13. Randomized Algorithms

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
13. RANDOMIZED ALGORITHMS

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Contestion resolution in a distributed system

Contestion resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t] = \text{event that process } i \text{ succeeds in accessing the database at time } t$. Then $1 / (e \cdot n) \leq \Pr [S(i, t)] \leq 1/(2n)$.

Pf. By independence, $\Pr [S(i, t)] = p (1 - p)^{n-1}$.

- Setting $p = 1/n$, we have $\Pr [S(i, t)] = 1/n (1 - 1/n)^{n-1}$. □

Useful facts from calculus. As n increases from 2, the function:

- $(1 - 1/n)^{n-1}$ converges monotonically from $1/4$ up to $1/e$.
- $(1 - 1/n)^{n-1}$ converges monotonically from $1/2$ down to $1/e$.
Contention Resolution: randomized protocol

Claim. The probability that process i fails to access the database in\en rounds is at most $1/e$. After $e \cdot n (c \ln n)$ rounds, the probability $\leq n^{-c}$.

Pf. Let $F[i, t] =$ event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have

$$\Pr[F[i, t]] \leq (1 - 1/(en))^t.$$

- Choose $t = [e \cdot n]$:

 $$\Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^{en} \leq \left(1 - \frac{1}{en}\right)^{en} \leq \frac{1}{e}$$

- Choose $t = [e \cdot n] \lfloor c \ln n \rfloor$:

 $$\Pr[F(i, t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$$
Contestation Resolution: randomized protocol

Claim. The probability that all processes succeed within \(2e \cdot n \ln n\) rounds is \(\geq 1 - 1/n\).

\[
\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t]\right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t
\]

union bound

previous slide

• Choosing \(t = 2 \left\lceil en \right\rceil [c \ln n]\) yields \(\Pr[F[t]] \leq n \cdot n^{-2} = 1/n\). □

Union bound. Given events \(E_1, \ldots, E_n\),

\[
\Pr\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} \Pr[E_i]
\]
Section 13.2

13. Randomized Algorithms

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Global minimum cut

Global min cut. Given a connected, undirected graph $G = (V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.
Contraction algorithm

Contraction algorithm. [Karger 1995]

• Pick an edge $e = (u, v)$ uniformly at random.
• **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
• Repeat until graph has just two nodes v_1 and v_1.
• Return the cut (all nodes that were contracted to form v_1).
Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_1.
- Return the cut (all nodes that were contracted to form v_1).

Reference: Thore Husfeldt
Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = $ size of min cut.
- In **first step**, algorithm contracts an edge in F^* probability $k / |E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq \frac{1}{2} k n$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n$.

![Diagram showing min-cut](image)
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = \text{size of min cut}$.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \geq \frac{1}{2} k n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n'$.
- Let $E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j$.

\[
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\
\geq (1 - \frac{2}{n}) (1 - \frac{2}{n-1}) \cdots (1 - \frac{2}{4}) \left(1 - \frac{2}{3}\right) \\
= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\
= \frac{2}{n(n-1)} \\
\leq \frac{2}{n^2}
\]
Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1 / n^2$.

Pf. By independence, the probability of failure is at most

$$
\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2 \ln n} \leq \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}
$$

\[
(1 - 1/x)^x \leq 1/e
\]
Contraction algorithm: example execution

Reference: Thore Husfeldt
Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

faster than best known max flow algorithm or deterministic global min cut algorithm
13. RANDOMIZED ALGORITHMS

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j \cdot (1-p)^{j-1} \cdot p = \frac{p}{1-p} \sum_{j=0}^{\infty} j \cdot (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$$

- $j-1$ tails
- 1 head
Expectation: two properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf.
\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Benefit. Decouples a complex calculation into simpler pieces.
Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$. □

↑ linearity of expectation
Guessing cards

Game. Shuffle a deck of \(n \) cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is \(\Theta(\log n) \).

Pf.

- Let \(X_i = 1 \) if \(i^{th} \) prediction is correct and 0 otherwise.
- Let \(X = \) number of correct guesses = \(X_1 + \ldots + X_n \).
- \(E[X_i] = \Pr[X_i = 1] = 1 / (n - i - 1) \).
- \(E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n) \).

\[\ln(n+1) < H(n) < 1 + \ln n \]

linearity of expectation
Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

Pf.

- Phase \(j \) = time between \(j \) and \(j + 1 \) distinct coupons.
- Let \(X_j \) = number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \ldots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n - j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

\[\text{prob of success} = \frac{n - j}{n} \]
\[\Rightarrow \text{expected waiting time} = \frac{n}{n - j}\]
13. RANDOMIZED ALGORITHMS

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Section 13.9
Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1 + \delta)\mu] < \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right]^\mu$$

Pf. We apply a number of simple transformations.

- For any $t > 0$,

$$\Pr[X > (1 + \delta)\mu] = \Pr \left[e^{tX} > e^{t(1+\delta)\mu} \right] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

 - $f(x) = e^{tx}$ is monotone in x
 - Markov's inequality: $\Pr[X > a] \leq E[X] / a$

- Now

$$E[e^{tX}] = E[e^{t \sum_i X_i}] = \prod_i E[e^{tX_i}]$$

 - definition of X
 - independence
Chernoff Bounds (above mean)

Pf. [continued]

• Let $p_i = \Pr[X_i = 1]$. Then,

$$E[e^{tX_i}] = p_i e^t + (1 - p_i) e^0 = 1 + p_i (e^t - 1) \leq e^{p_i (e^t - 1)}$$

for any $\alpha \geq 0$, $1 + \alpha \leq e^\alpha$

• Combining everything:

$$\Pr[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \prod_i E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} \prod_i e^{p_i (e^t - 1)} \leq e^{-t(1+\delta)\mu} e^{\mu(e^t - 1)}$$

previous slide
inequality above
$\sum_i p_i = E[X] \leq \mu$

• Finally, choose $t = \ln(1 + \delta)$. ■
Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13. Randomized Algorithms

- content resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on m identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lfloor m / n \rfloor$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?
Load balancing

Analysis.

- Let \(X_i \) = number of jobs assigned to processor \(i \).
- Let \(Y_{ij} = 1 \) if job \(j \) assigned to processor \(i \), and 0 otherwise.
- We have \(\text{E}[Y_{ij}] = 1/n \).
- Thus, \(X_i = \sum_j Y_{ij} \), and \(\mu = \text{E}[X_i] = 1 \).
- Applying Chernoff bounds with \(\delta = c - 1 \) yields \(\text{Pr}[X_i > c] < \frac{e^{c-1}}{c^c} \).

- Let \(\gamma(n) \) be number \(x \) such that \(x^x = n \), and choose \(c = e \gamma(n) \).

\[
\text{Pr}[X_i > c] < \frac{e^{c-1}}{c^c} < \frac{1}{\left(\frac{1}{\gamma(n)}\right)^c} < \frac{1}{\left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} \cdot \gamma(n)} = \frac{1}{n^2}
\]

- Union bound \(\Rightarrow \) with probability \(\geq 1 - 1/n \) no processor receives more than \(e \gamma(n) = \Theta(\log n / \log \log n) \) jobs.

Bonus fact: with high probability, some processor receives \(\Theta(\log n / \log \log n) \) jobs.
Load balancing: many jobs

Theorem. Suppose the number of jobs $m = 16\, n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.

- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

\[
\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n\ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2} \\
\Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2} \left(\frac{1}{2}\right)^2 (16n\ln n)} = \frac{1}{n^2}
\]

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$. □