
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

Copyright © 2013 Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:54 AM

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

2

Randomization

Algorithmic design patterns.

・Greedy.

・Divide-and-conquer.

・Dynamic programming.

・Network flow.

・Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for

a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,

load balancing, Monte Carlo integration, cryptography.

in practice, access to a pseudo-random number generator

SECTION 13.1

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

4

Contention resolution in a distributed system

Contention resolution. Given n processes P1, …, Pn, each competing for

access to a shared database. If two or more processes access the database

simultaneously, all processes are locked out. Devise protocol to ensure all

processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.

5

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with

probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at

time t. Then 1 / (e ⋅ n) ≤ Pr [S(i, t)] ≤ 1/(2n).

Pf. By independence, Pr [S(i, t)] = p (1 – p) n – 1.

・Setting p = 1/n, we have Pr [S(i, t)] = 1/n (1 – 1/n) n – 1. ▪

Useful facts from calculus. As n increases from 2, the function:

・(1 – 1/n) n -1 converges monotonically from 1/4 up to 1 / e.

・(1 – 1/n) n – 1 converges monotonically from 1/2 down to 1 / e.

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Claim. The probability that process i fails to access the database in

en rounds is at most 1 / e. After e ⋅ n (c ln n) rounds, the probability ≤ n -c.

Pf. Let F[i, t] = event that process i fails to access database in rounds 1

through t. By independence and previous claim, we have

Pr [F[i, t]] ≤ (1 – 1/(en)) t.

・Choose t = ⎡e ⋅ n⎤:

・Choose t = ⎡e ⋅ n⎤ ⎡c ln n⎤:

6

Contention Resolution: randomized protocol

€

Pr[F(i, t)] ≤ 1− 1
en() en⎡ ⎤ ≤ 1− 1

en()en ≤ 1
e

€

Pr[F(i, t)] ≤ 1
e() c ln n = n−c

7

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within 2e ⋅ n ln n rounds

is ≥ 1 – 1 / n.

Pf. Let F[t] = event that at least one of the n processes fails to access

database in any of the rounds 1 through t.

・Choosing t = 2 ⎡en⎤ ⎡c ln n⎤ yields Pr[F[t]] ≤ n · n-2 = 1 / n. ▪

 Union bound. Given events E1, …, En,

€

Pr Ei
i=1

n

⎡
⎣ ⎢

⎤
⎦ ⎥
 ≤ Pr[Ei]

i=1

n
∑

€

Pr F [t][] = Pr F [i, t]
i=1

n

⎡
⎣ ⎢

⎤
⎦ ⎥
 ≤ Pr[F [i, t]]

i=1

n
∑ ≤ n 1− 1

en() t

union bound previous slide

SECTION 13.2

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

9

Global minimum cut

Global min cut. Given a connected, undirected graph G = (V, E),
find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related

documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

・Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).

・Pick some vertex s and compute min s- v cut separating s from each

other vertex v ∈ V.

False intuition. Global min-cut is harder than min s-t cut.

10

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).

u v w
⇒

contract u-v

a b c

e

f

ca b

f

d

11

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).

Reference: Thore Husfeldt

12

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2 / n2.

Pf. Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k = | F* | = size of min cut.

・In first step, algorithm contracts an edge in F* probability k / | E |.

・Every node has degree ≥ k since otherwise (A*, B*) would not be

a min-cut ⇒ | E | ≥ ½ k n.

・Thus, algorithm contracts an edge in F* with probability ≤ 2 / n.

A* B*

F*

13

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2 / n2.

Pf. Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k = | F* | = size of min cut.

・Let G' be graph after j iterations. There are n' = n – j supernodes.

・Suppose no edge in F* has been contracted. The min-cut in G' is still k.

・Since value of min-cut is k, | E' | ≥ ½ k n'.

・Thus, algorithm contracts an edge in F* with probability ≤ 2 / n'.

・Let Ej = event that an edge in F* is not contracted in iteration j.

€

Pr[E1 ∩E2∩ En−2] = Pr[E1] × Pr[E2 | E1] ×  × Pr[En−2 | E1∩ E2∩ En−3]
≥ 1− 2

n() 1− 2
n−1() 1− 2

4() 1− 2
3()

= n−2
n() n−3

n−1()  2
4() 1

3()
= 2

n(n−1)

≥ 2
n2

14

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.

Claim. If we repeat the contraction algorithm n2 ln n times,

then the probability of failing to find the global min-cut is ≤ 1 / n2.

Pf. By independence, the probability of failure is at most

€

1− 2
n2

⎛
⎝
⎜

⎞
⎠
⎟
n2 lnn

= 1− 2
n2

⎛
⎝
⎜

⎞
⎠
⎟

1
2n

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2lnn

≤ e−1()
2lnn

= 1
n2

(1 – 1/x)x ≤ 1/e

 with independent random choices,

15

Contraction algorithm: example execution

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

16

Global min cut: context

Remark. Overall running time is slow since we perform Θ(n2 log n) iterations

and each takes Ω(m) time.

Improvement. [Karger-Stein 1996] O(n2 log3 n).

・Early iterations are less risky than later ones: probability of contracting

an edge in min cut hits 50% when n / √2 nodes remain.

・Run contraction algorithm until n / √2 nodes remain.

・Run contraction algorithm twice on resulting graph and

return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3 n).

faster than best known max flow algorithm or
deterministic global min cut algorithm

SECTION 13.3

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

18

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]
is defined by:

Waiting for a first success. Coin is heads with probability p and tails with

probability 1– p. How many independent flips X until first heads?
€

E[X] = j Pr[X = j]
j=0

∞
∑

€

E[X] = j ⋅ Pr[X = j]
j=0

∞
∑ = j (1− p) j−1 p

j=0

∞
∑ =

p
1− p

j (1− p) j
j=0

∞
∑ =

p
1− p

⋅
1− p
p2

=
1
p

j –1 tails 1 head

19

Expectation: two properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf.

Linearity of expectation. Given two random variables X and Y defined over

the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

€

E[X] = j ⋅ Pr[X = j]
j=0

∞
∑ = j ⋅ Pr[X = j]

j=0

1
∑ = Pr[X =1]

not necessarily independent

20

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;

try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's

been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

・Let Xi = 1 if ith prediction is correct and 0 otherwise.

・Let X = number of correct guesses = X1 + … + Xn.

・E[Xi] = Pr[Xi = 1] = 1 / n.

・E[X] = E[X1] + … + E[Xn] = 1 / n + … + 1 / n = 1. ▪

linearity of expectation

21

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;

try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards

not yet seen.

Claim. The expected number of correct guesses is Θ(log n).
Pf.

・Let Xi = 1 if ith prediction is correct and 0 otherwise.

・Let X = number of correct guesses = X1 + … + Xn.

・E[Xi] = Pr[Xi = 1] = 1 / (n – i – 1).

・E[X] = E[X1] + … + E[Xn] = 1 / n + … + 1 / 2 + 1 / 1 = H(n). ▪

ln(n+1) < H(n) < 1 + ln nlinearity of expectation

22

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n

different types of coupons. Assuming all boxes are equally likely to contain

each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is Θ(n log n).
Pf.

・Phase j = time between j and j + 1 distinct coupons.

・Let Xj = number of steps you spend in phase j.

・Let X = number of steps in total = X0 + X1 + … + Xn–1.

€

E[X] = E[X j]
j=0

n−1
∑ =

n
n− jj=0

n−1
∑ = n 1

ii=1

n
∑ = nH (n)

prob of success = (n – j) / n

⇒ expected waiting time = n / (n – j)

SECTION 13.9

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

44

Chernoff Bounds (above mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables. Let X =

X1 + … + Xn. Then for any µ ≥ E[X] and for any δ > 0, we have

Pf. We apply a number of simple transformations.

・For any t > 0,

・Now

sum of independent 0-1 random variables
is tightly centered on the mean

€

Pr[X > (1+δ)µ] = Pr et X > et(1+δ)µ[] ≤ e−t(1+δ)µ ⋅E[etX]

f(x) = etX is monotone in x Markov's inequality: Pr[X > a] ≤ E[X] / a

€

E[etX] = E[e t Xii∑] = E[et Xi]i∏

definition of X independence

45

Chernoff Bounds (above mean)

Pf. [continued]

・Let pi = Pr [Xi = 1]. Then,

・Combining everything:

・Finally, choose t = ln(1 + δ). ▪

€

Pr[X > (1+δ)µ] ≤ e−t(1+δ)µ E[e t Xi]i∏ ≤ e−t(1+δ)µ epi (e
t−1)

i∏ ≤ e−t(1+δ)µ eµ(et−1)

for any α ≥ 0, 1+α ≤ e α

previous slide inequality above ∑i pi = E[X] ≤ µ

46

Chernoff Bounds (below mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables.

Let X = X1 + … + Xn. Then for any µ ≤ E [X] and for any 0 < δ < 1, we have

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider δ < 1.

SECTION 13.10

13. RANDOMIZED ALGORITHMS

‣ content resolution

‣ global min cut

‣ linearity of expectation

‣ max 3-satisfiability

‣ universal hashing

‣ Chernoff bounds

‣ load balancing

48

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be

processed immediately on m identical processors. Find an assignment that

balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor

receives at most ⎡ m / n ⎤ jobs.

Decentralized controller. Assign jobs to processors uniformly at random.

How likely is it that some processor is assigned "too many" jobs?

Analysis.

・Let Xi = number of jobs assigned to processor i.

・Let Yij = 1 if job j assigned to processor i, and 0 otherwise.

・We have E[Yij] = 1/n.

・Thus, Xi = ∑j Yi j , and μ = E[Xi] = 1.

・Applying Chernoff bounds with δ = c – 1 yields

・Let γ(n) be number x such that xx = n, and choose c = e γ(n).

・Union bound ⇒ with probability ≥ 1 – 1/n no processor receives more

than e γ(n) = Θ(log n / log log n) jobs.

49

Load balancing

Bonus fact: with high probability,
some processor receives Θ(logn / log log n) jobs

50

Load balancing: many jobs

Theorem. Suppose the number of jobs m = 16 n ln n. Then on average,

each of the n processors handles μ = 16 ln n jobs. With high probability,

every processor will have between half and twice the average load.

Pf.

・Let Xi , Yij be as before.

・Applying Chernoff bounds with δ = 1 yields

・Union bound ⇒ every processor has load between half and

twice the average with probability ≥ 1 – 2/n. ▪

€

Pr[Xi < 1
2µ] < e−

1
2

1
2()2 (16n lnn)

=
1
n2

