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Algorithmic Paradigms

Greed.  Build up a solution incrementally, optimizing some local

criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming.  Break up a problem into a series of sub-

problems, and build up solutions to larger and larger sub-problems,

using the overlaps of sub-problems.



6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.

! Job j starts at sj, finishes at fj, and has weight or value vj .

! Two jobs compatible if they don't overlap.

! Goal:  find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  !  f2  ! . . . ! fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

! Case 1:  OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  p(j)

! Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  j-1

  

 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j !1){ } otherwise

" 
# 
$ 

optimal substructure
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

   if (j = 0)

      return 0

   else

      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of

redundant sub-problems  !  exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

   M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

   if (M[j] is empty)

      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

   return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache; lookup as

needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

! Sort by finish time:  O(n log n).

! Computing p(!) :  O(n) after sorting by start time.

! M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

! Progress measure " = # nonempty entries of M[].

– initially " = 0,  throughout " # n.

– (ii) increases " by 1  $  at most 2n recursive calls.

! Overall running time of M-Compute-Opt(n) is O(n).   !

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.  What if

we want the solution itself?

A.  Do some post-processing.

! # of recursive calls ! n  "  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

   if (j = 0)

      output nothing

   else if (vj + M[p(j)] > M[j-1])

      print j

      Find-Solution(p(j))

   else

      Find-Solution(j-1)

}



15

Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

   M[0] = 0

   for j = 1 to n

      M[j] = max(vj + M[p(j)], M[j-1])

}



6.3  Segmented Least Squares
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Segmented Least Squares

Least squares.

! Foundational problem in statistic and numerical analysis.

! Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

! Find a line y = ax + b that minimizes the sum of the squared error:

Solution.  Calculus  !  min error is achieved when

  

 

SSE = (yi ! axi !b)2

i=1

n

"

  

 

a =
n xi yi ! ( xi )i" ( yi )i"i"

n xi
2
! ( xi )

2

i"i"
, b =

yi ! a xii"i"

n

x

y
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Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and

parsimony?
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Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

! Tradeoff function:  E + c L, for some constant c > 0.
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Dynamic Programming:  Multiway Choice

Notation.

! OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

! e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

! Last segment uses points pi, pi+1 , . . . , pj for some i.

! Cost = e(i, j) + c + OPT(i-1).

  

 

OPT( j) =
0 if  j = 0

min
1! i ! j

e(i, j) + c + OPT(i "1){ } otherwise
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Segmented Least Squares:  Algorithm

Running time.  O(n3).

! Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

   M[0] = 0

   for j = 1 to n

      for i = 1 to j

         compute the least square error eij for

         the segment pi,…, pj

   for j = 1 to n

      M[j] = min 1 ! i ! j (eij + c + M[i-1])

   return M[n]

}

can be improved to O(n2) by pre-computing various statistics



6.4  Knapsack Problem
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Knapsack Problem

Knapsack problem.

! Given n objects and a "knapsack."

! Item i weighs wi  > 0 kilograms and has value vi > 0.

! Knapsack has capacity of W kilograms.

! Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.

Ex:  { 5, 2, 1 } achieves only value = 35  !  greedy not optimal.
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

! Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 }

! Case 2:  OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

! Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w

! Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

 

OPT(i, w) =

0 if  i = 0

OPT(i !1, w) if  wi > w

max OPT(i !1, w), v
i

+ OPT(i !1, w!w
i
){ } otherwise

" 

# 
$ 

% 
$ 
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Input: n, w1,…,wN, v1,…,vN

for w = 0 to W

   M[0, w] = 0

for i = 1 to n

   for w = 1 to W

      if (wi > w)

         M[i, w] = M[i-1, w]

      else

         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm

n + 1
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Knapsack Problem:  Running Time

Running time.  !(n W).

! Not polynomial in input size!

! "Pseudo-polynomial."

! Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a polynomial algorithm

that produces a feasible solution that has value within 0.01% of

optimum.  [Section 11.8]



6.5  RNA Secondary Structure
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RNA Secondary Structure

RNA.  String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back

and form base pairs with itself. This structure is essential for

understanding behavior of molecule.
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G
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RNA Secondary Structure

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:

! [Watson-Crick.]  S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

! [No sharp turns.]  The ends of each pair are separated by at least 4

intervening bases.  If (bi, bj) ! S, then i < j - 4.

! [Non-crossing.]  If (bi, bj)  and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy.  Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.

Goal.  Given an RNA molecule B = b1b2…bn, find a secondary structure S

that maximizes the number of base pairs.

approximate by number of base pairs
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RNA Secondary Structure:  Examples

Examples.
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RNA Secondary Structure:  Subproblems

First attempt.  OPT(j) = maximum number of base pairs in a secondary

structure of the substring  b1b2…bj.

Difficulty.  Results in two sub-problems.

! Finding secondary structure in: b1b2…bt-1.

! Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems
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Dynamic Programming Over Intervals

Notation.  OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring  bibi+1…bj.

! Case 1.  If i ! j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

! Case 2.  Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

! Case 3.  Base bj pairs with bt for some i " t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark.  Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i " t < j-4 and
bt and bj are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q.  What order to solve the sub-problems?

A.  Do shortest intervals first.

Running time.  O(n3).

RNA(b1,…,bn) {

   for k = 5, 6, …, n-1

      for i = 1, 2, …, n-k

         j = i + k

         Compute M[i, j]

   return M[1, n]

}
using recurrence
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Dynamic Programming Summary

Recipe.

! Characterize structure of problem.

! Recursively define value of optimal solution.

! Compute value of optimal solution.

! Construct optimal solution from computed information.

Dynamic programming techniques.

! Binary choice:  weighted interval scheduling.

! Multi-way choice:  segmented least squares.

! Adding a new variable:  knapsack.

! Dynamic programming over intervals:  RNA secondary structure.

Top-down vs. bottom-up:  different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure



6.6  Sequence Alignment
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String Similarity

How similar are two strings?

! ocurrance

! occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.

! Basis for Unix diff.

! Speech recognition.

! Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

! Gap penalty !; mismatch penalty "pq.

! Cost = sum of gap and mismatch penalties.

2! + "CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

"TC + "GT + "AG+ 2"CA

-

Edit Distance
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex:  CTACCG vs. TACATG.

Sol:  M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

    

 

cost( M ) = !xi y j

(xi, y j ) " M

#

mismatch

! " # $ # 

+ $
i : xi unmatched

# + $
j : y j unmatched

#

gap

! " # # # # # $ # # # # # 

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

! Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj  + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

! Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

! Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

  

 

OPT(i, j) =

! 

" 

# 

# # 

$ 

# 

# 
# 

j% if  i = 0

min  

&xi y j
+ OPT(i '1, j '1)

% + OPT(i '1, j)

% + OPT(i, j '1)

! 

" 
# 

$ 
# 

otherwise

i% if  j = 0
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Sequence Alignment:  Algorithm

Analysis.  !(mn) time and space.

English words or sentences:  m, n  " 10.

Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, #, $) {

   for i = 0 to m

      M[0, i] = i#

   for j = 0 to n

      M[j, 0] = j#

   for i = 1 to m

      for j = 1 to n

         M[i, j] = min($[xi, yj] + M[i-1, j-1],

                       # + M[i-1, j],

                       # + M[i, j-1])

   return M[m, n]

}



6.7  Sequence Alignment in Linear Space
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

! Compute OPT(i, •) from OPT(i-1, •).

! No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

! Clever combination of divide-and-conquer and dynamic programming.

! Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

! Let f(i, j) be shortest path from (0,0) to (i, j).

! Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

"

"

  

 

!xi y j
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Edit distance graph.

! Let f(i, j) be shortest path from (0,0) to (i, j).

! Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

j
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Edit distance graph.

! Let g(i, j) be shortest path from (i, j) to (m, n).

! Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

"

"

  

 

!xi y j
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Edit distance graph.

! Let g(i, j) be shortest path from (i, j) to (m, n).

! Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

n / 2

q
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

! Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

q

n / 2

m-n
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Theorem.  Let T(m, n) = max running time of algorithm on strings of

length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup

 

T (m, n)  !  2T (m, n /2)  +  O(mn)   "   T (m, n)  =  O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)

! O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.

! T(q, n/2) + T(m - q, n/2) time for two recursive calls.

! Choose constant c so that:

! Base cases: m = 2 or n = 2.

! Inductive hypothesis:  T(m, n) !  2cmn.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=

+!+=

+!+"

+!+"

  

 

T(m, 2) ! cm

T(2, n) ! cn

T(m, n) ! cmn + T(q, n /2) + T(m" q, n /2)


