
1

CSE 202

Divide-and-conquer algorithms

 Fan Chung Graham

 UC San Diego

3

Any tree on n vertices contains a vertex v

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about trees

4

Ternary trees

5

Any tree on n vertices contains a vertex v

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about trees

Try to write a proof for this!

6

A planar graph is a graph that can be

drawn in the plane without crossings.

7

Are these planar graphs?

A planar graph is a graph that can be

drawn in the plane without any crossing.

8

A planar graph is a graph that can be

drawn in the plane without any crossing.

Are these planar graphs?

9

Any planar graph on n vertices contains vertices

whose removal separates the remaining graph

into two parts, one of which is of sizes

at most n/2 and the other is at most 2n/3.

A useful fact about planar graphs

Tarjan and Lipton, 1977

n

10

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

11

Divide-and-Conquer

Divide-and-conquer.

! Break up problem into several parts.

! Solve each part recursively.

! Combine solutions to sub-problems into overall solution.

Most common usage.

! Break up problem of size n into two equal parts of size !n.

! Solve two parts recursively.

! Combine two solutions into overall solution in linear time.

Consequence.

! Brute force: n2.

! Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

13

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank results.

Sorting

Sorting.
Given n elements, rearrange in ascending order.

3, 6, 5, 2, 1, 4

1, 2, 3, 4, 5, 6

B, U, S, H

B, H, S, U

14

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank results.

Sorting

Problems become easier once sorted.

Find the median.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing list.

15

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on Amazon.

Load balancing on a parallel computer.

. . .

Sorting

16

Mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half.

! Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

17

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

! Linear number of comparisons.

! Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

1

auxiliary array

smallest smallest

A G L O R H I M S T

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

A

2

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

G

3

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

H

4

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

I

5

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

L

6

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

M

7

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

O

8

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

R

9

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

S

10

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

T

11

auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.

! Keep track of smallest element in each sorted half.

! Insert smallest of two elements into auxiliary array.

! Repeat until done.

17

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

! Linear number of comparisons.

! Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

18

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.

Initially we assume n is a power of 2 and replace ! with =.

T(n) !

 0 if n = 1

T n /2" #()
solve left half

! " # $ #
+ T n /2$ %()

solve right half

! " # $ #
+ n

merging
%

otherwise

&

'
(

)
(

19

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

T(n) =

0 if n = 1

2T(n /2)

sorting both halves

! " # $ #
+ n

merging
%

otherwise

!

"

$

20

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

T(n)

n
=

2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

!

=
T(n /n)

n /n
+ 1 +!+ 1

log2 n

" # $ % $

= log2 n

T(n) =

0 if n = 1

2T(n /2)

sorting both halves

! " # $ #
+ n

merging
%

otherwise

!

"

$

assumes n is a power of 2

21

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)

! Base case: n = 1.

! Inductive hypothesis: T(n) = n log2 n.

! Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n

= 2n log2 n + 2n

= 2n log2(2n)!1() + 2n

= 2n log2(2n)

assumes n is a power of 2

T(n) =

0 if n = 1

2T(n /2)

sorting both halves

! " # $ #
+ n

merging
%

otherwise

!

"

$

5.3 Counting Inversions

24

Music site tries to match your song preferences with others.

! You rank n songs.

! Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

! My rank: 1, 2, …, n.

! Your rank: a1, a2, …, an.

! Songs i and j inverted if i < j, but ai > aj.

Brute force: check all !(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2

25

Applications

Applications.

! Voting theory.

! Collaborative filtering.

! Measuring the "sortedness" of an array.

! Sensitivity analysis of Google's ranking function.

! Rank aggregation for meta-searching on the Web.

! Nonparametric statistics (e.g., Kendall's Tau distance).

26

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

27

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

! Divide: separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

28

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

! Divide: separate list into two pieces.

! Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

29

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

! Divide: separate list into two pieces.

! Conquer: recursively count inversions in each half.

! Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

1

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

auxiliary array

Total:

i = 6

2

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

i = 6

two sorted halves

2 auxiliary array

Total: 6

6

3

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 auxiliary array

i = 6

Total: 6

6

4

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 6

Total: 6

6

5

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 5

Total: 6

6

6

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 5

Total: 6

6

7

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 4

Total: 6

6

8

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 4

Total: 6

6

9

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 3

Total: 6

6

10

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total: 6 + 3

6 3

11

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total: 6 + 3

6 3

12

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 3

Total: 6 + 3

6 3

13

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 2

Total: 6 + 3

6 3

14

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

15

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

16

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

17

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

18

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

19

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

20

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

21

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2

first half exhausted

6 3 2 2

22

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

23

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

24

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0

25

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step.

! Given two sorted halves, count number of inversions where ai and aj

are in different halves.

! Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0

30

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions

! Assume each half is sorted.

! Count inversions where ai and aj are in different halves.

! Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

T(n) ! T n /2" #() + T n /2$ %() + O(n) & T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

31

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

 if list L has one element

 return 0 and the list L

 Divide the list into two halves A and B

 (rA, A) ! Sort-and-Count(A)

 (rB, B) ! Sort-and-Count(B)

 (rB, L) ! Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L

}

5.4 Closest Pair of Points

33

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

! Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with !(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

34

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

35

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

L

36

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !n points on each side.

L

37

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !n points on each side.

! Conquer: find closest pair in each side recursively.

12

21

L

38

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !n points on each side.

! Conquer: find closest pair in each side recursively.

! Combine: find closest pair with one point in each side.

! Return best of 3 solutions.

12

21
8

L

seems like !(n2)

39

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

12

21

! = min(12, 21)

L

40

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation: only need to consider points within ! of line L.

12

21

!

L

! = min(12, 21)

41

12

21

1

2

3

4
5

6

7

!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation: only need to consider points within ! of line L.

! Sort points in 2!-strip by their y coordinate.

L

! = min(12, 21)

42

12

21

1

2

3

4
5

6

7

!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < !.

! Observation: only need to consider points within ! of line L.

! Sort points in 2!-strip by their y coordinate.

! Only check distances of those within 11 positions in sorted list!

L

! = min(12, 21)

43

Closest Pair of Points

Def. Let si be the point in the 2!-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| " 12, then the distance between

si and sj is at least !.

Pf.

! No two points lie in same !!-by-!! box.

! Two points at least 2 rows apart

have distance " 2(!!). !

Fact. Still true if we replace 12 with 7.

!

27

29
30

31

28

26

25

!

!!

 2 rows
!!

!!

39

i

j

44

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 Compute separation line L such that half the points

 are on one side and half on the other side.

 !1 = Closest-Pair(left half)

 !2 = Closest-Pair(right half)

 ! = min(!1, !2)

 Delete all points further than ! from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than !, update !.

 return !.

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

45

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

! Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

! Sort by merging two pre-sorted lists.

T(n) ! 2T n /2() + O(n) " T(n) = O(n logn)

T(n) ! 2T n /2() + O(n log n) " T(n) = O(n log2
n)

5.5 Integer Multiplication

47

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

! O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a ! b.

! Brute force solution: !(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

010 1

011 1

100 0

Add

Multiply

48

To multiply two n-digit integers:

! Multiply four !n-digit integers.

! Add two !n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication: Warmup

T(n) = 4T n /2()
recursive calls

! " # $ #
 + !(n)

add, shift

! " $
 " T(n) = !(n

2
)

x = 2
n / 2

! x
1

 + x
0

y = 2
n / 2

! y
1

 + y
0

xy = 2
n / 2

! x
1

+ x
0() 2

n / 2
! y

1
 + y

0() = 2
n
! x

1
y

1
 + 2

n / 2
! x

1
y

0
+ x

0
y

1() + x
0
y

0

assumes n is a power of 2

49

To multiply two n-digit integers:

! Add two !n digit integers.

! Multiply three !n-digit integers.

! Add, subtract, and shift !n-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

x = 2
n / 2

! x1 + x0

y = 2
n / 2

! y1 + y0

xy = 2
n
! x1y1 + 2

n / 2
! x1y0 + x0 y1() + x0 y0

= 2
n
! x1y1 + 2

n / 2
! (x1 + x0) (y1 + y0) " x1y1 " x0 y0() + x0 y0

T(n) ! T n /2" #() + T n /2$ %() + T 1+ n /2$ %()
recursive calls

! " # # # # # # # $ # # # # # # #
+ &(n)

add, subtract, shift

! " # $ #

' T(n) = O(n
log 2 3

) = O(n1.585)

A B CA C

50

Karatsuba: Recursion Tree

T(n) =
0 if n = 1

3T(n /2) + n otherwise

!
"

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

T(n) = n 3
2()

k

k =0

log2 n

! =
3
2()

1+ log2 n

"1

3
2
"1

 = 3n
log2 3

" 2

Matrix Multiplication

52

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Brute force. !(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication

cij = a
ik

b
kj

k =1

n

!

c
11

c
12
! c

1n

c
21

c
22
! c

2n

" " # "

c
n1

c
n2
! c

nn

!

"

$

%

&

&

&

&

=

a
11

a
12
! a

1n

a
21

a
22
! a

2n

" " # "

a
n1

a
n2
! a

nn

!

"

$

%

&

&

&

&

'

b
11

b
12
! b

1n

b
21

b
22
! b

2n

" " # "

b
n1

b
n2
! b

nn

!

"

$

%

&

&

&

&

53

Matrix Multiplication: Warmup

Divide-and-conquer.

! Divide: partition A and B into !n-by-!n blocks.

! Conquer: multiply 8 !n-by-!n recursively.

! Combine: add appropriate products using 4 matrix additions.

C
11

= A
11
! B

11() + A
12
! B

21()
C

12
= A

11
! B

12() + A
12
! B

22()
C

21
= A

21
! B

11() + A
22
! B

21()
C

22
= A

21
! B

12() + A
22
! B

22()

C
11

C
12

C
21

C
22

!

"

$

%
& =

A
11

A
12

A
21

A
22

!

"

$

%
& '

B
11

B
12

B
21

B
22

!

"

$

%
&

T(n) = 8T n /2()
recursive calls

! " # $ #
 + !(n

2
)

add, form submatrices

! " # # $ # #
" T(n) = !(n

3
)

54

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

! 7 multiplications.

! 18 = 10 + 8 additions (or subtractions).

P1 = A11 ! (B12 " B22)

P2 = (A11 + A12) ! B22

P3 = (A21 + A22) ! B11

P4 = A22 ! (B21 " B11)

P5 = (A11 + A22) ! (B11 + B22)

P6 = (A12 " A22) ! (B21 + B22)

P7 = (A11 " A21) ! (B11 + B12)

C
11

= P
5

+ P
4
! P

2
+ P

6

C
12

= P
1

+ P
2

C
21

= P
3

+ P
4

C
22

= P
5

+ P
1
! P

3
! P

7

C
11

C
12

C
21

C
22

!

"

$

%
& =

A
11

A
12

A
21

A
22

!

"

$

%
& '

B
11

B
12

B
21

B
22

!

"

$

%
&

55

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

! Divide: partition A and B into !n-by-!n blocks.

! Compute: 14 !n-by-!n matrices via 10 matrix additions.

! Conquer: multiply 7 !n-by-!n matrices recursively.

! Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

! Assume n is a power of 2.

! T(n) = # arithmetic operations.

T(n) = 7T n /2()
recursive calls

! " # $ #
+ !(n

2
)

add, subtract

! " # $ #
" T(n) = !(n

log2 7
) = O(n

2.81
)

56

Fast Matrix Multiplication in Practice

Implementation issues.

! Sparsity.

! Caching effects.

! Numerical stability.

! Odd matrix dimensions.

! Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."

! Advanced Computation Group at Apple Computer reports 8x speedup

on G4 Velocity Engine when n ~ 2,500.

! Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other

matrix ops.

57

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A. Yes! [Strassen, 1969]

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr, 1971]

Q. Two 3-by-3 matrices with only 21 scalar multiplications?

A. Also impossible.

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?

A. Yes! [Pan, 1980]

Decimal wars.

! December, 1979: O(n2.521813).

! January, 1980: O(n2.521801).

! (n
log3 21) = O(n

2.77
)

! (n
log70 143640) = O(n

2.80
)

!(n
log2 6) = O(n

2.59
)

!(n
log2 7) = O(n

2.81
)

58

Fast Matrix Multiplication in Theory

Best known. O(n2.376) [Coppersmith-Winograd, 1987.]

Conjecture. O(n2+!) for any ! > 0.

Caveat. Theoretical improvements to Strassen are progressively less

practical.

