
CSE 202
Dynamic Programming II

1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Algorithmic Paradigms

Greed. Build up a solution incrementally, optimizing some local

criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming. Break up a problem into a series of sub-

problems, and build up solutions to larger and larger sub-problems,

using the overlaps of sub-problems.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

! Job j starts at sj, finishes at fj, and has weight or value vj .

! Two jobs compatible if they don't overlap.

! Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ! f2 ! . . . ! fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

! Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

! Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j !1){ } otherwise

"

$

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

 if (j = 0)

 return 0

 else

 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems ! exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

 M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

 if (M[j] is empty)

 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

 return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

! Sort by finish time: O(n log n).

! Computing p(!) : O(n) after sorting by start time.

! M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

! Progress measure " = # nonempty entries of M[].

– initially " = 0, throughout " # n.

– (ii) increases " by 1 $ at most 2n recursive calls.

! Overall running time of M-Compute-Opt(n) is O(n). !

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

! # of recursive calls ! n " O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

 if (j = 0)

 output nothing

 else if (vj + M[p(j)] > M[j-1])

 print j

 Find-Solution(p(j))

 else

 Find-Solution(j-1)

}

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

 M[0] = 0

 for j = 1 to n

 M[j] = max(vj + M[p(j)], M[j-1])

}

6.3 Segmented Least Squares

17

Segmented Least Squares

Least squares.

! Foundational problem in statistic and numerical analysis.

! Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

! Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ! min error is achieved when

SSE = (yi ! axi !b)2

i=1

n

"

a =
n xi yi ! (xi)i" (yi)i"i"

n xi
2
! (xi)

2

i"i"
, b =

yi ! a xii"i"

n

x

y

18

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

! Tradeoff function: E + c L, for some constant c > 0.

x

y

20

Dynamic Programming: Multiway Choice

Notation.

! OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

! e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

! Last segment uses points pi, pi+1 , . . . , pj for some i.

! Cost = e(i, j) + c + OPT(i-1).

OPT(j) =
0 if j = 0

min
1! i ! j

e(i, j) + c + OPT(i "1){ } otherwise

$
%

& %

21

Segmented Least Squares: Algorithm

Running time. O(n3).

! Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

 M[0] = 0

 for j = 1 to n

 for i = 1 to j

 compute the least square error eij for

 the segment pi,…, pj

 for j = 1 to n

 M[j] = min 1 ! i ! j (eij + c + M[i-1])

 return M[n]

}

can be improved to O(n2) by pre-computing various statistics

6.4 Knapsack Problem

23

Knapsack Problem

Knapsack problem.

! Given n objects and a "knapsack."

! Item i weighs wi > 0 kilograms and has value vi > 0.

! Knapsack has capacity of W kilograms.

! Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35 ! greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

24

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

! Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 }

! Case 2: OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion. Need more sub-problems!

25

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

! Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w

! Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT(i, w) =

0 if i = 0

OPT(i !1, w) if wi > w

max OPT(i !1, w), v
i

+ OPT(i !1, w!w
i
){ } otherwise

"

$

%
$

26

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W

 M[0, w] = 0

for i = 1 to n

 for w = 1 to W

 if (wi > w)

 M[i, w] = M[i-1, w]

 else

 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

27

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

!

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

28

Knapsack Problem: Running Time

Running time. !(n W).

! Not polynomial in input size!

! "Pseudo-polynomial."

! Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm

that produces a feasible solution that has value within 0.01% of

optimum. [Section 11.8]

6.5 RNA Secondary Structure

30

RNA Secondary Structure

RNA. String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back

and form base pairs with itself. This structure is essential for

understanding behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

31

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:

! [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

! [No sharp turns.] The ends of each pair are separated by at least 4

intervening bases. If (bi, bj) ! S, then i < j - 4.

! [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2…bn, find a secondary structure S

that maximizes the number of base pairs.

approximate by number of base pairs

32

RNA Secondary Structure: Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G

!4

base pair

33

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring b1b2…bj.

Difficulty. Results in two sub-problems.

! Finding secondary structure in: b1b2…bt-1.

! Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

34

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bibi+1…bj.

! Case 1. If i ! j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

! Case 2. Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

! Case 3. Base bj pairs with bt for some i " t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i " t < j-4 and
bt and bj are Watson-Crick complements

35

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

Running time. O(n3).

RNA(b1,…,bn) {

 for k = 5, 6, …, n-1

 for i = 1, 2, …, n-k

 j = i + k

 Compute M[i, j]

 return M[1, n]

}
using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

36

Dynamic Programming Summary

Recipe.

! Characterize structure of problem.

! Recursively define value of optimal solution.

! Compute value of optimal solution.

! Construct optimal solution from computed information.

Dynamic programming techniques.

! Binary choice: weighted interval scheduling.

! Multi-way choice: segmented least squares.

! Adding a new variable: knapsack.

! Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6 Sequence Alignment

38

String Similarity

How similar are two strings?

! ocurrance

! occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

39

Applications.

! Basis for Unix diff.

! Speech recognition.

! Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

! Gap penalty !; mismatch penalty "pq.

! Cost = sum of gap and mismatch penalties.

2! + "CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

"TC + "GT + "AG+ 2"CA

-

Edit Distance

40

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

cost(M) = !xi y j

(xi, y j) " M

#

mismatch

! " # $ #

+ $
i : xi unmatched

+ $
j : y j unmatched

#

gap

! " # # # # # $ # # # # #

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

41

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

! Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

! Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

! Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT(i, j) =

!

"

$

j% if i = 0

min

&xi y j
+ OPT(i '1, j '1)

% + OPT(i '1, j)

% + OPT(i, j '1)

!

"

$

otherwise

i% if j = 0

42

Sequence Alignment: Algorithm

Analysis. !(mn) time and space.

English words or sentences: m, n " 10.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, #, $) {

 for i = 0 to m

 M[0, i] = i#

 for j = 0 to n

 M[j, 0] = j#

 for i = 1 to m

 for j = 1 to n

 M[i, j] = min($[xi, yj] + M[i-1, j-1],

 # + M[i-1, j],

 # + M[i, j-1])

 return M[m, n]

}

6.7 Sequence Alignment in Linear Space

44

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

! Compute OPT(i, •) from OPT(i-1, •).

! No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

! Clever combination of divide-and-conquer and dynamic programming.

! Inspired by idea of Savitch from complexity theory.

45

Edit distance graph.

! Let f(i, j) be shortest path from (0,0) to (i, j).

! Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

"

"

!xi y j

46

Edit distance graph.

! Let f(i, j) be shortest path from (0,0) to (i, j).

! Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

j

47

Edit distance graph.

! Let g(i, j) be shortest path from (i, j) to (m, n).

! Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

"

"

!xi y j

48

Edit distance graph.

! Let g(i, j) be shortest path from (i, j) to (m, n).

! Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

j

49

Observation 1. The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

50

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

n / 2

q

51

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

! Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

!

!

0-0

q

n / 2

m-n

52

Theorem. Let T(m, n) = max running time of algorithm on strings of

length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

T (m, n) ! 2T (m, n /2) + O(mn) " T (m, n) = O(mn logn)

53

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

! O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.

! T(q, n/2) + T(m - q, n/2) time for two recursive calls.

! Choose constant c so that:

! Base cases: m = 2 or n = 2.

! Inductive hypothesis: T(m, n) ! 2cmn.

Sequence Alignment: Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=

+!+=

+!+"

+!+"

T(m, 2) ! cm

T(2, n) ! cn

T(m, n) ! cmn + T(q, n /2) + T(m" q, n /2)

