
1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Algorithmic Paradigms

Greed. Build up a solution incrementally, optimizing some local

criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming. Break up a problem into a series of sub-

problems, and build up solutions to larger and larger sub-problems,

using the overlaps of sub-problems.

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

! Dynamic programming = planning over time.

! Secretary of Defense was hostile to mathematical research.

! Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.

! Bioinformatics.

! Control theory.

! Information theory.

! Operations research.

! Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

! Viterbi for hidden Markov models.

! Unix diff for comparing two files.

! Smith-Waterman for sequence alignment.

! Bellman-Ford for shortest path routing in networks.

! Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

! Job j starts at sj, finishes at fj, and has weight or value vj .

! Two jobs compatible if they don't overlap.

! Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

! Consider jobs in ascending order of finish time.

! Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ! f2 ! . . . ! fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

! Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

! Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j !1){ } otherwise

"

$

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

 if (j = 0)

 return 0

 else

 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems ! exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

 M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

 if (M[j] is empty)

 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

 return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

! Sort by finish time: O(n log n).

! Computing p(!) : O(n) after sorting by start time.

! M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

! Progress measure " = # nonempty entries of M[].

– initially " = 0, throughout " # n.

– (ii) increases " by 1 $ at most 2n recursive calls.

! Overall running time of M-Compute-Opt(n) is O(n). !

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

! # of recursive calls ! n " O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

 if (j = 0)

 output nothing

 else if (vj + M[p(j)] > M[j-1])

 print j

 Find-Solution(p(j))

 else

 Find-Solution(j-1)

}

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

 M[0] = 0

 for j = 1 to n

 M[j] = max(vj + M[p(j)], M[j-1])

}

6.3 Segmented Least Squares

17

Segmented Least Squares

Least squares.

! Foundational problem in statistic and numerical analysis.

! Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

! Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ! min error is achieved when

SSE = (yi ! axi !b)2

i=1

n

"

a =
n xi yi ! (xi)i" (yi)i"i"

n xi
2
! (xi)

2

i"i"
, b =

yi ! a xii"i"

n

x

y

18

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

! Tradeoff function: E + c L, for some constant c > 0.

x

y

20

Dynamic Programming: Multiway Choice

Notation.

! OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

! e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

! Last segment uses points pi, pi+1 , . . . , pj for some i.

! Cost = e(i, j) + c + OPT(i-1).

OPT(j) =
0 if j = 0

min
1! i ! j

e(i, j) + c + OPT(i "1){ } otherwise

$
%

& %

21

Segmented Least Squares: Algorithm

Running time. O(n3).

! Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

 M[0] = 0

 for j = 1 to n

 for i = 1 to j

 compute the least square error eij for

 the segment pi,…, pj

 for j = 1 to n

 M[j] = min 1 ! i ! j (eij + c + M[i-1])

 return M[n]

}

can be improved to O(n2) by pre-computing various statistics

