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CSE 202

Divide-and-conquer algorithms

  Fan Chung Graham

       UC  San Diego



• Homework due today before the class.
•About homework, write your own homework, allowing  
oral discussion with one fixed partner.
•Fan’s office hour will be held at CSE2126 this week.
•Olivia’s office hour will be changed.

Announcements
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Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



4.4  Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

Shortest path tree in Bay area
                                                    



Coin Changing

Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the
essence of the evolutionary spirit.

        - Gordon Gecko (Michael Douglas)
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Trees with at most 4 edges
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Any tree on n vertices contains a vertex v

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about trees
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Any tree on n vertices contains a vertex v

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about trees

Try to write a proof for this!
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A planar graph is a graph that can be

drawn in the plane without crossings.
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Are these planar graphs?

A planar graph is a graph that can be

drawn in the plane without any crossing.
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A planar graph is a graph that can be

drawn in the plane without any crossing.

Are these planar graphs?
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Any planar graph on n vertices contains     vertices

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about planar graphs

Tarjan and Lipton, 1977

nc n vertices

c = 2 2
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Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank results.

Sorting

Sorting.
Given n elements, rearrange in ascending order.

3, 6, 5, 2, 1, 4

1, 2, 3, 4, 5, 6

B, U, S, H

B, H, S, U
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Mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half.

! Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

! Linear number of comparisons.

! Use temporary array.

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage
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auxiliary array

smallest smallest

A G L O R H I M S T

         

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

A
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auxiliary array

smallest smallest

A G L O R H I M S T

A          

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

G
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auxiliary array

smallest smallest

A G L O R H I M S T

A G         

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

H
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H        

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

I
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I       

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

L



6

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L      

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

M
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M     

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

O
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O    

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

R



9

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R   

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

S
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auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S  

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

T
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auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

! Linear number of comparisons.

! Use temporary array.

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution.  T(n) = O(n log2 n).

Assorted proofs.  We describe several ways to prove this recurrence.

Initially we assume n is a power of 2 and replace ! with =.

    

 

T(n) !

 0 if  n = 1

T n /2" #( )
solve left half

! " # $ # 
+ T n /2$ %( )

solve right half

! " # $ # 
+ n

merging
%

otherwise

& 

' 
( 

) 
( 

Proof: First try the recurrence T (n) ≤ 2T (n / 2)+ n

Prove by induction: 

T (n) ≤ 2c(n / 2)log(n / 2)+ n

≤ cn(logn −1)+ n

≤ cn logn

Suppose for  k < n, T (k) ≤ ck log k.



Solving recurrences:

T (n) = 2T (n / 2) + n T (n) = O(n logn)⇒



Solving recurrences:

T (n) = 2T (n / 2) + n T (n) = O(n logn)⇒

T (n) = 2T (n / 2) + n2



Solving recurrences:

T (n) = 2T (n / 2) + n T (n) = O(n logn)⇒

T (n) = 2T (n / 2) + n2 ⇒ ?



Solving recurrences:

T (n) = 2T (n / 2) + n T (n) = O(n logn)⇒

T (n) = 2T (n / 2) + n2 ⇒ ?

T (n) = 3T (n / 2) + n logn



Solving recurrences:

T (n) = 2T (n / 2) + n T (n) = O(n logn)⇒

T (n) = 2T (n / 2) + n2 ⇒ ?

T (n) = 3T (n / 2) + n logn ⇒ ?



5.3  Counting Inversions
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Music site tries to match your song preferences with others.

! You rank n songs.

! Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.

! My rank:  1, 2, …, n.

! Your rank:  a1, a2, …, an.

! Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all !(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2
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Applications

Applications.

! Voting theory.

! Collaborative filtering.

! Measuring the "sortedness" of an array.

! Sensitivity analysis of Google's ranking function.

! Rank aggregation for meta-searching on the Web.

! Nonparametric statistics  (e.g., Kendall's Tau distance).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

! Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

! Conquer: recursively count inversions in each half.

! Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

auxiliary array

Total:

i = 6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

i = 6

two sorted halves

2 auxiliary array

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 auxiliary array

i = 6

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 6

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 5

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 5

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 4

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 4

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 3

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total:  6 + 3

6 3



11

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total:  6 + 3

6 3
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 3

Total:  6 + 3

6 3
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 2

Total:  6 + 3

6 3
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total:  6 + 3 + 2

6 3 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total:  6 + 3 + 2

6 3 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 1

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 1

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2

first half exhausted

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0

6 3 2 2 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0

6 3 2 2 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0

Counting Inversions:  Combine

Combine:  count blue-green inversions

! Assume each half is sorted.

! Count inversions where ai and aj are in different halves.

! Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

 

T(n) !  T n /2" #( ) + T n /2$ %( ) + O(n) & T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant



31

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.

Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {

   if list L has one element

      return 0 and the list L

   Divide the list into two halves A and B

   (rA, A) ! Sort-and-Count(A)

   (rB, B) ! Sort-and-Count(B)

   (rB, L) ! Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L

}



Merge-and-Count(A,B)  {
Initialize Pointer1 to the front of A.

Pointer2 to the front of B.
Count = 0

While A and B are nonempty,

compare  a    at Pointer1  with  b   at Pointer2,i j

append the smaller one to output and advance
the pointer by one.

If b  is smaller, then increase Count by
the number of elements still in A. 

Endwhile

j
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.

Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {

   if list L has one element

      return 0 and the list L

   Divide the list into two halves A and B

   (rA, A) ! Sort-and-Count(A)

   (rB, B) ! Sort-and-Count(B)

   (rB, L) ! Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L

}



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

! Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with !(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

L
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Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

! Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

! Conquer:  find closest pair in each side recursively.

! Combine:  find closest pair with one point in each side.

! Return best of 3 solutions.

12

21
8

L

seems like !(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

12

21

! = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation:  only need to consider points within ! of line L.

12

21

!

L

! = min(12, 21)
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12

21

1

2

3

4
5

6

7

!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation:  only need to consider points within ! of line L.

! Sort points in 2!-strip by their y coordinate.

L

! = min(12, 21)
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12

21

1

2

3

4
5

6

7

!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation:  only need to consider points within ! of line L.

! Sort points in 2!-strip by their y coordinate.

! Only check distances of those within 11 positions in sorted list!

L

! = min(12, 21)



43

Closest Pair of Points

Def.  Let si be the point in the 2!-strip, with

the ith smallest y-coordinate.

Claim.  If |i – j| " 12, then the distance between

si and sj is at least !.

Pf.

! No two points lie in same !!-by-!! box.

! Two points at least 2 rows apart

have distance "  2(!!).   !

Fact.  Still true if we replace 12 with 7.

!

27

29
30

31

28

26

25

!

!!

 2 rows
!!

!!

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

   Compute separation line L such that half the points

   are on one side and half on the other side.

   !1 = Closest-Pair(left half)

   !2 = Closest-Pair(right half)

   !  = min(!1, !2)

   Delete all points further than ! from separation line L

   Sort remaining points by y-coordinate.

   Scan points in y-order and compare distance between

   each point and next 11 neighbors. If any of these

   distances is less than !, update !.

   return !.

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.

! Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

! Sort by merging two pre-sorted lists.

  

 

T(n) ! 2T n /2( ) + O(n) " T(n) = O(n logn)

  

 

T(n) ! 2T n /2( ) + O(n log n) " T(n)  =  O(n log2
n)



5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.

! O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a ! b.

! Brute force solution: !(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

010 1

011 1

100 0

Add

Multiply
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To multiply two n-digit integers:

! Multiply four !n-digit integers.

! Add two !n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication:  Warmup

    

 

T(n)  =  4T n /2( )
recursive calls

! " # $ # 
 +  !(n)

add, shift

! " $ 
 "  T(n) = !(n

2
)

  

 

x = 2
n / 2

! x
1

 +  x
0

y = 2
n / 2

! y
1

 +  y
0

xy = 2
n / 2

! x
1

+ x
0( ) 2

n / 2
! y

1
 + y

0( ) = 2
n
! x

1
y

1
 + 2

n / 2
! x

1
y

0
+ x

0
y

1( ) + x
0
y

0

assumes n is a power of 2
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To multiply two n-digit integers:

! Add two !n digit integers.

! Multiply three !n-digit integers.

! Add, subtract, and shift !n-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

  

 

x = 2
n / 2

! x1  +  x0

y = 2
n / 2

! y1  +  y0

xy = 2
n
! x1y1  + 2

n / 2
! x1y0 + x0 y1( ) + x0 y0

= 2
n
! x1y1  + 2

n / 2
! (x1 + x0 ) (y1 + y0 )  " x1y1 " x0 y0( ) + x0 y0

    

 

T(n) ! T n /2" #( ) + T n /2$ %( ) + T 1+ n /2$ %( )
recursive calls

! " # # # # # # # $ # # # # # # # 
+ &(n)

add, subtract, shift

! " # $ # 

' T(n)  =  O(n
log 2 3

)  =  O(n1.585 )

A B CA C
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Karatsuba:  Recursion Tree

  

 

T(n) =
0 if  n = 1

3T(n /2)  +  n otherwise

! 
" 
# 

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

  

 

T(n) = n  3
2( )

k

k =0

log2 n

!  =  
3
2( )

1+ log2 n

"1

3
2
"1

 =   3n
log2 3

" 2



Matrix Multiplication
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.

Brute force.   !(n3) arithmetic operations.

Fundamental question.  Can we improve upon brute force?

Matrix Multiplication

  

 

cij = a
ik

b
kj

k =1

n

!

    

 

c
11

c
12
! c

1n

c
21

c
22
! c

2n

" " # "

c
n1

c
n2
! c

nn

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

=

a
11

a
12
! a

1n

a
21

a
22
! a

2n

" " # "

a
n1

a
n2
! a

nn

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

'

b
11

b
12
! b

1n

b
21

b
22
! b

2n

" " # "

b
n1

b
n2
! b

nn

! 

" 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 
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Matrix Multiplication:  Warmup

Divide-and-conquer.

! Divide:  partition A and B into !n-by-!n blocks.

! Conquer:  multiply 8 !n-by-!n recursively.

! Combine:  add appropriate products using 4 matrix additions.

  

 

C
11

= A
11
! B

11( )  +  A
12
! B

21( )
C

12
= A

11
! B

12( )  +  A
12
! B

22( )
C

21
= A

21
! B

11( )  +  A
22
! B

21( )
C

22
= A

21
! B

12( )  +  A
22
! B

22( )

  

 

C
11

C
12

C
21

C
22

! 

" 
# 

$ 

% 
&  =  

A
11

A
12

A
21

A
22

! 

" 
# 

$ 

% 
&  '  

B
11

B
12

B
21

B
22

! 

" 
# 

$ 

% 
& 

    

 

T(n) = 8T n /2( )
recursive calls

! " # $ # 
 +  !(n

2
)

add, form submatrices

! " # # $ # # 
" T(n) = !(n

3
)
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Matrix Multiplication:  Key Idea

Key idea.  multiply 2-by-2 block matrices with only 7 multiplications.

! 7 multiplications.

! 18 = 10 + 8 additions (or subtractions).

  

 

P1 = A11 ! (B12 " B22 )

P2 = (A11 + A12 ) ! B22

P3 = (A21 + A22 ) ! B11

P4 = A22 ! (B21 " B11)

P5 = (A11 + A22 ) ! (B11 + B22 )

P6 = (A12 " A22 ) ! (B21 + B22 )

P7 = (A11 " A21) ! (B11 + B12 )  

 

C
11

= P
5

+ P
4
! P

2
+ P

6

C
12

= P
1

+ P
2

C
21

= P
3

+ P
4

C
22

= P
5

+ P
1
! P

3
! P

7

  

 

C
11

C
12

C
21

C
22

! 

" 
# 

$ 

% 
&  =  

A
11

A
12

A
21

A
22

! 

" 
# 

$ 

% 
&  '  

B
11

B
12

B
21

B
22

! 

" 
# 

$ 

% 
& 
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Fast Matrix Multiplication

Fast matrix multiplication.  (Strassen, 1969)

! Divide:  partition A and B into !n-by-!n blocks.

! Compute: 14 !n-by-!n matrices via 10 matrix additions.

! Conquer:  multiply 7 !n-by-!n matrices recursively.

! Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.

! Assume n is a power of 2.

! T(n) = # arithmetic operations.

    

 

T(n) = 7T n /2( )
recursive calls

! " # $ # 
+ !(n

2
)

add, subtract

! " # $ # 
" T(n) = !(n

log2 7
) = O(n

2.81
)
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Fast Matrix Multiplication in Practice

Implementation issues.

! Sparsity.

! Caching effects.

! Numerical stability.

! Odd matrix dimensions.

! Crossover to classical algorithm around n = 128.

Common misperception:  "Strassen is only a theoretical curiosity."

! Advanced Computation Group at Apple Computer reports 8x speedup

on G4 Velocity Engine when n ~ 2,500.

! Range of instances where it's useful is a subject of controversy.

Remark.  Can "Strassenize" Ax=b, determinant, eigenvalues, and other

matrix ops.
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Fast Matrix Multiplication in Theory

Q.  Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A.  Yes!   [Strassen, 1969]

Q.  Multiply two 2-by-2 matrices with only 6 scalar multiplications?

A.  Impossible.  [Hopcroft and Kerr, 1971]

Q.  Two 3-by-3 matrices with only 21 scalar multiplications?

A.  Also impossible.

Q.  Two 70-by-70 matrices with only 143,640 scalar multiplications?

A.  Yes!   [Pan, 1980]

Decimal wars.

! December, 1979:  O(n2.521813).

! January, 1980:     O(n2.521801).

  

 

! (n
log3 21) = O(n

2.77
)

  

 

! (n
log70 143640 ) = O(n

2.80
)

  

 

!(n
log2 6) = O(n

2.59
)

  

 

!(n
log2 7 ) = O(n

2.81
)
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Fast Matrix Multiplication in Theory

Best known.  O(n2.376)   [Coppersmith-Winograd, 1987.]

Conjecture.  O(n2+!) for any ! > 0.

Caveat.  Theoretical improvements to Strassen are progressively less

practical.


