact about trees

Any tree on $n$ vertices contains a vertex $v$ whose removal separates the remaining graph into two parts, one of which is of sizes at most $n / 2$ and the other is at most $2 n / 3$.


Try to write a proof for this!

A planar graph is a graph that can be drawn in the plane without crossings.


A planar graph is a graph that can be drawn in the plane without any crossing.


Are these planar graphs?

A planar graph is a graph that can be drawn in the plane without any crossing.


Are these planar graphs?


## A useful fact about planar graphs

Any planar graph on $n$ vertices contains $c \sqrt{n}$ vertices whose removal separates the remaining graph into two parts, one of which is of sizes at most $n / 2$ and the other is at most $2 n / 3$.

$$
\begin{aligned}
& \text { Tarjan and Lipton, } 1977 \\
& c=2 \sqrt{2}
\end{aligned}
$$



## Chapter 5

## Divide and Conquer

## PEARSON <br> Addison <br> Wesley

Slides by Kevin Wayne. All rights reserved.

## Sorting

Sorting.
Given n elements, rearrange in ascending order.

$$
\begin{array}{ll}
3,6,5,2,1,4 & B, U, S, H \\
1,2,3,4,5,6 & B, H, S, U
\end{array}
$$

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank results.

## Mergesort

## Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.


Jon von Neumann (1945)

| A | I |  | G | 0 | R |  |  | I |  | T | H | M | S | divide | O(1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | G |  | L | 0 |  |  |  | H |  | I | M | S | T | sort | $2 T(n / 2)$ |
|  |  | G |  | H | I | L | M |  | 0 | R | S |  |  | merge | $O(n)$ |

## Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? $\square$

- Linear number of comparisons
- Use temporary array.



## A G H I

## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

$\square$


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array


## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.


| A | G | H | I | L | M | O | R |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.


| A | G | H | I | L | M | O | R | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

auxiliary array

## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.


| A | G | H | I | L | M | O | R | S | T | auxiliary array |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Merging

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.


| A | G | H | I | L | M | O | R | S | T | auxiliary array |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? $\square$

- Linear number of comparisons
- Use temporary array.



## A G H I

## A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size $n$.

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\
\underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} \begin{array}{l}
\text { otherwise }
\end{array}\end{cases}
$$

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Proof: First try the recurrence $\quad T(n) \leq 2 T(n / 2)+n$
Prove by induction: $\quad$ Suppose for $k<n, T(k) \leq c k \log k$.

$$
\begin{aligned}
T(n) & \leq 2 c(n / 2) \log (n / 2)+n \\
& \leq c n(\log n-1)+n \\
& \leq c n \log n
\end{aligned}
$$

## Solving recurrences:

$$
T(n)=2 T(n / 2)+n \quad \Rightarrow \quad T(n)=O(n \log n)
$$

Solving recurrences:

$$
T(n)=2 T(n / 2)+n \quad \Rightarrow \quad T(n)=O(n \log n)
$$

$$
T(n)=2 T(n / 2)+n^{2}
$$

Solving recurrences:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \quad \Rightarrow \quad T(n)=O(n \log n) \\
& T(n)=2 T(n / 2)+n^{2} \quad \Rightarrow ?
\end{aligned}
$$

Solving recurrences:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \quad \Rightarrow \quad T(n)=O(n \log n) \\
& T(n)=2 T(n / 2)+n^{2} \quad \Rightarrow ?
\end{aligned}
$$

$$
T(n)=3 T(n / 2)+n \log n
$$

Solving recurrences:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \quad \Rightarrow \quad T(n)=O(n \log n) \\
& T(n)=2 T(n / 2)+n^{2} \Rightarrow ? \\
& T(n)=3 T(n / 2)+n \log n \quad \Rightarrow ?
\end{aligned}
$$

### 5.3 Counting Inversions

## Counting Inversions

Music site tries to match your song preferences with others.

- You rank $n$ songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ... n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs $i$ and $j$ inverted if $i<j$, but $a_{i}>a_{j}$.


Inversions
3-2, 4-2

Brute force: check all $\Theta\left(n^{2}\right)$ pairs $i$ and $j$.

## Applications

## Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).


## Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

```
1
```


## Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Divide: $O(1)$. |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |

## Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 | Divide: $O(1)$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 | Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$ |
| 5 blue-blue inversions |  |  |  |  | 8 green-green inversions |  |  |  |  |  |  |  |
| 5-4, 5-2, 4-2, 8-2, 10-2 |  |  |  |  | 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7 |  |  |  |  |  |  |  |

## Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where $a_{i}$ and $a_{j}$ are in different halves, and return sum of three quantities.

```
1 5
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7
\end{tabular}\(\quad\) Conquer: \(2 T(n / 2)\)
    5 blue-blue inversions
                            8 green-green inversions
9 blue-green inversions
    5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7
Total = 5+8+9=22.
```


## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.

auxiliary array


## Total:

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


2
auxiliary array

Total: 6

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


```
2 3
```

auxiliary array

```
Total: }
```


## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


23
auxiliary array

Total: 6

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


```
2 3 7
```

auxiliary array

```
Total: }
```


## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


```
2 3 7
```

auxiliary array

```
Total: }
```


## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


| 2 | 3 | 7 | 10 |  |
| :--- | :--- | :--- | :--- | :--- |

Total: 6

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


| 2 | 3 | 7 | 10 |  |
| :--- | :--- | :--- | :--- | :--- |

Total: 6

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


Total: $6+3$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


Total: $6+3$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3+2
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3+2
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3+2+2
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.


$$
\text { Total: } 6+3+2+2
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.

| $i=1$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | two sorted halves |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  | 10 | 14 |  | 18 |  | 19 |  |  | 11 |  | 16 |  | 17 | 23 | 25 |  |
|  |  |  |  |  |  |  |  |  |  |  | 3 |  | 2 |  | 2 |  |  |  |
|  | 2 | 3 |  | 7 | 10 |  | 11 | 14 | 16 | 17 |  | 18 |  | 19 |  |  |  | auxiliary array |

$$
\text { Total: } 6+3+2+2
$$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.

| first half exhausted i |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | two sorted halves |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 7 |  | 10 | 1 | 4 | 18 |  | 19 |  | 2 | 11 |  | 16 | 17 | 23 | 25 |  |
|  |  |  |  |  |  |  |  |  |  | 6 | 3 |  | 2 | 2 |  |  |  |
| 2 |  | 3 |  | 7 | 10 |  | 11 | 14 | 16 | 17 |  | 18 | 1 | 9 |  |  | auxiliary array |

Total: $6+3+2+2$

## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{i}$ and $a_{j}$ are in different halves.
- Combine two sorted halves into sorted whole.



## Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where $a_{i}$ and $a_{j}$ are in different halves.

- Merge two sorted halves into sorted whole.
to maintain sorted invariant


13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$
$\begin{array}{llllllllllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 & \text { Merge: } O(n)\end{array}$

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(|n / 2|)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

## Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return O and the list L
    Divide the list into two halves A and B
    (rA},A)\leftarrow\mathrm{ Sort-and-Count(A)
    (r }\mp@subsup{r}{B}{},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r , L) \leftarrow Merge-and-Count(A, B)
    return r = rat r m r and the sorted list L
}
```


## Merge-and-Count(A,B) \{

Initialize Pointer1 to the front of $A$.
Pointer2 to the front of $B$.
Count $=0$
While $A$ and $B$ are nonempty, compare $a_{i}$ at Pointer1 with $b_{j}$ at Pointer2, append the smaller one to output and advance the pointer by one.

If $b_{j}$ is smaller, then increase Count by the number of elements still in $A$.

Endwhile

## Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return O and the list L
    Divide the list into two halves A and B
    (rA},A)\leftarrow\mathrm{ Sort-and-Count(A)
    (r }\mp@subsup{r}{B}{},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r , L) \leftarrow Merge-and-Count(A, B)
    return r = rat r m r and the sorted list L
}
```


### 5.4 Closest Pair of Points

## Closest Pair of Points

Closest pair. Given $n$ points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points $p$ and $q$ with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same $\times$ coordinate .
to make presentation cleaner

## Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.


## Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.


## Closest Pair of Points

Algorithm.

- Divide: draw vertical line $L$ so that roughly $\frac{1}{2} n$ points on each side.



## Closest Pair of Points

Algorithm.

- Divide: draw vertical line $L$ so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.



## Closest Pair of Points

Algorithm.

- Divide: draw vertical line $L$ so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. $\leftarrow$ seems like $\Theta\left(n^{2}\right)$
- Return best of 3 solutions.



## Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.


## Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$. - Observation: only need to consider points within $\delta$ of line L.


## Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $\delta$.

- Observation: only need to consider points within $\delta$ of line L.
- Sort points in $2 \delta$-strip by their y coordinate.



## Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within $\delta$ of line L.
- Sort points in $2 \delta$-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!



## Closest Pair of Points

Def. Let $s_{i}$ be the point in the $2 \delta$-strip, with the $i^{\text {th }}$ smallest $y$-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between $s_{i}$ and $s_{j}$ is at least $\delta$.
Pf.

- No two points lie in same $\frac{1}{2} \delta-b y-\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$.

Fact. Still true if we replace 12 with 7.


## Closest Pair Algorithm

```
Closest-Pair(p
    Compute separation line L such that half the points O(n log n)
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L O(n)
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
O(n logn)
O(n)
distances is less than }\delta\mathrm{ , update }\delta\mathrm{ .
    return \delta.
}
```


## Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$ ?
A. Yes. Don'† sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by $x$ coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

### 5.5 Integer Multiplication

## Integer Arithmetic

Add. Given two $n$-digit integers $a$ and $b$, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two $n$-digit integers $a$ and $b$, compute $a \times b$.

- Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.



## Divide-and-Conquer Multiplication: Warmup

To multiply two $n$-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right)=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right) \\
\\
\uparrow \\
\text { assumes } \mathrm{n} \text { is a power of } 2
\end{gathered}
$$

## Karatsuba Multiplication

To multiply two $n$-digit integers:

- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2}$ n-digit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \text { A } \quad \mathrm{B}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(|n / 2|)+T(1+|n / 2|)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

## Karatsuba: Recursion Tree

$$
\mathrm{T}(n)=\left\{\begin{array}{cl}
0 & \text { if } n=1 \\
3 T(n / 2)+n & \text { otherwise }
\end{array}\right.
$$

$$
\mathrm{T}(n)=\sum_{k=0}^{\log _{2} n} n\left(\frac{3}{2}\right)^{k}=\frac{\left(\frac{3}{2}\right)^{1+\log _{2} n}-1}{\frac{3}{2}-1}=3 n^{\log _{2} 3}-2
$$


$n$

$$
3(n / 2)
$$

$$
9(n / 4)
$$

$3^{k}\left(n / 2^{k}\right)$
$T(2) \quad T(2) \quad T(2) \quad T(2)$
$T(2) \quad T(2) \quad T(2) T(2)$
$3 \lg (2)$

## Matrix Multiplication

## Matrix Multiplication

Matrix multiplication. Given two $n$-by-n matrices $A$ and $B$, compute $C=A B$.

$$
\left.c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \quad\left|\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right|=\left\lvert\, \begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right.\right\rfloor \times\left|\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right|
$$

Brute force. $\Theta\left(n^{3}\right)$ arithmetic operations.

Fundamental question. Can we improve upon brute force?

## Matrix Multiplication: Warmup

Divide-and-conquer.

- Divide: partition $A$ and $B$ into $\frac{1}{2} n-b y-\frac{1}{2} n$ blocks.
- Conquer: multiply $8 \frac{1}{2} n$-by- $\frac{1}{2} n$ recursively.
- Combine: add appropriate products using 4 matrix additions.

$$
\left\lfloor\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right\rfloor \times\left\lfloor\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right\rfloor \quad \begin{aligned}
& C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right) \\
& C_{12}=\left(A_{11} \times B_{12}\right)+\left(A_{12} \times B_{22}\right) \\
& C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right) \\
& C_{22}=\left(A_{21} \times B_{12}\right)+\left(A_{22} \times B_{22}\right)
\end{aligned}
$$

$$
\mathrm{T}(n)=\underbrace{8 T(n / 2)}_{\text {recurrsive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{3}\right)
$$

## Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$
\begin{aligned}
\left\lfloor\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right\rfloor \times\left\lfloor\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right\rfloor & \begin{array}{l}
P_{1}
\end{array}=A_{11} \times\left(B_{12}-B_{22}\right) \\
P_{2} & =\left(A_{11}+A_{12}\right) \times B_{22} \\
P_{3} & =\left(A_{21}+A_{22}\right) \times B_{11} \\
C_{11} & =P_{5}+P_{4}-P_{2}+P_{6} \\
C_{12} & =P_{1}+P_{2} \\
C_{21} & =A_{22}+B_{4} \\
C_{22} & \left.=B_{511}\right) \\
C_{5}+P_{1}-P_{3}-P_{7} & \left.P_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right) \\
P_{6} & =\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right) \\
P_{7} & =\left(A_{11}-A_{21}\right) \times\left(B_{11}+B_{12}\right)
\end{aligned}
$$

- 7 multiplications.
- $18=10+8$ additions (or subtractions).


## Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- Divide: partition $A$ and $B$ into $\frac{1}{2} n-b y-\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply $7 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume $n$ is a power of 2 .
- $T(n)=\#$ arithmetic operations.

$$
\mathrm{T}(n)=\underbrace{7 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, subbract }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

## Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 \times$ speedup on G4 Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

## Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Q. Two 70 -by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{70} 143660}\right)=O\left(n^{2.80}\right)
$$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.
- January, 1980: $O\left(n^{2.521801}\right)$.


## Fast Matrix Multiplication in Theory

Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987.]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
Caveat. Theoretical improvements to Strassen are progressively less practical.

