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Algorithmic Paradigms

Greed.  Build up a solution incrementally, optimizing some local

criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming.  Break up a problem into a series of sub-

problems, and build up solutions to larger and larger sub-problems,

using the overlaps of sub-problems.
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Dynamic Programming History

Bellman.  Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

! Dynamic programming = planning over time.

! Secretary of Defense was hostile to mathematical research.

! Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.
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Dynamic Programming Applications

Areas.

! Bioinformatics.

! Control theory.

! Information theory.

! Operations research.

! Computer science:  theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

! Viterbi for hidden Markov models.

! Unix diff for comparing two files.

! Smith-Waterman for sequence alignment.

! Bellman-Ford for shortest path routing in networks.

! Cocke-Kasami-Younger for parsing context free grammars.



6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.

! Job j starts at sj, finishes at fj, and has weight or value vj .

! Two jobs compatible if they don't overlap.

! Goal:  find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

! Consider jobs in ascending order of finish time.

! Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  !  f2  ! . . . ! fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

! Case 1:  OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  p(j)

! Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  j-1

  

 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j !1){ } otherwise
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

   if (j = 0)

      return 0

   else

      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of

redundant sub-problems  !  exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

   M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

   if (M[j] is empty)

      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

   return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache; lookup as

needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

! Sort by finish time:  O(n log n).

! Computing p(!) :  O(n) after sorting by start time.

! M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

! Progress measure " = # nonempty entries of M[].

– initially " = 0,  throughout " # n.

– (ii) increases " by 1  $  at most 2n recursive calls.

! Overall running time of M-Compute-Opt(n) is O(n).   !

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.  What if

we want the solution itself?

A.  Do some post-processing.

! # of recursive calls ! n  "  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

   if (j = 0)

      output nothing

   else if (vj + M[p(j)] > M[j-1])

      print j

      Find-Solution(p(j))

   else

      Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ! f2 ! ... ! fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

   M[0] = 0

   for j = 1 to n

      M[j] = max(vj + M[p(j)], M[j-1])

}



6.3  Segmented Least Squares
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Segmented Least Squares

Least squares.

! Foundational problem in statistic and numerical analysis.

! Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

! Find a line y = ax + b that minimizes the sum of the squared error:

Solution.  Calculus  !  min error is achieved when

  

 

SSE = (yi ! axi !b)2

i=1

n

"

  

 

a =
n xi yi ! ( xi )i" ( yi )i"i"

n xi
2
! ( xi )
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Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and

parsimony?
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Segmented Least Squares

Segmented least squares.

! Points lie roughly on a sequence of several line segments.

! Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

! x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

! Tradeoff function:  E + c L, for some constant c > 0.
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Dynamic Programming:  Multiway Choice

Notation.

! OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

! e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

! Last segment uses points pi, pi+1 , . . . , pj for some i.

! Cost = e(i, j) + c + OPT(i-1).

  

 

OPT( j) =
0 if  j = 0

min
1! i ! j

e(i, j) + c + OPT(i "1){ } otherwise

# 

$ 
% 

& % 



21

Segmented Least Squares:  Algorithm

Running time.  O(n3).

! Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

   M[0] = 0

   for j = 1 to n

      for i = 1 to j

         compute the least square error eij for

         the segment pi,…, pj

   for j = 1 to n

      M[j] = min 1 ! i ! j (eij + c + M[i-1])

   return M[n]

}

can be improved to O(n2) by pre-computing various statistics


