

Chapter 6

Dynamic Programming

Slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley All rights reserved.

Algorithm Design Paradigms

- Exhaustive Search
- Greedy Algorithms: Build a solution incrementally piece by piece
- Divide and Conquer: Divide into parts, solve each part, combine results
- Dynamic Programming: Divide into subtasks, perform subtask by size. Combine smaller subtasks to larger ones

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Richard E. Bellman

From Wikipedia, the free encyclopedia

Richard Ernest Bellman (August 26, 1920 - March 19, 1984) was an applied mathematician, celebrated for his invention of dynamic programming in 1953, and important contributions in other fields of mathematics.

Contents [show]

Biography

Bellman was born in 1920 in New York City, where his father John James Bellman ran a small grocery store

Richard E. Bellman

Born August 26, 1920 New York City, New York

Died
March 19, 1984 (aged 63)
Fields \quad Mathematics and Control theory
Alma mater Princeton University
University of Wisconsin-Madison Brooklyn College

Known for
Dynamic programming on Bergen Street near Prospect Park in Brooklyn. Bellman completed his studies at Abraham Lincoln High School in $1937{ }^{[1]}$, and studied mathematics at Brooklyn College where he received a BA in 1941. He later earned an MA from the University of Wisconsin-Madison. During World War II he worked for a Theoretical Physics Division group in Los Alamos. In 1946 he received his Ph.D. at Princeton under the supervision of Solomon Lefschetz. ${ }^{[2]}$

He was a professor at the University of Southern California, a Fellow in the American Academy of Arts and Sciences (1975), and a member of the National Academy of Engineering (1977).
He was awarded the IEEE Medal of Honor in 1979, "for contributions to decision processes and control system theory, particularly the creation and application of dynamic programming". His key work is the Bellman equation.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming (DP): A Simple Example

Problem: Compute the n-th Fibonacci number $1,1,2,3,5,8,13,21, \ldots$
Recursive Solution

```
function Fib1(n)
```

function Fib1(n)
if n = 1 return 1
if n = 1 return 1
if n = 2 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

```
return Fib1(n-1) + Fib1(n-2)
```


Dynamic Programming (DP): A Simple Example

Problem: Compute the n-th Fibonacci number $1,1,2,3,5,8,13,21, \ldots$

Recursive Solution

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)
```

Running time: $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$

Running Time:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-\mathrm{I})+\mathrm{T}(\mathrm{n}-2)+\mathrm{I} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right) \\
& \mathrm{c}^{2}-\mathrm{c}-1=0 \quad c=1.618 \ldots
\end{aligned}
$$

Dynamic Programming (DP): A Simple Example

Problem: Compute the n-th Fibonacci number $1,1,2,3,5,8,13,21, \ldots$

Recursive Solution

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)
```

Running time: $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$

Running Time:

$$
\begin{aligned}
& T(n)=T(n-I)+T(n-2)+I \\
& T(n)=O\left(c^{n}\right) \\
& c^{2}-c-1=0 \quad c=1.618 \ldots
\end{aligned}
$$

Dynamic Programming Solution

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```


Dynamic Programming (DP): A Simple Example

Problem: Compute the n-th Fibonacci number

Recursive Solution

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1 (n-1) + Fib1(n-2)
```

Running time: $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$

Dynamic Programming Solution

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Running time: $\mathrm{O}(\mathrm{n})$

Running Time:

$T(n)=T(n-I)+T(n-2)+I$
$T(n)=O\left(c^{n}\right)$

Running Time:

$T(n)=O(n)$

Why does DP do better?

Problem: Compute the n-th Fibonacci number

Recursive Solution

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)
```

Running time: $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$

Dynamic Programming Solution

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```


Running time: $\mathrm{O}(\mathrm{n})$

Dynamic Programming

Main Steps:

I. Divide the problem into subtasks
2. Define the subtasks recursively (express larger subtasks in terms of smaller ones)
3. Find the right order for solving the subtasks (but do not solve them recursively!)

Dynamic Programming

Dynamic Programming Solution

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Running time: $\mathrm{O}(\mathrm{n})$

Main Steps:

I. Divide the problem into subtasks: compute fib[i]
2. Define the subtasks recursively (express larger subtasks in terms of smaller ones)
3. Find the right order for solving the subtasks ($\mathrm{i}=\mathrm{I}, . ., \mathrm{n}$)

Dynamic Programming

- String Reconstruction

String reconstruction

Given: document $\times[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(w)$: returns true if w is a valid word Is x a sequence of valid words ?

Example:
$x=$ anonymousarrayofletters :True
$x=$ anhuymousarrayofhetters :False

String reconstruction

Given: document $\times[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(w)$: returns true if w is a valid word Is x a sequence of valid words ?

Example:

$x=$ anonymousarrayofletters :True
$x=$ anhuymousarrayofhetters : False
STEP I: Define subtask
$S(k)=$ True \quad if $\times[\mathrm{I} . \mathrm{k}]$ is a valid sequence of words
False otherwise
Output of algorithm $=S(n)$

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

```
Example:
x = anonymousarrayofletters :True
x = anhuymousarrayofhetters :False
```


STEP I: Define subtask

$S(k)=$ True if $\times[I . . k]$ is a valid sequence of words
False otherwise
Output of algorithm $=S(n)$

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . \mathrm{n}]$: an array of characters dictionary function dict(w$)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

				N		M	O	U	S	A	R	R A		O	F	L	E	T	T	E	R	S
		3		4	5	6	7	8	9	10	11	2	31	415	16	17	18	19	20	21	22	
					F	F		F														

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

x		A	N	0	N	Y	M	O	\cup		A		R	R	A	Y	O	F	L	E	T	T	T	E	R	S
k	0	1	2	3	4	5	6	7	8	9	10	10	1	12	13	14	15	16	17	18	19	19	2	21	22	23
s		T	T	T	T	F	F	F	F	T	T	T	F	F	F	T	F	T	F	F	T		F			

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

x		A	N	0	N	Y	M	O	\cup		A		R	R	A	Y	O	F	L	E	E	T	T	E	R	S
k	0	1	2	3	4	5	6	7	8	9	10	10	1	12	13	14	15	16	17	171	8	19	20	21	22	23
s		T	T	T	T	F	F	F	F	T	T	T	F	F	F	T	F	T	F	F	F	T	F	F		

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+I . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(\mathrm{w})$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[1 . . k]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively

$S(k)=$ True iff $\exists j<k$ s.t. $S(j)$ is True, and $x[j+l . . k]$ is a valid word
STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n) [Do not solve recursively!]

String reconstruction

Given: document $\times[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function $\operatorname{dict}(w)$: returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[\mathrm{l} . . \mathrm{k}]$ is a valid sequence of words
False otherwise

STEP 2: Express Recursively $S(k)=$ True iff $\exists \mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $x[j+1 . . k]$ is a valid word

STEP 3: Order of Subtasks
S(I), S(2), S(3), ..., S(n)

```
Algorithm:
S[0] = true
for k = 1 to n:
    S[k] = false
    for j = 1 to k:
        if S[j-1] and dict(x[j..k])
        S[k] = true
```


Reconstructing Document:

Define array $D(I, . . n)$: If $S(k)=$ true, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

x		A	N	O	N	Y	M	O	U	S	A	A	R	R	A	Y	Y		F	L		E	T		T	E	R	S
k		1	2	3	4	5	6	7	8	9		0	11	12	13	14		5	16	6	7	18	19		20	21	22	23
S		T	T	T	T	F	F	F	F	T	T	T	F	F	F	T		F	T	F	F	F	T		F	F	T	T
D		1	1			-	-	-	-				-	-	-			-				-			-	-		

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

x		A	N	O	N	Y	M	O	U	S	A	A	R	R	A	Y			F		L	E	T	T	T	E		R	S
k		1	2	3	4	5	6	7	8	9		0	11	12	13	14		5	16		17	18	1	9	20	2		22	23
S		T	T	T	T	F	F	F	F	T	T	T	F	F	F	T		F	T		F	F	T	T	F	F		T	T
D		1	1	2		-	-	-	-				-	-	-			-			-	-			-	-			

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

x		A	N	O	N	Y	M	O	U	S	A		R	R	A	Y	O	O	F	F	L	E	T	T	E	R	S	
k	0	1	2	3	4	5	6	7	8	9	10		II	12	13	14		5	16	6	17	18	19	20	21	22	23	
S		T	T	T	T	F	F	F	F	T	T		F	F	F	T		F	T	T	F	F	T	F	F	T	T	
D		1	1	2	3	-	-	-	-				-	-	-			-			-	-		-	-			

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

x		A	N	O	N	Y	M	O	U	S	A	R	R	A	Y	O	O	F	L	L	E	T		T	E	R	S	
k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		5	16	6	7	18	19	2	0	21	22	23	
S		T	T	T	T	F	F	F	F	T	T	F	F	F	T		F	T	F	F	F	T	F	F	F	T	T	
D		1	1	2	3	-	-	-	-	1		-	-	-			-				-			-	-			

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

\mathbf{x}	A	N	O	N	Y	M	O	U	S	A	R	R	A	Y	O	F	L	E	T	T	E	R	S	
\mathbf{k}	0	I	2	3	4	5	6	7	8	9	I	II	I 2	I	I	I	I	I	I	I	I	I	I	20

String reconstruction

Given: document $\mathrm{x}[\mathrm{I} . . \mathrm{n}]$: an array of characters dictionary function dict(w): returns true if w is a valid word Is x a sequence of valid words ?

STEP I: Define Subtask

$S(k)=$ True if $x[I . . k]$ is a valid
sequence of words
= False otherwise
STEP 2: Express Recursively
$\mathrm{S}(\mathrm{k})=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

Reconstructing Document:

Define array $\mathrm{D}(\mathrm{I}, . . \mathrm{n})$:
If $S(k)=$ True, then $D(k)=$ starting position of the word that ends at $\times[k]$

Reconstruct text by following these pointers.

STEP 3: Order of Subtasks

$S(1), S(2), S(3), \ldots, S(n)$

\mathbf{x}	A	N	O	N	Y	M	O	U	S	A	R	R	A	Y	O	F	L	E	T	T	E	R	S	
\mathbf{k}	0	I	2	3	4	5	6	7	8	9	I	II	I 2	I	I	I	I	I	I	I	I	I	I	20

How to Write a Dynamic Programming Solution

I. Define the subproblem (in words)
2. Write down recurrence relation

$$
\begin{array}{rlrl}
S(k) & =\text { True } & & \text { if } \times[1 . . k] \text { is a valid } \\
& & \text { sequence of words } \\
& =\text { False } & & \text { otherwise }
\end{array}
$$

$S(k)=$ True iff there is $\mathrm{j}<\mathrm{k}$ s.t. $\mathrm{S}(\mathrm{j})$ is True, and $\mathrm{x}[\mathrm{j}+\mathrm{I} . . \mathrm{k}]$ is a valid word

> Solution: $S(n)$, Base Case: $S(0)=0$, Evaluation Order: $S(I), . ., S(n)$
4. Correctness Proof (by induction)
5. Running time analysis (usually easy, but not always)

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$$
\begin{aligned}
& x=A, C, G, T, A, G \\
& y=G, T, C, C, A, C
\end{aligned} \quad L C S(x, y)=G, T, A
$$

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$x=A, C, G, T, A, G \quad \operatorname{LCS}(x, y)=G, T, A$
$y=G, T, C, C, A, C$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[$ I..i] and $y[I . . j]$
Output of algorithm $=S(n, m)$

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	$\mathbf{1}$	2	3	4	5	6	7	8	9
\mathbf{G}	1									
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$x=A, C, G, T, A, G \quad \operatorname{LCS}(x, y)=G, T, A$
$y=G, T, C, C, A, C \quad$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[$ I..i] and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(i, j)=S(i-I, j-I)+I, i f x[i]=y[j]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	$\mathbf{1}$	2	3	4	5	6	7	8	9
\mathbf{G}	1									
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	1	2	3	4	5	6	7	8	9
\mathbf{G}	1									
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \times[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(\mathrm{i}-\mathrm{I}, \mathrm{j}), \mathrm{S}(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	1	2	3	4	5	6	7	8	9
\mathbf{G}	1	0								
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(\mathrm{i}-\mathrm{I}, \mathrm{j}), \mathrm{S}(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	1	2	3	4	5	6	7	8	9
\mathbf{G}	1	0	0	0						
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	1	2	3	4	5	6	7	8	9
\mathbf{G}	1	0	0	0	I					
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2									
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0							
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I						
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I					
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I			
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2		
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3									
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0							
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I						
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2					
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2	2				
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(\mathrm{i}-1, \mathrm{j}), \mathrm{S}(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2	2	2			
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2	2	2	2		
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2	2	2	2	2	
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

Example:

$\mathrm{x}=\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{G}$
$y=G, T, C, C, A, C \quad \operatorname{LCS}(x, y)=G, T, A$
STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[I . . i]$ and $y[I . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$
$=\max (S(i-I, j), S(i, j-I))$, ow

		\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{G}
	0	I	2	3	4	5	6	7	8	9
\mathbf{G}	I	0	0	0	I	I	I	I	I	I
\mathbf{T}	2	0	0	I	I	I	I	2	2	2
\mathbf{G}	3	0	0	I	2	2	2	2	2	3
\mathbf{A}	4									
\mathbf{C}	5									
\mathbf{A}	6									
\mathbf{G}	7									
\mathbf{T}	8									
\mathbf{T}	9									

STEP 3: Order of subtasks
Row by row, top to bottom

Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$ $=\max (S(i-I, j), S(i, j-I))$, ow

STEP 3: Order of subtasks
Row by row, top to bottom

```
Algorithm:
for \(i=0\) to \(n: S[i, 0]=0\)
for \(j=0\) to \(m: S[0, j]=0\)
for \(i=1\) to \(n\) :
    for \(j=1\) to \(m\) :
        if \(x[i]=y[j]:\)
        S[i,j] =
            S[i-1,j-1] + 1
        else:
        S[i,j] \(=\max \{\)
            S[i-1,j], S[i,j-1]\}
return \(S[n, m]\)
```


Longest Common Subsequence (LCS)

Problem: Given two sequences $x[I . . m]$ and $y[I . . n]$, find their longest common subsequence

STEP I: Define subtasks
$S(i, j)=$ Length of LCS of $x[1 . . i]$ and $y[1 . . j]$
Output of algorithm $=S(n, m)$
STEP 2: Express recursively
$S(\mathrm{i}, \mathrm{j}) \quad=S(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]$ $=\max (S(\mathrm{i}-1, \mathrm{j}), S(\mathrm{i}, \mathrm{j}-\mathrm{I}))$, ow

STEP 3: Order of subtasks
Row by row, top to bottom
Running Time: $\mathrm{O}(\mathrm{mn})$

```
Algorithm:
```

for i = 0 to n: S[i,0] = 0

```
for i = 0 to n: S[i,0] = 0
for j = 0 to m: S[0,j] = 0
for j = 0 to m: S[0,j] = 0
for i = 1 to n:
for i = 1 to n:
    for j = 1 to m:
    for j = 1 to m:
        if x[i] = y[j]:
        if x[i] = y[j]:
        S[i,j] =
        S[i,j] =
            S[i-1,j-1] + 1
            S[i-1,j-1] + 1
        else:
        else:
        S[i,j] = max{
        S[i,j] = max{
            S[i-1,j], S[i,j-1]}
            S[i-1,j], S[i,j-1]}
return S[n,m]
```

```
return S[n,m]
```

```

\section*{Longest Common Subsequence (LCS)}

Problem: Given two sequences \(x[I . . m]\) and \(y[I . . n]\), find their longest common subsequence

\section*{STEP I: Define subtasks}
\(S(i, j)=\) Length of LCS of \(x[1 . . i]\) and \(y[1 . . j]\)
Output of algorithm \(=S(n, m)\)
STEP 2: Express recursively
\(S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]\)
\[
=\max (S(\mathrm{i}-\mathrm{I}, \mathrm{j}), S(\mathrm{i}, \mathrm{j}-\mathrm{I})) \text {, ow }
\]

STEP 3: Order of subtasks
Row by row, top to bottom

\section*{Running Time: \(\mathrm{O}(\mathrm{mn})\)}
```

Algorithm:
for $i=0$ to $n: S[i, 0]=0$
for $j=0$ to $m: S[0, j]=0$
for $i=1$ to n :
for $j=1$ to m :
if $x[i]=y[j]:$
S[i,j] =
S[i-1,j-1] + 1
else:
S[i,j] $=\max \{$
S[i-1,j], S[i,j-1]\}
return $S[n, m]$

```

How to reconstruct the actual subsequence?

\section*{Longest Common Subsequence (LCS)}

Problem: Given two sequences \(x[I . . m]\) and \(y[I . . n]\), find their longest common subsequence

STEP I: Define subtasks
\(S(i, j)=\) Length of LCS of \(x[1 . . i]\) and \(y[1 . . j]\)
Output of algorithm \(=S(n, m)\)
STEP 2: Express recursively
\(S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \mathrm{x}[\mathrm{i}]=y[\mathrm{j}]\)
\[
=\max (S(i-I, j), S(i, j-I)) \text {, ow }
\]

To reconstruct LCS:
Define L(i, j):
\(L(i, j)=(i-I, j-I)\), if \(x[i]=y[j]\)
\[
\begin{array}{ll}
=(i-I, j), & \\
=(i, j-I), & \text { ow if } S(i-I, j)>S(i, j-I) \\
=(i)
\end{array}
\]

Reconstruct LCS by following the \(L(i, j)\) pointers, starting with \(L(m, n)\)

STEP 3: Order of subtasks
Row by row, top to bottom

\section*{Longest Common Subsequence (LCS)}

Problem: Given two sequences \(x[I . . m]\) and \(y[I . . n]\), find their longest common subsequence

STEP I: Define subtasks
\(S(i, j)=\) Length of LCS of \(x[1 . . i]\) and \(y[1 . . j]\)
Output of algorithm \(=S(n, m)\)
STEP 2: Express recursively
\(S(\mathrm{i}, \mathrm{j}) \quad=\mathrm{S}(\mathrm{i}-\mathrm{I}, \mathrm{j}-\mathrm{I})+\mathrm{I}, \mathrm{if} \times[\mathrm{i}]=y[j]\) \(=\max (S(\mathrm{i}-\mathrm{I}, \mathrm{j}), S(\mathrm{i}, \mathrm{j}-\mathrm{I}))\), ow

STEP 3: Order of subtasks
Row by row, top to bottom

To reconstruct LCS:
Define L(i, j):
\(L(i, j)=(i-I, j-I)\), if \(x[i]=y[j]\)
\[
\begin{array}{ll}
=(i-I, j), & \\
=(i, j-I), & \text { ow if } S(i-I, j)>S(i, j-I) \\
=(i)
\end{array}
\]

Reconstruct LCS by following the \(L(i, j)\) pointers, starting with \(L(m, n)\)

Running Time: \(\mathrm{O}(\mathrm{mn})\)

\section*{Dynamic Programming vs Divide and Conquer}

\section*{Divide-and-conquer}

A problem of size n is decomposed into a few subproblems which are significantly smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases geometrically.
eg. \(n, n / 2, n / 4, n / 8\), etc

Use a recursive algorithm.

\section*{Dynamic programming}

A problem of size n is expressed in terms of subproblems that are not much smaller (e.g. n-I, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only polynomially many subproblems.

Avoid recursion and instead solve the subproblems one-by-one, saving the answers in a table, in a clever explicit order.

\section*{DP: Common Subtasks}

Case I: Input: \(x_{1}, x_{2}, . ., x_{n}\) Subproblem: \(x_{1}, \ldots, x_{i}\).
\[
\begin{array}{llllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}
\end{array}
\]

DP: Common Subtasks

Case I: Input: \(x_{1}, x_{2}, . ., x_{n}\) Subproblem: \(x_{1}, \ldots, x_{i}\).
\[
\begin{array}{lllllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}
\end{array}
\]

Case 2: Input: \(x_{1}, x_{2}, . ., x_{n}\) and \(y_{1}, y_{2}, . ., y_{m}\) Subproblem: \(x_{1}, . ., x_{i}\) and \(y_{1}, y_{2}, . ., y_{j}\)
\[
\begin{array}{llllllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & &
\end{array}
\]

\section*{DP: Common Subtasks}

Case I: Input: \(x_{1}, x_{2}, . ., x_{n}\) Subproblem: \(x_{1}, . ., x_{i}\).
\[
\begin{array}{llllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}
\end{array}
\]

Case 2: Input: \(x_{1}, x_{2}, \ldots, x_{n}\) and \(y_{1}, y_{2}, \ldots, y_{m}\) Subproblem: \(x_{1}, . ., x_{i}\) and \(y_{1}, y_{2}, \ldots, y_{j}\)
\[
\begin{array}{llllllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & &
\end{array}
\]

Case 3: Input: \(x_{1}, x_{2}, . ., x_{n}\). Subproblem: \(x_{i}, . ., x_{j}\)
\[
\begin{array}{ll|llllllll}
\mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \mathrm{X}_{6} & \mathrm{X}_{7} & \mathrm{X}_{8} & \mathrm{X}_{9} & \mathrm{X}_{10}
\end{array}
\]

\section*{DP: Common Subtasks}

Case I: Input: \(x_{1}, x_{2}, . ., x_{n}\) Subproblem: \(x_{1}, \ldots, x_{i}\).
\[
\begin{array}{llllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}
\end{array}
\]

Case 2: Input: \(x_{1}, x_{2}, ., x_{n}\) and \(y_{1}, y_{2}, \ldots, y_{m}\) Subproblem: \(x_{1}, \ldots, x_{i}\) and \(y_{1}, y_{2}, \ldots, y_{j}\)
\[
\begin{array}{llllllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & &
\end{array}
\]

Case 3: Input: \(x_{1}, x_{2}, . ., x_{n}\). Subproblem: \(x_{i}, ., x_{j}\)
\[
\begin{array}{lllllllllll}
\mathrm{X}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7} & \mathrm{x}_{8} & \mathrm{x}_{9} & \mathrm{x}_{10}
\end{array}
\]

Case 4: Input: a rooted tree. Subproblem: a subtree


\subsection*{6.1 Weighted Interval Scheduling}

\section*{Weighted Interval Scheduling}

Weighted interval scheduling problem.
- Job \(j\) starts at \(s_{j}\), finishes at \(f_{j}\), and has weight or value \(v_{j}\).
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.


\section*{Unweighted Interval Scheduling Review}

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.


\section*{Weighted Interval Scheduling}

Notation. Label jobs by finishing time: \(f_{1} \leq f_{2} \leq \ldots \leq f_{n}\). Def. \(p(j)=\) largest index \(i<j\) such that \(j o b i\) is compatible with \(j\).

Ex: \(p(8)=5, p(7)=3, p(2)=0\).


\section*{Dynamic Programming: Binary Choice}

Notation. \(\operatorname{OPT}(j)=\) value of optimal solution to the problem consisting of job requests \(1,2, \ldots, j\).
- Case 1: OPT selects job j.
- can't use incompatible jobs \(\{p(j)+1, p(j)+2, \ldots, j-1\}\)
- must include optimal solution to problem consisting of remaining compatible jobs \(1,2, \ldots, p(j)\)
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1
\[
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }\end{cases}
\]

\section*{Weighted Interval Scheduling: Brute Force}

Brute force algorithm.

```

Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
Compute-Opt(j) {
if (j = 0)
return 0
else
return max(v}\mp@subsup{\textrm{j}}{\textrm{j}}{}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
}

```

\section*{Weighted Interval Scheduling: Brute Force}

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow\) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.


\section*{Weighted Interval Scheduling: Memoization}

Memoization. Store results of each sub-problem in a cache; lookup as needed.
```

Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
for j = 1 to n
M[j] = empty }\leftarrow\mathrm{ global array
M[j] = 0
M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w
return M[j]
}

```

\section*{Weighted Interval Scheduling: Running Time}

Claim. Memoized version of algorithm takes \(O(n \log n)\) time.
- Sort by finish time: \(O(n \log n)\).
- Computing \(\mathrm{p}(\cdot): O(n)\) after sorting by start time.
- m-Compute-Opt ( \(j\) ): each invocation takes \(O(1)\) time and either
- (i) returns an existing value \(\mathrm{m}[j]\)
- (ii) fills in one new entry \(\mathrm{m}[j]\) and makes two recursive calls
- Progress measure \(\Phi=\#\) nonempty entries of m[].
- initially \(\Phi=0\), throughout \(\Phi \leq n\).
- (ii) increases \(\Phi\) by \(1 \Rightarrow\) at most \(2 n\) recursive calls.
- Overall running time of \(M\)-Compute-Opt ( \(n\) ) is \(O(n)\). -

Remark. \(O(n)\) if jobs are pre-sorted by start and finish times.

\section*{Weighted Interval Scheduling: Finding a Solution}
Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing.
```

Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
if (j = 0)
output nothing
else if (}\mp@subsup{v}{j}{}+M[p(j)] > M[j-1]
print j
Find-Solution(p(j))
else
Find-Solution(j-1)
}

```
- \# of recursive calls \(\leq n \Rightarrow O(n)\).

\section*{Weighted Interval Scheduling: Bottom-Up}

Bottom-up dynamic programming. Unwind recursion.

```

Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n
M[j] = max (vj + M[p(j)], M[j-1])
}

```

\subsection*{6.3 Segmented Least Squares}

\section*{Segmented Least Squares}

Least squares.
- Foundational problem in statistic and numerical analysis.
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\).
- Find \(a\) line \(y=a x+b\) that minimizes the sum of the squared error:
\[
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
\]


Solution. Calculus \(\Rightarrow\) min error is achieved when
\[
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\]

\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes \(f(x)\).
Q. What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony?
goodness of fit
number of lines


\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes:
- the sum of the sums of the squared errors \(E\) in each segment
- the number of lines \(L\)
- Tradeoff function: \(E+c L\), for some constant \(c>0\).


\section*{Dynamic Programming: Multiway Choice}

Notation.
- OPT \((j)=\) minimum cost for points \(p_{1}, p_{i+1}, \ldots, p_{j}\).
- \(e(i, j)=\) minimum sum of squares for points \(p_{i}, p_{i+1}, \ldots, p_{j}\).

To compute OPT(j):
- Last segment uses points \(p_{i}, p_{i+1}, \ldots, p_{j}\) for some \(i\).
- Cost \(=e(i, j)+c+\operatorname{OPT}(i-1)\).
\[
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
\]

\section*{Segmented Least Squares: Algorithm}
```

INPUT: n, p
Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n
for i = 1 to j
compute the least square error (}\mp@subsup{e}{ij}{}\mathrm{ for
the segment pi,···, p p
for j = 1 to n
M[j] = min}1\leqi\leqj ((i ij +c + M[i-1])
return M[n]
}

```

Running time. \(O\left(n^{3}\right)\). can be improved to \(O\left(n^{2}\right)\) by pre-computing various statistics
- Bottleneck = computing e \((i, j)\) for \(O\left(n^{2}\right)\) pairs, \(O(n)\) per pair using previous formula.```

