
CSE 202
Dynamic Programming

Wednesday, April 23, 14

1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Wednesday, April 23, 14

Algorithm Design Paradigms

• Exhaustive Search

• Greedy Algorithms: Build a solution
incrementally piece by piece

• Divide and Conquer: Divide into parts, solve
each part, combine results

• Dynamic Programming: Divide into
subtasks, perform subtask by size. Combine smaller
subtasks to larger ones

• Hill-climbing: Start with a solution, improve it

Wednesday, April 23, 14

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

! Dynamic programming = planning over time.

! Secretary of Defense was hostile to mathematical research.

! Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Wednesday, April 23, 14

Wednesday, April 23, 14

4

Dynamic Programming Applications

Areas.

! Bioinformatics.

! Control theory.

! Information theory.

! Operations research.

! Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

! Viterbi for hidden Markov models.

! Unix diff for comparing two files.

! Smith-Waterman for sequence alignment.

! Bellman-Ford for shortest path routing in networks.

! Cocke-Kasami-Younger for parsing context free grammars.

Wednesday, April 23, 14

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Dynamic Programming (DP): A
Simple Example

Problem: Compute the n-th Fibonacci number

Recursive Solution Running Time:

T(n) = T(n-1) + T(n-2) + 1

1, 1, 2, 3, 5, 8, 13, 21, ...

Wednesday, April 23, 14

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Dynamic Programming (DP): A
Simple Example

Problem: Compute the n-th Fibonacci number

Recursive Solution Running Time:

T(n) = T(n-1) + T(n-2) + 1

Running time: O(cn)

T(n) = O(cn)

1, 1, 2, 3, 5, 8, 13, 21, ...

c2-c-1=0 c = 1.618...

Wednesday, April 23, 14

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Dynamic Programming (DP): A
Simple Example

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Problem: Compute the n-th Fibonacci number

Recursive Solution

Dynamic Programming Solution

Running Time:

T(n) = T(n-1) + T(n-2) + 1

Running time: O(cn)

T(n) = O(cn)

1, 1, 2, 3, 5, 8, 13, 21, ...

c2-c-1=0 c = 1.618...

Wednesday, April 23, 14

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Dynamic Programming (DP): A
Simple Example

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Problem: Compute the n-th Fibonacci number

Recursive Solution

Dynamic Programming Solution

Running Time:

T(n) = T(n-1) + T(n-2) + 1

Running time: O(cn)

T(n) = O(n)

Running Time:

Running time: O(n)

T(n) = O(cn)

Wednesday, April 23, 14

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Why does DP do better?

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Problem: Compute the n-th Fibonacci number

Recursive Solution

Dynamic Programming Solution

Running time: O(cn)

Running time: O(n)

F(5)

F(4)

F(2)F(3)

F(2) F(1)

F(3)

F(1)F(2)

Recursion Tree

Wednesday, April 23, 14

Dynamic Programming

Main Steps:

1. Divide the problem into subtasks

2. Define the subtasks recursively (express larger subtasks in
terms of smaller ones)

3. Find the right order for solving the subtasks (but do not
solve them recursively!)

Wednesday, April 23, 14

Dynamic Programming

Main Steps:

1. Divide the problem into
subtasks: compute fib[i]

2. Define the subtasks
recursively (express larger
subtasks in terms of smaller
ones)

3. Find the right order for
solving the subtasks (i = 1,..,n)

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Dynamic Programming Solution

Running time: O(n)

Wednesday, April 23, 14

Dynamic Programming

• String Reconstruction

• ...

Wednesday, April 23, 14

String reconstruction

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

Example:
x = anonymousarrayofletters : True
x = anhuymousarrayofhetters : False

Wednesday, April 23, 14

String reconstruction

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

Example:
x = anonymousarrayofletters : True
x = anhuymousarrayofhetters : False

STEP 1: Define subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise
Output of algorithm = S(n)

Wednesday, April 23, 14

String reconstruction

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

Example:
x = anonymousarrayofletters : True
x = anhuymousarrayofhetters : False

STEP 1: Define subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise
Output of algorithm = S(n)

A N O N Y M O U S A R R A Y O F L E T T E R S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F T F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F T F F

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F T F F T

Wednesday, April 23, 14

String reconstruction

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True, and x[j+1..k] is a valid word9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n) [Do not solve recursively!]

T T F F F F T T F F F T F T F F T F F T T

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

9

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True	
 if x[1..k] is a valid

 sequence of words
	
 	
 False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Algorithm:
S[0] = true
for k = 1 to n:
 S[k] = false
 for j = 1 to k:
 if S[j-1] and dict(x[j..k])
 S[k] = true

Define array D(1,..n):
If S(k) = true, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - -D 1

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - -D 11

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - -D 211

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - -D 211 3

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - -D 211 3 1

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - - 17D 171715101013211

Wednesday, April 23, 14

String reconstruction

STEP 2: Express Recursively
S(k) = True iff there is j < k s.t. S(j) is True,
 and x[j+1..k] is a valid word

Given: document x[1..n] : an array of characters
dictionary function dict(w): returns true if w is a valid word

Is x a sequence of valid words ?

STEP 1: Define Subtask
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

STEP 3: Order of Subtasks
S(1), S(2), S(3), ..., S(n)

Define array D(1,..n):
If S(k) = True, then D(k) = starting position
of the word that ends at x[k]

Reconstruct text by following these pointers.

Reconstructing Document:

A N O N Y M O U S A R R A Y O F L E T T E R S
0

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23k

x

S T T T F F F F T T F F F T F T F F T F F T T
- - - - - - - - - - - - 17D 171715101013211

Wednesday, April 23, 14

How to Write a Dynamic
Programming Solution

1. Define the subproblem (in words)
S(k) = True if x[1..k] is a valid

 sequence of words
 = False	
 otherwise

2. Write down recurrence relation
S(k) = True iff there is j < k s.t. S(j) is True,

 and x[j+1..k] is a valid word

3. Base case, Final solution, Order Solution: S(n), Base Case: S(0)=0,

Evaluation Order: S(1),..,S(n)

4. Correctness Proof (by induction)

5. Running time analysis (usually easy, but not always)

See Sample HW Solutions for more examples!
Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2 2 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2 2 2 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2 2 2 2 2

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

Example:
 x = A,C,G, T, A,G
y = G,T, C,C,A,C LCS(x, y) = G,T, A A C T G G C T A G

G
T
G
A
C
A
G
T
T

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8
9

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 2 2 2
0 0 1 2 2 2 2 2 3

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

for i = 0 to n: S[i,0] = 0
for j = 0 to m: S[0,j] = 0
for i = 1 to n:
 for j = 1 to m:
 if x[i] = y[j]:
 S[i,j] =

S[i-1,j-1] + 1
 else:
 S[i,j] = max{

S[i-1,j], S[i,j-1]}
return S[n,m]

Algorithm:
STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

for i = 0 to n: S[i,0] = 0
for j = 0 to m: S[0,j] = 0
for i = 1 to n:
 for j = 1 to m:
 if x[i] = y[j]:
 S[i,j] =

S[i-1,j-1] + 1
 else:
 S[i,j] = max{

S[i-1,j], S[i,j-1]}
return S[n,m]

Algorithm:

Running Time: O(mn)

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

for i = 0 to n: S[i,0] = 0
for j = 0 to m: S[0,j] = 0
for i = 1 to n:
 for j = 1 to m:
 if x[i] = y[j]:
 S[i,j] =

S[i-1,j-1] + 1
 else:
 S[i,j] = max{

S[i-1,j], S[i,j-1]}
return S[n,m]

Algorithm:

Running Time: O(mn)

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

How to reconstruct the actual subsequence?
Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

To reconstruct LCS:
Define L(i, j):
L(i, j) = (i - 1, j - 1), if x[i] = y[j]

= (i - 1, j), ow if S(i-1,j) > S(i, j-1)
= (i, j - 1), ow

Reconstruct LCS by following the L(i,j)
pointers, starting with L(m,n)

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

Wednesday, April 23, 14

Longest Common Subsequence (LCS)

Problem: Given two sequences x[1..m] and y[1..n], find their longest
common subsequence

To reconstruct LCS:
Define L(i, j):
L(i, j) = (i - 1, j - 1), if x[i] = y[j]

= (i - 1, j), ow if S(i-1,j) > S(i, j-1)
= (i, j - 1), ow

Reconstruct LCS by following the L(i,j)
pointers, starting with L(m,n)

Running Time: O(mn)

STEP 1: Define subtasks
S(i,j) = Length of LCS of x[1..i]

and y[1..j]
Output of algorithm = S(n,m)

STEP 2: Express recursively
S(i,j) 	
 =	
S(i-1,j-1) + 1, if x[i] = y[j]
	
 	
 	
 = max(S(i-1,j), S(i,j-1)), ow

STEP 3: Order of subtasks
Row by row, top to bottom

Wednesday, April 23, 14

Dynamic Programming vs Divide and
Conquer

Divide-and-conquer

A problem of size n is decomposed into a
few subproblems which are significantly
smaller (e.g. n/2, 3n/4,...)

Therefore, size of subproblems decreases
geometrically.
eg. n, n/2, n/4, n/8, etc

Use a recursive algorithm.	

Dynamic programming

A problem of size n is expressed in terms
of subproblems that are not much smaller
(e.g. n-1, n-2,...)

A recursive algorithm would take exp. time.

Saving grace: in total, there are only
polynomially many subproblems.

Avoid recursion and instead solve the
subproblems one-by-one, saving the
answers in a table, in a clever explicit order.

Wednesday, April 23, 14

DP: Common Subtasks

Case 1: Input: x1, x2,..,xn Subproblem: x1, .., xi.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Wednesday, April 23, 14

DP: Common Subtasks

Case 1: Input: x1, x2,..,xn Subproblem: x1, .., xi.

Case 2: Input: x1, x2,..,xn and y1, y2,..,ym Subproblem: x1, .., xi and y1, y2,..,yj

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

Wednesday, April 23, 14

DP: Common Subtasks

Case 1: Input: x1, x2,..,xn Subproblem: x1, .., xi.

Case 2: Input: x1, x2,..,xn and y1, y2,..,ym Subproblem: x1, .., xi and y1, y2,..,yj

Case 3: Input: x1, x2,..,xn. Subproblem: xi, .., xj

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Wednesday, April 23, 14

DP: Common Subtasks

Case 1: Input: x1, x2,..,xn Subproblem: x1, .., xi.

Case 2: Input: x1, x2,..,xn and y1, y2,..,ym Subproblem: x1, .., xi and y1, y2,..,yj

Case 3: Input: x1, x2,..,xn. Subproblem: xi, .., xj

Case 4: Input: a rooted tree. Subproblem: a subtree

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Wednesday, April 23, 14

6.1 Weighted Interval Scheduling

Wednesday, April 23, 14

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

! Job j starts at sj, finishes at fj, and has weight or value vj .

! Two jobs compatible if they don't overlap.

! Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Wednesday, April 23, 14

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

! Consider jobs in ascending order of finish time.

! Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

Wednesday, April 23, 14

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ! f2 ! . . . ! fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Wednesday, April 23, 14

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

! Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

! Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j !1){ } otherwise

"

$

optimal substructure

Wednesday, April 23, 14

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

 if (j = 0)

 return 0

 else

 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Wednesday, April 23, 14

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems ! exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Wednesday, April 23, 14

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

 M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

 if (M[j] is empty)

 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

 return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

Wednesday, April 23, 14

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

! Sort by finish time: O(n log n).

! Computing p(!) : O(n) after sorting by start time.

! M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

! Progress measure " = # nonempty entries of M[].

– initially " = 0, throughout " # n.

– (ii) increases " by 1 $ at most 2n recursive calls.

! Overall running time of M-Compute-Opt(n) is O(n). !

Remark. O(n) if jobs are pre-sorted by start and finish times.

Wednesday, April 23, 14

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

! # of recursive calls ! n " O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

 if (j = 0)

 output nothing

 else if (vj + M[p(j)] > M[j-1])

 print j

 Find-Solution(p(j))

 else

 Find-Solution(j-1)

}

Wednesday, April 23, 14

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

 M[0] = 0

 for j = 1 to n

 M[j] = max(vj + M[p(j)], M[j-1])

}

Wednesday, April 23, 14

6.3 Segmented Least Squares

Wednesday, April 23, 14

17

Segmented Least Squares

Least squares.

! Foundational problem in statistic and numerical analysis.

! Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

! Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ! min error is achieved when

SSE = (yi ! axi !b)2

i=1

n

"

a =
n xi yi ! (xi)i" (yi)i"i"

n xi
2
! (xi)

2

i"i"
, b =

yi ! a xii"i"

n

x

y

Wednesday, April 23, 14

18

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

Wednesday, April 23, 14

19

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

! Tradeoff function: E + c L, for some constant c > 0.

x

y

Wednesday, April 23, 14

20

Dynamic Programming: Multiway Choice

Notation.

! OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

! e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

! Last segment uses points pi, pi+1 , . . . , pj for some i.

! Cost = e(i, j) + c + OPT(i-1).

OPT(j) =
0 if j = 0

min
1! i ! j

e(i, j) + c + OPT(i "1){ } otherwise

$
%

& %

Wednesday, April 23, 14

21

Segmented Least Squares: Algorithm

Running time. O(n3).

! Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

 M[0] = 0

 for j = 1 to n

 for i = 1 to j

 compute the least square error eij for

 the segment pi,…, pj

 for j = 1 to n

 M[j] = min 1 ! i ! j (eij + c + M[i-1])

 return M[n]

}

can be improved to O(n2) by pre-computing various statistics

Wednesday, April 23, 14

