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What is a network?
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Maximum Flow and Minimum Cut

Max flow and min cut.

! Two very rich algorithmic problems.

! Cornerstone problems in combinatorial optimization.

! Beautiful mathematical duality.

Nontrivial applications / reductions.

! Data mining.

! Open-pit mining.

! Project selection.

! Airline scheduling.

! Bipartite matching.

! Baseball elimination.

! Image segmentation.

! Network connectivity.

! Network reliability.

! Distributed computing.

! Egalitarian stable matching.

! Security of statistical data.

! Network intrusion detection.

! Multi-camera scene reconstruction.

! Many many more . . .
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The game of hex
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A 11 x 11 hex board

Connect the red

= cut the blue

The red player wishes to form a path

 joining the two red side.

Same for the blue player.

Tip:
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A planar graph

A B

Y

X
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Maximum Flow and Minimum Cut

Max flow and min cut.

! Two very rich algorithmic problems.

! Cornerstone problems in combinatorial optimization.

! Beautiful mathematical duality.

Nontrivial applications / reductions.

! Data mining.

! Open-pit mining.

! Project selection.

! Airline scheduling.

! Bipartite matching.

! Baseball elimination.

! Image segmentation.

! Network connectivity.

! Network reliability.

! Distributed computing.

! Egalitarian stable matching.

! Security of statistical data.

! Network intrusion detection.

! Multi-camera scene reconstruction.

! Many many more . . .



8

Flow network.

! Abstraction for material flowing through the edges.

! G = (V, E) = directed graph, no parallel edges.

! Two distinguished nodes:  s = source, t = sink.

! c(e) = capacity of edge e.

Minimum Cut Problem
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Def.  An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:

Cuts
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cap( A, B)  =  c(e)
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!



10

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4
   A

Cuts

Def.  An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:
  

 

cap( A, B)  =  c(e)
e out of A

!

 Capacity = 9 + 15 + 8 + 30
              = 62
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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              = 28
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Def.  An s-t flow is a function that satisfies:

! For each e ! E:  (capacity)

! For each v ! V – {s, t}: (conservation)

Def.  The value of a flow f is:

Flows
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Def.  An s-t flow is a function that satisfies:

! For each e ! E:  (capacity)

! For each v ! V – {s, t}: (conservation)

Def.  The value of a flow f is:

Flows
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4 0

Value = 28



15

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flows and Cuts

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then

Pf.

  

 

f (e)
e out of A

! " f (e) = v( f )
e in to A

! .
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Flows and Cuts

Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30   !    Flow value " 30 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have

v(f) ! cap(A, B).

Pf.

!

Flows and Cuts

 

v( f ) = f (e)
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e in to A
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Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28   !    Flow value " 28
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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Residual Graph

Original edge:  e = (u, v)  ! E.

! Flow f(e), capacity c(e).

Residual edge.

! "Undo" flow sent.

! e = (u, v) and eR = (v, u).

! Residual capacity:

Residual graph:  Gf = (V, Ef ).

! Residual edges with positive residual capacity.

! Ef = {e : f(e) < c(e)}  "  {eR : f(e) > 0}.
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u v 11

residual capacity

 6

residual capacity

flow

 

c f (e) =
c(e)! f (e) if  e " E

f (e) if  e
R " E

# 
$ 
% 
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Ford-Fulkerson Algorithm
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7.  Ford-Fulkerson Demo
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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0

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

Augment(f, c, P) {

   b ! bottleneck(P)

   foreach e " P {

      if (e " E) f(eR) ! f(e) + b

      else       f(eR) ! f(e) - b

   }

   return f

}

Ford-Fulkerson(G, s, t, c) {

   foreach e " E  f(e) ! 0

   Gf ! residual graph

   while (there exists augmenting path P) {

      f ! Augment(f, c, P)

      update Gf
   }

   return f

}

forward edge

reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the

max flow is equal to the value of the min cut.

Proof strategy.  We prove both simultaneously by showing the TFAE:

    (i) There exists a cut (A, B) such that v(f) = cap(A, B).

   (ii) Flow f is a max flow.

  (iii) There is no augmenting path relative to f.

(i)  ! (ii)  This was the corollary to weak duality lemma.

(ii)  ! (iii)  We show contrapositive.

! Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)  ! (i)

! Let f be a flow with no augmenting paths.

! Let A be set of vertices reachable from s in residual graph.

! By definition of A, s " A.

! By definition of f, t # A.

 

v( f ) = f (e)
e out of A

! " f (e)
e in to A

!

= c(e)
e out of A

!

= cap(A,B)

original network

s

t

A B
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacities cf (e)

remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most v(f*) ! nC iterations.

Pf.  Each augmentation increase value by at least 1.   !

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.

Pf.  Since algorithm terminates, theorem follows from invariant.   !



7.3  Choosing Good Augmenting Paths
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Ford-Fulkerson:  Exponential Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

! Some choices lead to exponential algorithms.

! Clever choices lead to polynomial algorithms.

! If capacities are irrational, algorithm not guaranteed to terminate!

Goal:  choose augmenting paths so that:

! Can find augmenting paths efficiently.

! Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]

! Max bottleneck capacity.

! Sufficiently large bottleneck capacity.

! Fewest number of edges.



43

Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases

flow by max possible amount.

! Don't worry about finding exact highest bottleneck path.

! Maintain scaling parameter !.

! Let Gf (!) be the subgraph of the residual graph consisting of only

arcs with capacity at least !.
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

   foreach e ! E  f(e) " 0

   # " smallest power of 2 greater than or equal to C

   Gf " residual graph

   while (# $ 1) {

      Gf(#) " #-residual graph

      while (there exists augmenting path P in Gf(#)) {

         f " augment(f, c, P)

         update Gf(#)

      }

      # " # / 2

   }

   return f

}
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C.

Integrality invariant.  All flow and residual capacity values are integral.

Correctness.  If the algorithm terminates, then f is a max flow.

Pf.

! By integrality invariant, when ! = 1  "  Gf(!)  = Gf.

! Upon termination of ! = 1 phase, there are no augmenting paths.  !
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Capacity Scaling:  Running Time

Lemma 1.  The outer while loop repeats 1 + !log2 C" times.

Pf.  Initially C # $ < 2C.  $ decreases by a factor of 2 each iteration. !

Lemma 2.  Let f be the flow at the end of a $-scaling phase. Then the

value of the maximum flow is at most v(f) + m $.

Lemma 3.  There are at most 2m augmentations per scaling phase.

! Let f be the flow at the end of the previous scaling phase.

! L2  %   v(f*)  #  v(f) + m (2$).

! Each augmentation in a $-phase increases v(f) by at least $.  !

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations.  It can be implemented to run in O(m2 log C) time.  !

proof on next slide
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Capacity Scaling:  Running Time

Lemma 2.  Let f be the flow at the end of a !-scaling phase. Then value

of the maximum flow is at most v(f) + m !.

Pf.   (almost identical to proof of max-flow min-cut theorem)

! We show that at the end of a !-phase, there exists a cut (A, B)

such that cap(A, B)  "  v(f) + m !.

! Choose A to be the set of nodes reachable from s in Gf(!).

! By definition of A, s # A.

! By definition of f, t $ A.

 

v( f ) = f (e)
e out of A

! " f (e)
e in to A

!

# (c(e)
e out of A

! "$) " $
e in to A

!

= c(e)
e out of A

! " $
e out of A

! " $
e in to A

!

# cap(A, B) - m$

original network
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