CSE202 Greedy algorithms

An induced subgraph of the collaboration graph (with Erdos number at most 2).
Made by Fan Chung Graham and Lincoln Lu in 2002.
4.4 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein’s house
4.4 Shortest Paths in a Graph

Shortest path tree in Bay area
Trees with at most 4 edges

1-edge 2-edge 3-edge 4-edge
G is a tree on n vertices.

\iff G is connected with no cycle.

\iff G is connected with $n-1$ edges.

\iff G is formed by adding a leaf to a tree of $n-1$ vertices.

\iff There is a unique path between any two vertices.
Shortest Path Problem

Shortest path network.
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length $l_e = \text{length of edge } e$.

Shortest path problem: find shortest directed path from s to t.

↑

cost of path = sum of edge costs in path
Dijkstra’s Algorithm

Dijkstra’s algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

\[\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e, \]

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v).
Dijkstra's Algorithm

Dijkstra’s algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u,v)
Invariant. For each node \(u \in S \), \(d(u) \) is the length of the shortest \(s-u \) path.

Pf. (by induction on \(|S| \))

Base case: \(|S| = 1 \) is trivial.

Inductive hypothesis: Assume true for \(|S| = k \geq 1 \).

Let \(v \) be next node added to \(S \), and let \(u-v \) be the chosen edge.

The shortest \(s-u \) path plus \((u, v) \) is an \(s-v \) path of length \(\pi(v) \).

Consider any \(s-v \) path \(P \). We’ll see that it’s no shorter than \(\pi(v) \).

Let \(x-y \) be the first edge in \(P \) that leaves \(S \), and let \(P' \) be the subpath to \(x \).

\(P \) is already too long as soon as it leaves \(S \).

\[
\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x, y) \geq \pi(y) \geq \pi(v)
\]

\(\uparrow \) nonnegative weights \(\uparrow \) inductive hypothesis \(\uparrow \) defn of \(\pi(y) \) \(\uparrow \) Dijkstra chose \(v \) instead of \(y \)
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge $e = (v, w)$, update $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}$.

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$d \log_d n$</td>
<td>1</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
<td>$d \log_d n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>m</td>
<td>1</td>
<td>$\log n$</td>
<td>$d \log_d n$</td>
<td>1</td>
</tr>
<tr>
<td>IsEmpty</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>n^2</td>
<td>$m \log n$</td>
<td>$m \log_{m/n} n$</td>
<td>$m + n \log n$</td>
<td></td>
</tr>
</tbody>
</table>

† Individual ops are amortized bounds
Dijkstra's Shortest Path Algorithm

Find shortest path from \(s \) to \(t \).
Dijkstra's Shortest Path Algorithm

S = \{ \}

PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ \} \]
\[PQ = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s \}
PQ = \{ 2, 3, 4, 5, 6, 7, t \}

distance label → 15

decrease key

53
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[PQ = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2 \}
PQ = \{ 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2 \}$
$PQ = \{ 3, 4, 5, 6, 7, t \}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[PQ = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2, 6 \}
PQ = \{ 3, 4, 5, 7, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]

\[PQ = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[PQ = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2, 3, 6, 7 \}
PQ = \{ 4, 5, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[PQ = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[PQ = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2, 3, 4, 5, 6, 7 \}$

$PQ = \{ t \}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]

\[PQ = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[PQ = \{ \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[PQ = \{ \} \]
Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)
Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.
Coin-Changing: Greedy Algorithm

Cashier’s algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: \( c_1 < c_2 < \ldots < c_n \).

coins selected
S \leftarrow \emptyset
while \((x \neq 0)\) {
    let \( k \) be largest integer such that \( c_k \leq x \)
    if \((k = 0)\)
        return "no solution found"
    \( x \leftarrow x - c_k \)
    S \leftarrow S \cup \{k\}
} 
return S
```

Q. Is cashier’s algorithm optimal?
Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on x)
- Consider optimal way to change $c_k \leq x < c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
 - if not, it needs enough coins of type c_1, \ldots, c_{k-1} to add up to x
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x - c_k$ cents, which, by induction, is optimally solved by greedy algorithm.

<table>
<thead>
<tr>
<th>k</th>
<th>c_k</th>
<th>All optimal solutions must satisfy</th>
<th>Max value of coins 1, 2, ..., k-1 in any OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$P \leq 4$</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>$N \leq 1$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>$N + D \leq 2$</td>
<td>$4 + 5 = 9$</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>$Q \leq 3$</td>
<td>$20 + 4 = 24$</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>no limit</td>
<td>$75 + 24 = 99$</td>
</tr>
</tbody>
</table>
Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
- Greedy: 100, 34, 1, 1, 1, 1, 1.
- Optimal: 70, 70.
Selecting Breakpoints
Selecting breakpoints.
- Road trip from Princeton to Palo Alto along fixed route.
- Refueling stations at certain points along the way.
- Fuel capacity = C.
- Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.
Selecting Breakpoints: Greedy Algorithm

Truck driver’s algorithm.

Sort breakpoints so that: \(0 = b_0 < b_1 < b_2 < \ldots < b_n = L\)

\[
\begin{align*}
S & \leftarrow \{0\} \quad \text{breakpoints selected} \\
x & \leftarrow 0 \quad \text{current location}
\end{align*}
\]

\[
\text{while } (x \neq b_n) \\
\quad \text{let } p \text{ be largest integer such that } b_p \leq x + C \\
\quad \text{if } (b_p = x) \\
\quad \quad \text{return } \text{"no solution"} \\
\quad \quad x \leftarrow b_p \\
\quad \quad S \leftarrow S \cup \{p\} \\
\text{return } S
\]

Implementation. \(O(n \log n)\)

- Use binary search to select each breakpoint \(p\).
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
- Assume greedy is not optimal, and let’s see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1$, \ldots, $f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

The diagram shows:
- **Greedy:** $g_0, g_1, g_2, \ldots, g_r, g_{r+1}$
- **OPT:** $f_0, f_1, f_2, \ldots, f_r, f_{r+1}, \ldots, f_q$

Why doesn’t optimal solution drive a little further?
Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Greedy:

\begin{align*}
&g_0 & g_1 & g_2 & \cdots & g_r & g_{r+1} \\
\text{OPT:} & f_0 & f_1 & f_2 & \cdots & f_r & f_{r+1}
\end{align*}

another optimal solution has one more breakpoint in common \Rightarrow contradiction
The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.