

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don' \dagger overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .
$E x: p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

Notation. OPT(j$)=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j.
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots$, j-1

$$
\operatorname{OPT}(j)=\left\{\begin{array}{ll}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+\operatorname{OPT}(p(j)),\right. & O P T(j-1)\}
\end{array}\right. \text { otherwise }
$$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
for j = 1 to n
    M[j] = empty \leftarrow global array
M[j] = 0
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(w w + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```


Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $\mathrm{p}(\cdot): O(n)$ after sorting by start time.
- M-Compute-Opt (j): each invocation takes $O(1)$ time and either
- (i) returns an existing value $m[j]$
- (ii) fills in one new entry $\mathrm{m}[\mathrm{j}]$ and makes two recursive calls
- Progress measure $\Phi=\#$ nonempty entries of m[].
- initially $\Phi=0$, throughout $\Phi \leq n$.
- (ii) increases Φ by $1 \Rightarrow$ at most $2 n$ recursive calls.
- Overall running time of m-Compute-Opt (n) is $\mathrm{O}(\mathrm{n})$. -

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

6.3 Segmented Least Squares

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes $f(x)$.
Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
goodness of fit
number of lines

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
- Tradeoff function: $E+c L$, for some constant $c>0$.

Dynamic Programming: Multiway Choice

Notation.

- $\operatorname{OPT}(j)=$ minimum cost for points $p_{1}, p_{i+1}, \ldots, p_{j}$.
- $e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.

To compute OPT(j):

- Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
- Cost $=e(i, j)+c+O P T(i-1)$.

$$
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
$$

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
            compute the least square error e }\mp@subsup{e}{ij}{}\mathrm{ for
            the segment }\mp@subsup{p}{i}{},\ldots,\mp@subsup{P}{j}{
    for j = 1 to n
        M[j] = min
    return M[n]
}
```

Running time. $O\left(n^{3}\right)$. can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics

- Bottleneck = computing e (i, j) for $O\left(n^{2}\right)$ pairs, $O(n)$ per pair using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}. Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

Def. $\operatorname{OPT}(\mathrm{i})=$ max profit subset of items $1, \ldots$, i.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don' \dagger even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=$ max profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit = w-wi
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w
for w = 0 to w
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (wi
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1,w], vi
return M[n, W]
```

Knapsack Algorithm

$$
\longrightarrow w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1,2\}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1, 2, 3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	34	40

OPT: $\{4,3\}$
value $=22+18=40$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GucGauugagccaiuguaicancgugccuacggcgaga

RNA Secondary Structure

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a WatsonCrick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
- [Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{j}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal. Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
. occurrence

0	C	-	u	r	r	-	a	n	C	e
0	C	C	u	r	r	e	-	n	c	e
mismatches, 3 gaps										

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

C	T	G	A	C	C	T	A	C	C	T	-	C	T	G	A	C	C	T	A	C	C	T
C	C	T	G	A	C	T	A	C	A	T	C	C	T	G	A	C	-	T	A	C	A	T
	$\alpha_{T C}+\alpha_{G T}+\alpha_{A G}+2 \alpha_{C A}$														$2 \delta+\alpha_{C A}$							

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i\left\langle i^{\prime}\right.$, but $j>j^{\prime}$.

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmatched } j: y_{j} \text { unmatched }} \delta+\sum_{i} \delta}_{\text {gap }}
$$

Ex: Ctaccg vs. tacatg.

Sequence Alignment: Problem Structure

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

$$
O P T(i, j)=\left\{\begin{array}{cl}
j \delta & \text { if } \mathrm{i}=0 \\
\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+O P T(i-1, j-1) \\
\delta+O P T(i-1, j) \\
\delta+O P T(i, j-1)
\end{array}\right. & \text { otherwise } \\
i \delta & \text { if } \mathrm{j}=0
\end{array}\right.
$$

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, m}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots.\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha)
    for i = 0 to m
        M[0, i] = i\delta
    for j = 0 to n
        M[j, 0] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[x ( 
                \delta + M[i-1, j],
                \delta + M[i, j-1])
    return M[m, n]
}
```

Analysis. $\Theta(m n)$ time and space.
English words or sentences: $m, n \leq 10$.
Computational biology: $m=n=100,000.10$ billions ops OK, but 10GB array?

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m+n)$ space and $O(m n)$ time.

- Compute $\operatorname{OPT}(\mathrm{i}, \cdot)$ from $\operatorname{OPT}(\mathrm{i}-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m+n)$ space and $O(m n)$ time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j)=\operatorname{OPT}(i, j)$.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n)

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j)+g(i, j)$.

Sequence Alignment: Linear Space

Observation 2. Let q be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, the shortest path from $(0,0)$ to (m, n) uses $(q, n / 2)$.
$n / 2$

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n / 2)+g(q, n / 2)$ using $D P$.

- Align x_{q} and $y_{n / 2}$.

Conquer: recursively compute optimal alignment in each piece.
$n / 2$

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length at most m and $n . T(m, n)=O(m n \log n)$.

$$
T(m, n) \leq 2 T(m, n / 2)+O(m n) \Rightarrow T(m, n)=O(m n \log n)
$$

Remark. Analysis is not tight because two sub-problems are of size ($q, n / 2$) and ($m-q, n / 2$). In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n)=$ max running time of algorithm on strings of length m and $n . ~ T(m, n)=O(m n)$.

Pf. (by induction on n)

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
- Choose constant c so that:

```
T(m,2) \leq cm
T(2,n) \leqcn
T(m,n)}\leqcmn+T(q,n/2)+T(m-q,n/2
```

- Base cases: $m=2$ or $n=2$.
- Inductive hypothesis: $T(m, n) \leq 2 \mathrm{cmn}$.

$$
\begin{aligned}
T(m, n) & \leq T(q, n / 2)+T(m-q, n / 2)+c m n \\
& \leq 2 c q n / 2+2 c(m-q) n / 2+c m n \\
& =c q n+c m n-c q n+c m n \\
& =2 c m n
\end{aligned}
$$

