13. RANDOMIZED ALGORITHMS

PEARSON
g

Addison
Wesley

» content resolution
» global min cut
» linearity of expectation

» max 3-satisfiability

|
W

2}

(‘" lnnNnrit T | n NN . .
AlIONEm Lesian » universal hashing
i1 1 ,Mi 9 H i | 7 U :“‘ i

.-

JON]‘(lEINBERG - EVA TARI‘;‘OS 4 C/‘)ernoff bOU”dS

» load balancing

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:54 AM

Randomization

Algorithmic design patterns.
* Greedy.

Divide-and-conquer.

Dynamic programming.

Network flow.

Randomization.
in practice, access to a pseudo-random number generator

4

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.

13. RANDOMIZED ALGORITHMS

y» content resolution

. & e
A . v £ 4l

£
y
' d

"

Alqorithm Desigr

JON KLEINBERG - EVA TARDOS

SECTION 13.1

Contention resolution in a distributed system

Contention resolution. Given n processes P,, ..., P,, each competing for
access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time ¢ with
probability p = 1/n.

Claim. Let S[i,] = event that process i succeeds in accessing the database at
time r. Then 1/(e-n) < Pr[S@,)] < 1/2n).

Pf. By independence, Pr[SG, 0N]=p(d-p)r-L.
/ N\

process i requests access none of remaining n-1 processes request access

e Setting p =1/n, we have Pr[SG,0] = 1/n(1-1/n)"-1. =

\

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
* (1-1/n)» converges monotonically from 1/4 up to 1/e.
* (1-1/n)»-1 converges monotonically from 1/2 down to 1/ e.

Contention Resolution: randomized protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/ e. After e - n (c In n) rounds, the probability <n-.

Pf. Let F[i,] = event that process i fails to access database in rounds 1
through t. By independence and previous claim, we have
Pr [Fli,f]] = (1 - 1/(en))".

IA
—
I
|H
N—
e |
Q
S
—
I
S
I
|H
N—
Q
S
IA
Q =

« Choose t=[e-nl: PrF(i,1)]

*» Chooset=[e-n][clnn]: pF 1]

IA
—
Q |—
—

o
—_—
=
S
I
S
|
[

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within 2e -nInn rounds
is>1-1/n.

Pf. Let F[r] = event that at least one of the n processes fails to access
database in any of the rounds 1 through .

Pl FI] = P O Pl | = S PrFia = a(1- 1)
i=1 i=1
T T

union bound previous slide

* Choosing r=2[en] [cInn]|yields Pr[F[f]l<n-n2=1/n. =

Union bound. Given events E|, ..., E, Pr[U Ei] = 2 Prl £;]

n i=1 i=1

13. RANDOMIZED ALGORITHMS

» global min cut

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 13.2

Global minimum cut

Global min cut. Given a connected, undirected graph G=(V, E),
find a cut (4, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
* Replace every edge (u,v) with two antiparallel edges (u,v) and (v, u).
* Pick some vertex s and compute min s- v cut separating s from each
other vertex ve V.

False intuition. Global min-cut is harder than min s-r cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (1, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and vtow
- keep parallel edges, but delete self-loops
» Repeat until graph has just two nodes v, and v,.
« Return the cut (all nodes that were contracted to form v;).

¢ — a b
Q\ d>$ contract u-v \\\Q/

10

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (1, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and vtow
- keep parallel edges, but delete self-loops
» Repeat until graph has just two nodes v, and v,.
« Return the cut (all nodes that were contracted to form v;).

DHEREEY
Fer SN P Ty

Reference: Thore Husfeldt

11

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/ n2.

Pf. Consider a global min-cut (A*, B*) of G.
* Let F* be edges with one endpoint in A* and the other in B*.

Let kK = | F*| = size of min cut.

In first step, algorithm contracts an edge in F* probability k /| E].

Every node has degree >k since otherwise (A*, B*) would not be
a min-cut = |E|l>% kn.

Thus, algorithm contracts an edge in F* with probability < 2/n.

Aa‘c B*

12

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/ n2.

Pf. Consider a global min-cut (A*, B*) of G.

Let F* be edges with one endpoint in A* and the other in B*.

Let k = | F*| = size of min cut.

Let G' be graph after j iterations. There are n' =n—j supernodes.
Suppose no edge in F* has been contracted. The min-cut in G' is still .
Since value of min-cutis &, |E'|l= % kn'.

Thus, algorithm contracts an edge in F* with probability < 2/n'.

Let E; = event that an edge in F* is not contracted in iteration j.

Pr[E, NE,---NE,,] = Pr[E]x Pr[E, |E] x - x Pt[E, , |E,NE,---NE,_,]

v

(1-2)(1=2) - (1-3) (1-3)

v
o

n 13

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.
with independent random choices,

'

Claim. If we repeat the contraction algorithm n2Inn times,
then the probability of failing to find the global min-cutis < 1/n2.

Pf. By independence, the probability of failure is at most

(1=-1/x)x <1/e

14

Contract i

on algorithm: example execut ion

trial 1

trial 2

trial 4

trial 5
(finds min cut)

trial 6

igrigrir@rdrfrfrg-gafal- 3 ILY
i igrigrifutut: 3 R EET A

SAREELADNRSCLIT/
IS S S E S S ETLIIL

eeeeeeeeeeeeeeeeeeeeee

Global min cut: context

Remark. Overall running time is slow since we perform ©(n2log n) iterations
and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(2log3n).
» Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/+v2 nodes remain.
 Run contraction algorithm until n/v2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm

16

13. RANDOMIZED ALGORITHMS

» linearity of expectation

; “ 3
N

£
y
Y

e

Alqorithm Desigr

JON KLEINBERG - EVA TARDOS

SECTION 13.3

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]
is defined by:

E[X]=3 jPiX = j]
j=0

Waiting for a first success. Coin is heads with probability p and tails with
probability 1- p. How many independent flips X until first heads?

E[X] = 3 j-PiiX=j1 = 3ja-p)p = L5 ja-pi= 21"
j=0 o 4 4 =P I-p p

j -1 tails 1 head

|

p

18

Expectation: two properties

Useful property. If Xis a 0/1 random variable, E[X] = Pr[X =1].

Pf. E[X] =3 j PiX=j] = éj-Pr[X=j] = Pr[X =1]
j=0 j=0

not necessarily independent

v N\

Linearity of expectation. Given two random variables X and Y defined over
the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

19

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's
been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. [surprisingly effortless using linearity of expectation]

Let X;=1 if i» prediction is correct and 0 otherwise.

Let X = number of correct guesses =X, +... + X,.
E[X]= Pr[X,=1] = 1/n.
EX] = EX]+ ... +EX,]=1/n+...41/n=1. =

f

linearity of expectation

20

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is O(log n).
Pf.

Let X;=1 if i» prediction is correct and 0 otherwise.

Let X = number of correct guesses =X, +... + X,.
EX]= Pr[X,=1] = 1/(n—i-1).
EX] = EX]] + ... + E[X,)] =1/n+...+41/2+1/1 = H(n). =

!]

linearity of expectation In(n+1) <H(n) <1 +Inn

21

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to contain
each coupon, how many boxes before you have =1 coupon of each type?

Claim. The expected number of steps is O(n log n).

Pf.
* Phase j =time between jand j+ 1 distinct coupons.
* Let X;= number of steps you spend in phase .
* Let X = number of steps in total =X, + X, +... + X ;.

n-1 n-1 n

E[X] = EE[XJ.] =) .
Jj=0 j=0 =] i=1

1

prob of success=(n—-j)/n

= nH(n)

= expected waiting time =n / (n - j)

22

13. RANDOMIZED ALGORITHMS

‘ “3
\ gl TV RS
s

f Wl
g

/

N\ Algorithm Desigr

\}\ JON KLEINBERG - EVA TARDOS > C/‘)GI’ nof I[bounds

SECTION 13.9

Chernoff Bounds (above mean)

Theorem. Suppose X;, ..., X,, are independent 0-1 random variables. Let X =
X;+ ... + X,,. Then for any u = E[X] and for any 6 > 0, we have

Pr[X >(1+d)u] <
T

sum of independent 0-1 random variables
is tightly centered on the mean

66 g
(1 + 6)1+E)

Pf. We apply a number of simple transformations.
« Foranyt> 0,

Pr[X >({+0)u] = Pr[o' X s p!(1+du] < 'O L B]

T

f(x) = etXis monotone in x Markov's inequality: Pr[X>a] <E[X]/ a

E[etX] _ E[etzix"] _ HiE[etXi]

t t

definition of X independence

 Now

44

Chernoff Bounds (above mean)

Pf. [continued]
* Let p,=Pr[X;=1]. Then,

E[etXi] = Pi€t+(l—pi)eo = 1+pl.(et—1) epi(et'l)

?OL

foranya =0, 1+a<e«

« Combining everything:

—1(1+d)u tX, —t(+Ou Ty e’ —1(+d)p u(e'-D)
Pr{X>{+0u] = e [I. Ele 7] = e [e < e e

!

previous slide inequality above Sipi=EX] = u

—> IA

* Finally, choose r=1In(1 +9). =

45

Chernoff Bounds (below mean)

Theorem. Suppose X,,...,X, are independent 0-1 random variables.
Let X=X,+...+X,. Then forany u<E[X] and for any 0 <8 < 1, we have

Pi{X <(1-8)u] < e® /2
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider 6 < 1.

46

13. RANDOMIZED ALGORITHMS

> “ 3
\ OV
.

f Wl
g ¢

/

N\ Algorithm Desigr

}\ JON KLEINBERG - EVA TARDOS

» load balancing
SECTION 13.10

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be
processed immediately on m identical processors. Find an assignment that
balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor
receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
How likely is it that some processor is assigned "too many" jobs?

48

Load balancing

Analysis.

Let X; = number of jobs assigned to processor i.

Let Y, =1 if job j assigned to processor i, and 0 otherwise.
We have E[Y;] = 1/n.

Thus, X;=3.7;;, and u=E[X]] = 1.

Applying Chernoff bounds with § =c -1 yields Pr[X,; >c¢] <

ec—l

CC

Let v(n) be number x such that x*=n, and choose ¢ = e y(n).

c-1 @ ey (n) 2y (n)
PHX, >c] < & <(fl (1\ (1\ !
c c) y(n)) y(n)) n
Union bound = with probability > 1 - 1/n no processor receives more
than e y(n) = ©(log n/ log log n) jobs.

\

Bonus fact: with high probability,
some processor receives O(logn / log log n) jobs

49

Load balancing: many jobs

Theorem. Suppose the number of jobs m =16 nInn. Then on average,
each of the n processors handles u=161nn jobs. With high probability,
every processor will have between half and twice the average load.

Pf.
e Let X.,Y. be as before.

i 7ij

* Applying Chernoff bounds with 6 =1 yields

l6nlnn Inn ’
PI'[XZ- > ZM] < (E_ < (é)_ =L PI'[Xl- < %M] < e_i(i) (16nlnn) _ L

4] n’ n’

e Union bound = every processor has load between half and
twice the average with probability =1 -2/n. =

