P
&
"
g
£
«
g
e
5
=
£
g
“
]
vm
=5

An induced subgraph of the collaboration graph (with

Made by Fan Chung Graham and Lincoln Lu in 2002.

A useful fact about trees
Any free on n vertices contains a vertex v
whose removal separates the remaining graph
into Two parts, one of which is of sizes
at most n/2 and the other is at most 2n/3.

Ternary trees

A useful fact about trees
Any free on n vertices contains a vertex v
whose removal separates the remaining graph
into two parts, one of which is of sizes
at most n/2 and the other is at most 2n/3.

8 \ 1 12
',' QO 1_) O & (U] (U]
526 2829303132337 3536

Try to write a pr'oof for this!

A planar graph is a graph that can be

drawn in the plane without crossings.

A AR
N AV

A planar graph is a graph that can be

drawn in the plane without any crossing.

Are these planar graphs?

A planar graph is a graph that can be

drawn in the plane without any crossing.

Are these planar graphs?

A useful fact about planar graphs

Any planar graph on n vertices containsvn vertices
whose removal separates the remaining graph
into Two parts, one of which is of sizes
at most n/2 and the other is at most 2n/3.

Tarjan and Lipton, 1977

Chapter 5

Divide and Conquer

\ Algnnh Jesinn

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne
P

Copyright © 2005 earson-Addison Wesley.
All rights reserved.

Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

«» Solve each part recursively.

» Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size 3n.
» Solve two parts recursively.
» Combine two solutions into overall solution in linear fime.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

1

5.1 Mergesort

Sorting

Sorting.

Given n elements, rearrange in ascending order.
3,6,5,2,1,4 B,U,S, H
1,2,3,4,5,6 B,H,S, U

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank results.

Sorting

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank results.

Problems become easier once sorted.
Find the median.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing list.

Sorting

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on Amazon.
Load balancing on a parallel computer.

Mergesort

Mergesort.
«» Divide array infto two halves.
« Recursively sort each half.

« Merge two halves to make sorted whole.

S

T

Jon von Neumann (1945)

divide 0O(1)
sort 2T(n/2)

merge O(nh)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? D>
. Linear number of comparisons.
« Use temporary array.

Szl = Sl s v
A G H I -

Challenge for the bored. In-place merge. [Kronrud, 1969]
f

using only a constant amount of extra storage

Merge.

Merging

«» Keep track of smallest element in each sorted half.

« Insert smallest of two elements into auxiliary array.
« Repeat until done.

smallest

: k

A

G

smallest

: 1

H| I M| S

auxiliary array

Merge.

Merging

«» Keep track of smallest element in each sorted half.

« Insert smallest of two elements into auxiliary array.
« Repeat until done.

smallest

: 1

A

G| L

smallest

: 1

H| I M| S

a I3

auxiliary array

Merge.

Merging

«» Keep track of smallest element in each sorted half.

« Insert smallest of two elements into auxiliary array.

« Repeat until done.

smallest smallest

. | . |
A|IG|L|O H| I M| S
A lc N

auxiliary array

Merge.

«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.

« Repeat until done.

smallest

: 1

A |G

L

O R

Merging

smallest

: 1

H

I

M

=

auxiliary array

Merging

Merge.
«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
« Repeat until done.

smallest smallest
A|lG L|O| R H I M| S| T

A G H I auxiliary array

Merge.

Merging

«» Keep track of smallest element in each sorted half.

« Insert smallest of two elements into auxiliary array.

« Repeat until done.

smallest smallest
A G| L|O|R H M| S
Alg|H|I|L [N

auxiliary array

Merge.

«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.

« Repeat until done.

smallest

: 1

AIG| L |O

R

Merging

smallest

: 1

M

S

auxiliary array

Merging

Merge.
«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
« Repeat until done.

smallest smallest
A|lG L|O| R H I M| S| T

A/G H I L M|O E auxiliary array

Merging

Merge.
«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
« Repeat until done.

first half
exhausted smallest

: 1 : 1

A GIL O R H| I M| S| T

Al[G|H|[I|L|[M[o|R[EN |

auxiliary array

Merging

Merge.
«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
« Repeat until done.

first half
exhausted smallest
A G| L O|R H| I M| S| T

A G H I L M O|R S auxiliary array

Merging

Merge.
«» Keep track of smallest element in each sorted half.
« Insert smallest of two elements into auxiliary array.
« Repeat until done.

first half second half
exhausted exhausted
A|lG L|O| R H I M| S| T

AIG/H I L M O R|S |T auxiliary array

1

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? D>
. Linear number of comparisons.
« Use temporary array.

Szl = Sl s v
A G H I -

Challenge for the bored. In-place merge. [Kronrud, 1969]
f

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) < T(|_n/2-|) + T(|_n/2J) + n otherwise

merging

solve left half solve right half

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.

Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n otherwise
[

%f_J .
sorting both halves merging

T(n)

/\.

T(n/2) T(n/2)

N\ N

T(n/4) T(n/4) T(n/4) T(n/4)

T2) T2 T2 T@ T@) T@ TR T2

log,n

2(n/2)
4(n/4)
2k(n / 2¥)

n/2(2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
T

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + n otherwise

sorting both halves merging

Pf. Forn> 1: T(n) _ 2T(n/2) |
n n
_ T(n/2) 41
nl2
- Iw/4) +1+1
nl/4
- M + 1 +---4+1
n/n —_—

log, n
= logyn

20

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
T

assumes n is a power of 2

0 if n=1
T(n) = 2T(n/2) + n otherwise

sorting both halves merging

Pf. (by induction on n)
« Basecase: n=1.

» Goal: show that T(2n) = 2n log, (2n).

T(2n) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(log,(2n)—1) + 2n
= 2nlog,(2n)

21

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.
» You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between fwo rankings.
« Myrank: 1,2, .., n
« Your rank: ay, ay, ..., a,.
- Songsiand j inverted if i< j, but a;> a;.

Songs
| A | B | C|D]E|
N : 2 3 4 5

B2l : 3 4 2 5
—|

3-2,4-2

Brute force: check all ©(n?) pairs i and j.

Inversions

24

Applications

Applications.
» Voting theory.
«» Collaborative filtering.
« Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
«» Rank aggregation for meta-searching on the Web.

» Nonparametric statistics (e.g., Kendall's Tau distance).

25

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

26

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into fwo pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

(1154 8102 Q6]9 1211137

27

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
«» Conquer: recursively count inversions in each half.

1 5 4 8 102 6 9 12 11 3 7 Divide: O(1).
DODDEE OEEEEE o oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11, 11-3, 11-7

28

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list info two pieces.
«» Conquer: recursively count inversions in each half.
» Combine: count inversions where a; and a; are in different halves,

and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DODDDE DOENEE o~ oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 2??
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total=5+8+9=22.

29

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and e
are in different halves.
= Combine two sorted halves into sorted whole.

. !
3 7 10 14 18 19 2 11 16 17 23 25 twosorfed halves

auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

| |
3 7 10 14 18 19 11 16 17 23 25 twosorted halves
6

2 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

. .
3 7 10 14 18 19 2 11 16 17 23 25 twosorfed halves
6

2 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=6
| |
7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6
2 3 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

5

}

|
3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6

2 3 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

}

i=5
|
3 10 14 18 19 2 11 16 17 23 25 twosorfed halves
6

n
w
~N

auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |l

}

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6

2 3 7 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |l

}

3 7 plw 14 18 19 2 11 16 17 23 25 two sorted halves
6

2 3 7 10 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |l

}

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6

2 3 7 10 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=3

«— |l

|
3 7 10 14 18 19 2 16 17 23 25 two sorted halves
6 3

2 3 7 10 1 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |l

!

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 1 auxiliary array

1

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

\ |

3 7 10 pEw 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 11 14 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— 1l

!

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 11 14 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=2
} |
3 7 10 14 18 19 2 11 gm 17 23 25 two sorted halves
6 3 2
2 3 7 10 11 14 16 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— 1l

|

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2

2 3 7 10 11 14 16 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=2
} |
3 7 10 14 18 19 2 11 16 B¥@ 23 25 two sorted halves
6 3 2 2
2 3 7 10 11 14 16 17 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— 1l

|

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=2
} }
3 7 10 14 19 2 11 16 17 23 25 two sorted halves
6 3 2 2
2 3 7 10 11 14 16 17 18 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=1
| !

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 auxiliary array

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=1
!

|
3 7 10 14 18 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 19 auxiliary array

20

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where a; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

first half exhausted i

«— |

|

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 19 auxiliary array

21

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where q; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=0
| |
3 7 10 14 18 19 2 11 16 17 gEN 25 two sorted halves
6 3 2 2 0
2 3 7 10 11 14 16 17 18 19 23 auxiliary array

22

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where q; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |

}

3 7 10 14 18 19 2 11 16 17 23 25 twosorted halves
6 3 2 2 0

2 3 7 10 11 14 16 17 18 19 23 auxiliary array

23

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where q; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

i=0
| }
3 7 10 14 18 19 2 11 16 17 23 s two sorted halves
6 3 2 2 0 0
2 3 7 10 11 14 16 17 18 19 23 25 auxiliary array

24

Merge and Count

Merge and count step.
«» Given two sorted halves, count number of inversions where q; and a;
are in different halves.
= Combine two sorted halves into sorted whole.

«— |
-«—

3 7 10 14 18 19 2 11 16 17 23 25 twosorted halves
6 3 2 2 0 0

2 3 7 10 11 14 16 17 18 19 23 25 auxiliary array

25

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted. >
- Count inversions where a; and a; are in different halves.
» Merge two sorted halves into sorted whole.

to maintain sorted invariant

BEODDD BODEonD
6 3 2 2 0 0
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) < T(Ln/2])+T(In/2])+0m) = T(n)=O(nlogn)

30

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(r,, A) ¢ Sort-and-Count(A)

(rgz, B) ¢« Sort-and-Count (B)

(r , L) < Merge-and-Count (A, B)

return r = r, + r; + r and the sorted list L

31

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
« Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check dll pairs of points p and q with ©(n?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

f

to make presentation cleaner

33

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

34

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

@ o .. L
([P .. ([
:. ® .. (]
(1 (- ®

35

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.

36

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
» Conquer: find closest pair in each side recursively.

° L o . °
. ° .. o° /21) .

37

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.
» Combine: find closest pair with one point in each side. « seems like 6(n%)
= Return best of 3 solutions.

° L o . °
° ° °
° ° > °
° 80’) /21 .
° °
°
12 ° °
/ ° ° o
° ° ® o
® °

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.

8 = min(12, 21)

39

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
» Observation: only need to consider points within 3 of line L.

40

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
» Observation: only need to consider points within 3 of line L.
«» Sort points in 28-strip by their y coordinate.

41

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
» Observation: only need to consider points within 3 of line L.
«» Sort points in 28-strip by their y coordinate.
« Only check distances of those within 11 positions in sorted list!

42

Closest Pair of Points

Def. Let s; be the point in the 23-strip, with
the ith smallest y-coordinate.

Claim. If |i- j| =12, then the distance between
s;and s; is at least 3.
Pf.
- No two points lie in same 38-by-38 box.
» Two points at least 2 rows apart T
have distance > 2(36). = 2 "‘1‘”5

Fact. Still frue if we replace 12 with 7.

o000
(39
(51
(30]
(2]
(2]
®
@
[X N]
) o

[N (M
7] (7]

N
(o7]

43

Closest Pair Algorithm

Closest-Pair(p;, .., P,) {
Compute separation line L such that half the points
are on one side and half on the other side.

o, Closest-Pair (left half)
0, Closest-Pair (right half)
0 = min(3,, §,)

Delete all points further than 8 from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than 8, update J.

return §.

O(n log n)

2T(n/ 2)

o(n)

O(n log n)

O(n)

44

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log?)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
« Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

45

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
« O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.
. Brute force solution: ©(n?) bit operations.

11010101
*01111101
110101010
Multiply 0000000O0O
110101010
110101010
110101010
1 1 0 1 O 1 0 1 110101010
+ O0 1 1 1 1 1 O 1 110101010
1 o0 1 O 1 O O 1 O 000000O0O0O
Add 01101000000000010O0

47

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
- Multiply four 3$n-digit integers.
. Add two 3n-digit integers, and shift to obtain result.

= 2"%.x + x,
= 2"y + y,
Xy = (2n/2'x1+xo) (zn/Z'Jﬁ +J’0) =2"-xy + 2”/2-(x1y0+x0y1) + X))

T(n) = 4T(n/2) + O@m) = T(n)=O(n")

recursive calls add, shift

f

assumes n is a power of 2

48

Karatsuba Multiplication

To multiply two n-digit integers:
. Add two 3n digit integers.
- Multiply three 3n-digit integers.
. Add, subtract, and shift 3n-digit integers to obtain result.

= 2"%.x + x,
= 2"y + y,
xy = 2%-xp + 2n/2'(x1J’0+on’1) + Xo)o

= 2" xy + 2”/2-((x1+x0)(y1+y0) - le/l_xOJ’o) + XoVo
A B A C C

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n'583) bit operations.

T(n) < T(ln/2)) + T(Ini2]) + (14 n2]) + @)

S
recursive calls add, subtract, shift

= T(n) = 0(n'™*) = Om'"*®)

49

Karatsuba: Recursion Tree

[37(n/2) + n otherwise Tm= 2 () = i1
T(n)
T(n/2) T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4)

T(n/ 2¥)

T2 T@) T@ T(@) T2 T T@) T

3(n/2)

9(n/4)

3k(n / 2K)

319n(2)

50

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

cll ch cln 11 a12 In bll b12 bln
n
— C C e C a a e a b b e b
¢y = 2a,b, A N e I
k=1 : : :
cnl an o cnn anl an2 o ann bnl bn2 o bnn

Brute force. ©(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

52

Matrix Multiplication: Warmup

Divide-and-conquer.

. Divide: partition A and B into 3$n-by-3n blocks.

. Conquer: multiply 8 $n-by-3n recursively.

» Combine: add appropriate products using 4 matrix additions.

Lcu C12J _ LAM AlzJ % LBM B12J Gy = (4 XBy)) + (A,xBy)
G, G, A4, A4, B, B, G, = (A11XB12) + (A12X322)
G, = (AZIXBII) + (A22X321)
G, = (A21X312) + (A22X822)

T(n)= 8T(n/2) + O(n*) = T(n)=0(n)

recursive calls add, form submatrices

53

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.
Cll CIZJ _ LAII AIZJ [Bll BIZJ _
\;CZI C22 ; A21 A22) BZI BZZ - All . (B12 - B22)

A

b = (4, +4,)X By
Py = (4 +4y)X By,
P,
B

G, = B+R-PB+E = Ay X(By—Byy)

G, = R+h = (A +A4y) X (B +By,)
G = B+F B = (A= A4y)X(By +By)
¢y = B+R-B-P P = (4= 4)X (B, +B,)

«» 7 multiplications.
. 18 = 10 + 8 additions (or subtractions).

54

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
. Divide: partition A and B into 3$n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 $n-by-3n matrices recursively.
» Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

» Assume n is a power of 2.
« T(n) = # arithmetic operations.

T(n)= 1T(n/2)+ ©O®*) = Tn)=0n"*")=0n*"")

recursive calls add, subtract

55

Fast Matrix Multiplication in Practice

Implementation issues.

Sparsity.

Caching effects.

Numerical stability.

Odd matrix dimensions.

Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."

Advanced Computation Group at Apple Computer reports 8x speedup
on G4 Velocity Engine when n ~ 2,500.
Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

56

>0 >0

> 0

Q.
A.

Fast Matrix Multiplication in Theory

Multiply two 2-by-2 matrices with only 7 scalar multiplications?
Yes! [Strassen, 1969] 012"y = 0n >

Multiply two 2-by-2 matrices with only 6 scalar multiplications?
Impossible. [Hopcroft and Kerr, 1971] 01 %) = 0(n %)
Two 3-by-3 matrices with only 21 scalar multiplications?

Also impossible. 0™y = 0(n>7)

Two 70-by-70 matrices with only 143,640 scalar multiplications?

Yes! [Pcm, 1980] © (1120143640 _ 0 250

Decimal wars.

December, 1979: O(n2:521813),
January, 1980: O(n2-521801),

57

Fast Matrix Multiplication in Theory

Best known. O(n2376) [Coppersmith-Winograd, 1987.]

Conjecture. O(n®*) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively less
practical.

58

