
CSE 202

Network flow

 Fan Chung Graham

 UC San Diego

What is a network?

LAN

WAN
CAN MAN

HAN

SDSC, skitter (July 1998)

An induced subgraph of the collaboration
graph with authors of Erdös number ! 2.

What is a network?

graph++.A network =

Network = Graph++

+ traffic demand

+ traffic capacity

+ traffic location

1

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

3

Maximum Flow and Minimum Cut

Max flow and min cut.

! Two very rich algorithmic problems.

! Cornerstone problems in combinatorial optimization.

! Beautiful mathematical duality.

Nontrivial applications / reductions.

! Data mining.

! Open-pit mining.

! Project selection.

! Airline scheduling.

! Bipartite matching.

! Baseball elimination.

! Image segmentation.

! Network connectivity.

! Network reliability.

! Distributed computing.

! Egalitarian stable matching.

! Security of statistical data.

! Network intrusion detection.

! Multi-camera scene reconstruction.

! Many many more . . .

4

The game of hex

5

A 11 x 11 hex board

Connect the red

= cut the blue

The red player wishes to form a path

 joining the two red side.

Same for the blue player.

Tip:

6

A planar graph

A B

Y

X

7

Maximum Flow and Minimum Cut

Max flow and min cut.

! Two very rich algorithmic problems.

! Cornerstone problems in combinatorial optimization.

! Beautiful mathematical duality.

Nontrivial applications / reductions.

! Data mining.

! Open-pit mining.

! Project selection.

! Airline scheduling.

! Bipartite matching.

! Baseball elimination.

! Image segmentation.

! Network connectivity.

! Network reliability.

! Distributed computing.

! Egalitarian stable matching.

! Security of statistical data.

! Network intrusion detection.

! Multi-camera scene reconstruction.

! Many many more . . .

8

Flow network.

! Abstraction for material flowing through the edges.

! G = (V, E) = directed graph, no parallel edges.

! Two distinguished nodes: s = source, t = sink.

! c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

capacity

source sink

9

Def. An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 5 + 15
 = 30

 A

cap(A, B) = c(e)
e out of A

!

10

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

Cuts

Def. An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:

cap(A, B) = c(e)
e out of A

!

 Capacity = 9 + 15 + 8 + 30
 = 62

11

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

 Capacity = 10 + 8 + 10
 = 28

12

Def. An s-t flow is a function that satisfies:

! For each e ! E: (capacity)

! For each v ! V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0

f (e)
e in to v

! = f (e)
e out of v

!

0 ! f (e) ! c(e)

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

v(f) = f (e)
e out of s

! .

4

13

Def. An s-t flow is a function that satisfies:

! For each e ! E: (capacity)

! For each v ! V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

f (e)
e in to v

! = f (e)
e out of v

!

0 ! f (e) ! c(e)

v(f) = f (e)
e out of s

! .

4

14

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

15

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

f (e)
e out of A

! " f (e)
e in to A

! = v(f)

4

A

16

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

f (e)
e out of A

! " f (e)
e in to A

! = v(f)

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

17

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

f (e)
e out of A

! " f (e)
e in to A

! = v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

18

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

f (e)
e out of A

! " f (e) = v(f)
e in to A

! .

v(f) = f (e)
e out of s

!

=

v "A

! f (e)
e out of v

! # f (e)
e in to v

!
$

%
&

'

(
)

= f (e)
e out of A

! # f (e).
e in to A

!

by flow conservation, all terms
except v = s are 0

19

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30 ! Flow value " 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

A

20

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have

v(f) ! cap(A, B).

Pf.

!

Flows and Cuts

v(f) = f (e)
e out of A

! " f (e)
e in to A

!

f (e)
e out of A

!

c(e)
e out of A

!

= cap(A,B)

s

t

A B

 7

6

 8

4

21

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 ! Flow value " 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0A

22

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

23

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

24

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality " global optimality

25

Residual Graph

Original edge: e = (u, v) ! E.

! Flow f(e), capacity c(e).

Residual edge.

! "Undo" flow sent.

! e = (u, v) and eR = (v, u).

! Residual capacity:

Residual graph: Gf = (V, Ef).

! Residual edges with positive residual capacity.

! Ef = {e : f(e) < c(e)} " {eR : f(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6

residual capacity

flow

c f (e) =
c(e)! f (e) if e " E

f (e) if e
R " E

$
%

26

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

7. Ford-Fulkerson Demo

28

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

0

0

0

0 0 0

0

0

 G:

Flow value = 0

0

flow

capacity

29

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

0

0

0

0 0 0

0

0

 G:

s

2

3

4

5 t 10 9

 4

 10 6 2

 Gf:

10 8

 10

8 8

8

X X

X

0

Flow value = 0

capacity

residual capacity

flow

30

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

8

0

0

0 0 8

8

0 0

 G:

s

2

3

4

5 t 10

 4

 10 6

 Gf:

 8

 8

 8

 9

 22

 2

10

2
10

X

X

X2X

Flow value = 8

31

0

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

10

0

0

0 2 10

8

2

 G:

s

2

3

4

5 t

 4

 2

 Gf:

 10

 810

2

 10 7

 10 6

X

6
6

6

X

X

8X

Flow value = 10

32

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

10

0

6

6 8 10

8

2

 G:

s

2

3

4

5 t1

 6

 Gf:

 10

 8 10

8

6

6

 6

 4

 4

 4

 2

X

8

2

8

X

X

0
X

Flow value = 16

33

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

10

2

8

8 8 10

8

0

 G:

s

2

3

4

5 t

 6 2

 Gf:

 10

 10

8

6

 8

8

 2

 2 1

 2

 8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18

34

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

10

3

9

9 9 10

7

0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

Flow value = 19

35

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

10

3

9

9 9 10

7

0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

Flow value = 19Cut capacity = 19

36

Augmenting Path Algorithm

Augment(f, c, P) {

 b ! bottleneck(P)

 foreach e " P {

 if (e " E) f(eR) ! f(e) + b

 else f(eR) ! f(e) - b

 }

 return f

}

Ford-Fulkerson(G, s, t, c) {

 foreach e " E f(e) ! 0

 Gf ! residual graph

 while (there exists augmenting path P) {

 f ! Augment(f, c, P)

 update Gf
 }

 return f

}

forward edge

reverse edge

37

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the

max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

 (i) There exists a cut (A, B) such that v(f) = cap(A, B).

 (ii) Flow f is a max flow.

 (iii) There is no augmenting path relative to f.

(i) ! (ii) This was the corollary to weak duality lemma.

(ii) ! (iii) We show contrapositive.

! Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

38

Proof of Max-Flow Min-Cut Theorem

(iii) ! (i)

! Let f be a flow with no augmenting paths.

! Let A be set of vertices reachable from s in residual graph.

! By definition of A, s " A.

! By definition of f, t # A.

v(f) = f (e)
e out of A

! " f (e)
e in to A

!

= c(e)
e out of A

!

= cap(A,B)

original network

s

t

A B

39

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) ! nC iterations.

Pf. Each augmentation increase value by at least 1. !

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. !

7.3 Choosing Good Augmenting Paths

41

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

42

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

! Some choices lead to exponential algorithms.

! Clever choices lead to polynomial algorithms.

! If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

! Can find augmenting paths efficiently.

! Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

! Max bottleneck capacity.

! Sufficiently large bottleneck capacity.

! Fewest number of edges.

43

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.

! Don't worry about finding exact highest bottleneck path.

! Maintain scaling parameter !.

! Let Gf (!) be the subgraph of the residual graph consisting of only

arcs with capacity at least !.

110

s

4

2

t
 1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

44

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

 foreach e ! E f(e) " 0

 # " smallest power of 2 greater than or equal to C

 Gf " residual graph

 while (# $ 1) {

 Gf(#) " #-residual graph

 while (there exists augmenting path P in Gf(#)) {

 f " augment(f, c, P)

 update Gf(#)

 }

 # " # / 2

 }

 return f

}

45

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.

! By integrality invariant, when ! = 1 " Gf(!) = Gf.

! Upon termination of ! = 1 phase, there are no augmenting paths. !

46

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + !log2 C" times.

Pf. Initially C # $ < 2C. $ decreases by a factor of 2 each iteration. !

Lemma 2. Let f be the flow at the end of a $-scaling phase. Then the

value of the maximum flow is at most v(f) + m $.

Lemma 3. There are at most 2m augmentations per scaling phase.

! Let f be the flow at the end of the previous scaling phase.

! L2 % v(f*) # v(f) + m (2$).

! Each augmentation in a $-phase increases v(f) by at least $. !

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to run in O(m2 log C) time. !

proof on next slide

47

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a !-scaling phase. Then value

of the maximum flow is at most v(f) + m !.

Pf. (almost identical to proof of max-flow min-cut theorem)

! We show that at the end of a !-phase, there exists a cut (A, B)

such that cap(A, B) " v(f) + m !.

! Choose A to be the set of nodes reachable from s in Gf(!).

! By definition of A, s # A.

! By definition of f, t $ A.

v(f) = f (e)
e out of A

! " f (e)
e in to A

!

(c(e)
e out of A

! "$) " $
e in to A

!

= c(e)
e out of A

! " $
e out of A

! " $
e in to A

!

cap(A, B) - m$

original network

s

t

A B

