2).

—
v
o}
=
)

kot
&)
P
W

=
&
e
e
Ld
o
e
“
o
g
Fim
53

An tnduced subgraph of the collaboration graph (with

2.

Made by Fan Chung Graham and Lincoln Lu in 200

What is an algorithm?

“ A procedure for solving a mathematical problem (as of finding

the greatest common divisor) in a finite number of steps that

frequently involves repetition of an operation.” — webster.com

“ An algorithm is a finite, definite, effective procedure,

The Art of
Computer

with some input and some output.” B emai

— Donald Knuth

DONALD E. KNUTH

Wolfram

4
-
.‘\r.‘n-"

~ .' »
Built with

M athW@rId the web's most extensive mathematics resource

L p A | |
Jul B .

Sy
iemarica recnnoiogy
.y

Discrete Mathematics > Computer Science > Algorithms > General Algorithms >
Discrete Mathematics > Computer Science > Theory of Computation >

Algorithm

’ EXPLORE THES TOPIC IN CONTRIBUTE
& The MathWorid Classroom This Entry

An algorithm is a specific set of instructions for carrying out a procedure
or solving a problem, usually with the requirement that the procedure
terminate at some point. Specific algorithms sometimes also go by the
name method, procedure, or technigue. The word "algorithm" is a
distortion of al-Khwarizmi, a Persian mathematician who wrote an
influential treatise about algebraic methods. The process of applying an
algorithm to an input to obtain an output is called a computation.

SEE ALSO: 196-Algorithm, Archimedes Algorithm, Brelaz's Heuristic
Algorithm, Buchberger's Algorithm, Bulirsch-Stoer Algorithm, Bumping

Algorithm etymology

Etymology. [Knuth, TAOCP]

* Algorism = process of doing arithmetic using Arabic numerals.
* A misperception: algiros [painful]l + arithmos [number].

* True origin: Abu 'Abd Allah Muhammad ibn Musa al-Khwarizm
was a famous 9th century Persian textbook author who wrote
Kitab al-jabr wa'l-mugabala, which evolved into today's high

school algebra text.

BN T R e
q o & tmlllecerler sl B

wh ol by AAlAss L

Sdenieroslisielietd i

¥ -‘-_u.)'{.lu'»’....- .t
; £ = o ALl »

Abi ‘Abdallah Muhammad ibn Misa al-Khwarizmi (c. 780 — c. 850)

was a Persian mathematician, astronomer and geographer,
a scholar in the House of Wisdom in Baghdad.

His Kitab al-Jabr wa-I-Mugabala presented the first
systematic solution of linear and quadratic equations. He is
considered the founder of algebra, a credit he shares with
Diophantus. In the twelfth century, Latin translations of his
work on the Indian numerals, introduced the decimal
positional number system to the Western world. He revised
Ptolemy's Geography and wrote on astronomy and
astrology.

3wz

IO
g

g
P." 7 :.4
[P

¥
A

A

SOYT

MYXaMMed
His contributions had a great impact on language. | fibXOPE3MU

"Algebra" is derived from al-jabr, one of the two operations

he used to solve quadratic equations. Algorism and

algorithm stem from Algoritmi, the Latin form of his name.

From WIKI

http://en.wikipedia.org/wiki/Persian_people
http://en.wikipedia.org/wiki/Islamic_geography
http://en.wikipedia.org/wiki/Scholar
http://en.wikipedia.org/wiki/House_of_Wisdom
http://en.wikipedia.org/wiki/Baghdad
http://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
http://en.wikipedia.org/wiki/Linear_equation
http://en.wikipedia.org/wiki/Quadratic_equation
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Diophantus
http://en.wikipedia.org/wiki/Latin
http://en.wikipedia.org/wiki/Al-Khw%C4%81rizm%C4%AB#Arithmetic
http://en.wikipedia.org/wiki/Indian_numerals
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Positional_notation
http://en.wikipedia.org/wiki/Western_world
http://en.wikipedia.org/wiki/Ptolemy
http://en.wikipedia.org/wiki/Geography_(Ptolemy)
http://en.wikipedia.org/wiki/Quadratic_equations
http://en.wikipedia.org/wiki/Algorism
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Latin

Why study algorithms?

Internet. Web search, packet routing, distributed file sharing, ...
Biology. Human genome project, protein folding, ...

Computers. Circuit layout, databases, caching, networking, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...

Multimedia. MP3, JPG, DivX, HDTYV, face recognition, ...

Social networks. Recommendations, news feeds, advertisements, ...
Physics. N-body simulation, particle collision simulation, ...

We emphasize algorithms and techniques that are useful in practice.

Textbook

Required reading. Algorithm Design by Jon Kleinberg and Eva Tardos.
Addison-Wesley 2005, ISBN 978-0321295354.

Alqortm Uesigr

JON KLEINBERG - EVA TARDOS

Euclidean algorithm:

Find the largest common factor between 36 and 123.

Euclidean algorithm:

Find the largest common factor between 36 and 123.

3
36[123
108 123 = 3(36)+15
15
2
15[36
— 30 36 = 2(15)+6
6
2
15
2l 15 = 2(6)
3 /

Euclidean of Alxandria (~325 BC)

Euclid of Alexandria 1s the most
prominent mathematician of antiquity best
known for his treatise on mathematics The
Elements. The long lasting nature of The
Elements must make Euclid the leading
mathematics teacher of all time.

MM
Tu

S i}
- R

JADES
S erp \\'3;;‘.(/_(.'“-’

« namiemate awreo inTherau
riftena ,{n;: L .1”“0. }

e

o 1 b
-r!"" jl'[

10y
Y

I‘ill- B

= I‘,
= U

——

;‘1“'*

,,
i

Min. 11 SNl

L

Euclidean algorithm:

Find the largest common factor between 36 and 123.

3
36[123
108 123 = 3(36)+15
15
2
15[36
— 30 36 = 2(15)+6
6
2
15
2l 15 = 2(6)
3 /

Euclidean algorithm:

Find the largest common factor between @ and b.

Algorithm #1.

function gcd(a, b)
while b # 0
t :=Db
b
a
return a

mod b

a
t

Algorithm #2: function gcd(a, b)
while a # b
if a > b
a :=a->=
else
b :=b - a
return a

Algorithm analysis:

M Termination?
M Correctness?

MEfficiency?

Emphasizes critical thinking, problem-solving

Algorithm Analysis

© Worst case running fime.

© Average case running time.

Algorithm Analysis

© Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.
. Generally captures efficiency in practice.
. Draconian view, but hard to find effective alternative.

© Average case running time. Obtain bound on running time of algoritht
on random input as a function of input size N.
. Hard (or impossible) to accurately model real instances by random

distributions.
. Algorithm tuned for a certain distribution may perform poorly on

other inputs.

Brute-Force Search

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
. Typically takes 2N time or worse for inputs of size N.

. Unacceptable in practice. \
n! for stable matching

with n men and n women

. Not only too slow to be useful, it is an intellectual cop-out.
. Provides us with absolutely no insight into the structure of the
problem.

Proposed definition of efficiency. An algorithm is efficient
if it achieves qualitatively better worst-case performance
than brute-force search.

Polynomial-Time

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants ¢ > 0 and d > O such that on every
input of size N, its running time is bounded by cN¢ steps.

A step. a single assembly-language instruction, one line of a
programming language like C...

What happens if the input size increases from N to 2N?

Def. Analgorithm is poly-time if the above scaling property holds.

Worst-Case Polynomial-Time

Def. Analgorithm is efficient if its running time is polynomial.

Justification: It really works in practicel
. Although 6.02 x 1023 x N2 is technically poly-time, it would be
useless in practice.
. In practice, the poly-time algorithms that people develop almost
always have low constants and low exponents.
. Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.
. Some poly-time algorithms do have high constants and/or
exponents, and are useless in practice.
. Some exponential-time (or worse) algorithms are widely used

Asymptotic Order of Growth

» We try to express that an algorithm's worst case running time is at
most proportional o some function f(n).
» Function f(n) becomes a bound on the running time of the algorithm.

» Pseudo-code style.
. counting the number of pseudo-code steps.
. step. Assigning a value to a variable, looking up an entry in an array,
following a pointer, a basic arithmetic operation...

'On any input size n, the algorithm runs for at most 1.62n2 + 3.5n + 8
steps.”

Do we need such precise bound?

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0and ny >0
such that for all n > n, we have T(n) < ¢ - f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ >0 and n,>0
such that for all n > n, we have T(n) > ¢ - f(n).

Tight bounds. T(n) is ©(f(n)) if T(n) is both O(f(n)) and Q(f(n)).
Ex: T(n)=32n2+17n+ 32.

. T(n) is O(n?), O(n3), Q(n2), Q(n), and B(n?) .
. T(n) is not O(n), Q(n3), B(n), or O(n3).

Asymptotic order of growth

Si(n)=0(f,(n)) means f,(n) <c f,(n)
as N -—>o

g(n) =£2(g,(n)) means g,(n)>c g,(n)
as /N —>

h/(n) = O(h,(n)) means h (n)<c h,(n)<c'h(n)
as 7N —> o

where ¢ and ¢’ are absolute constants.

Arrange the following list of functions in
ascending order of growth rate:

fi(n)=n*
f,(n)=~2n
f.(n)=n+10
f(n)=10"
f.(n)=100"

f.(n)=n"logn

00/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J

IOOH uslec uszec us?’ec us4€c us5ec u%ce)c ;}soe(c)

ndl 1 | 4| 9| 16| 25 10 1
usec | usec | usec | usec | usec usec msec

n3

2!’\

nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

o Sy
NG n
k 10 20 30 40

) 50 100 1000
IOOH uslec uszec usec| usec | usec u%ce)c ;}soe(c)
ndl 1 | 4| 9| 16| 25 10 1
usec | usec | usec | usec | usec usec msec
nd | 1 8 | 27 | 64 | 13
usec | usec| usec | usec | msec
2!’\
nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

00/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J

IOOH uslec uszec us?’ec us4€c us5ec u%ce)c ;}soe(c)

ndl 1 | 4| 9| 16| 25 10 1
usec | usec | usec | usec | usec usec msec

nd | 1 8 | 27 | 64 | 13 1 1
usec | usec| usec | usec | msec | msec sec

2!’\

nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

00/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

4
IOOH uslec uszec us?’ec MS4€C M$5€C Lé(e)c !}SOZCC)

2l 1| 4] 9| 16|25 | 10 1

usec | usec | usec | usec | usec usec msec
n3 1 8 27 64 13 1 1
usec | usec| usec | usec | msec | msec sec

on 1 1 | 11

usec | msec| sec

nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

00/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J
IOOH uslec uszec us?’ec us4€c us5ec u%ce)c ;}soe(c)
ndl 1 | 4| 9| 16| 25 10 1
usec | usec | usec | usec | usec usec msec
nd | 1 8 | 27 | 64 | 13 1 1
usec | usec| usec | usec | msec | msec sec
on | 1 1 | 11 | 18.3
usec | msec | sec min
nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

00/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J
IOOH uslec uszec us?’ec us4€c us5ec u%ce)c ;}soe(c)
ndl 1 | 4| 9| 16| 25 10 1
usec | usec | usec | usec | usec usec msec
nd | 1 8 | 27 | 64 | 13 1 1
usec | usec| usec | usec | msec | msec sec
on | 1 1 | 11 | 183 21
usec | msec| sec min yr
nl

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J
IOOH uslec uszec us?’ec us4ec us5€c u%ce)c ;}soe(c)
nl 1 | 4] 9| 1.6 25 10 1
usec | usec| usec | usec | psec usec msec
sl 1 | 8127 | 64| .13 1 1
usec | usec | psec | usec | msec | msec sec
on 1 1 | 1.1 18.3 2.1 | 2.4x107
usec | msec| sec min yr cent
n!

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100 1000

J

IOOH uslec uszec us?’ec us4ec us5€c u%ce)c ;}soe(c)

nl 1 | 4] 9| 1.6 25 10 1
usec | usec| usec | usec | psec usec msec

sl 1 | 8127 | 64| .13 1 1
usec | usec | psec | usec | msec | msec sec

on 1 1 | 1.1 18.3(2.1 |24x10] ----
usec | msec| sec min yr cent

n!

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000
IOOH uslec uszec usec| usec | usec u%ce)c ;}soe(c)
nel 1| 4] . 16 | 2.5 10 1
usec | usec| usec | usec | psec usec msec
n3| 1| 8 64 | .13 1 1
usec | usec | psec | usec | msec | msec sec
on 1 1 18.3(2.1 |24x10] ----
usec | msec min yr cent
nl |3.6 | 18
msec| yr

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000
IOOH u}ec uszec usec| usec | usec pé(e)c &soe(g
nl 1| 41| 9] 16| 25 10 1
usec | usec | usec | usec | usec usec msec
sl 1| 8127 | 64| .13 1 1
lsec | usec | usec lsec msec msec sec
on 1 1 | 1.1 18.3(2.1 |24x10] ----
usec | msec| sec min yr cent
nl | 3.6 | 1.8 p.ox1d?
msec| yr [cent

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000
IOOH u;ec uszec usec| usec | usec u%ce)c ;}soe(c)
nl 1 | 4] 9| 1.6 25 10 1
usec | usec | pusec | usec | usec usec msec
sl 1 | 8127 | 64| .13 1 1
usec | usec| usec | psec | msec | msec sec
on 1 1 (1.1 18.3| 2.1 |24x10] ----
usec | msec| sec min yr cent
nl |36 | 18 poxig] |
msec| yr | cen

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000

IOOH u;ec uszec usec| usec | usec u%ce)c ;}soe(c)

nl 1 | 4] 9| 1.6 25 10 1
usec | usec | pusec | usec | usec usec msec

nsl 1| 8127 | 64| .13 1 1
usec | usec| usec | usec | msec | msec sec

on 1 1 (11 18.3| 2.1 |24x10] ----
usec | msec| sec min yr cent

| i
" lad NP PER] ¢ [ferge

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000
IOOH u;ec uszec usec| usec | usec ulsgc &.Qe(g
nl 1 | 4] 9| 1.6 25 10 1
usec | usec| usec | usec | psec usec msec
nsl 1| 8127 | 64| .13 1 1
usec | usec | psec | usec | msec | msec sec
on 1 1 | 1.1 18.3| 2.1 |24x10] ----
usec | msec| sec min yr cent
| 19 | 5
"R NP PR ¢ [ferget |

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

c\0/77'0/ S’/ée n
“N\ 10 20 30 40 50 100

) 1000
IOOH u;ec uszec us?’ec usec | usec uls(e)c &.Qe(g

nl 1| 4| 9] 16| 25 10 1
usec | usec| usec | usec | psec usec msec

sl 1| 8127 | 64| .13 1 1
usec | usec| usec | usec | msec | msec sec

on 1 1 | 1.1 18.3(2.1 |24x10] ----
usec | msec| sec min yr cent

nl [36| 18 pox1idd | [forget ? ©o

" Lmsec| yr | cent it

Polynomial vs. exponential growth

(assuming 1,000,000,000 operations per second)

Undirected Graphs

Undirected graph. 6 = (V, E)
.V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

1 7
: 60 V={1,2,3,4,5,6,7,8)
e E={(1-2,1-3,2-3,2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
4 5 8 n=8
m=11

Some Graph Applications

Graph Edges

World Wide Web

Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

cnn.com -

netscape.com <« novell.com cnnsi.com timewarner.com —

|

hbo.com +——

|

> sorpranos.com

Ecological Food Web

Food web graph.
. Node = species.
. Edge = from prey to predator.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n2,
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.

, 4
2 =
& N
4 .5 8
é’_

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional to m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ©(m + n) time.

degree = number of neighbors of u

1 3 ['e

1 7 2 3[ef -l o] 5[

. 3 {2 s 7]

23 g {5 &

/ g 5 3 4 6 [

4 ' 5 8 6

| 7 {8 ['y]
¢ 8 {7 [#]

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vi1, Vi With the property that each consecutive pair v, v, is

joined by an edge in E.
Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

Cycles

Def. A cycleisapathv,,v,, .., v, 4, Vv, inwhichv,=v,k>2,and t}
first k-1 nodes are all distinct.

1 7
2 3
4 5 8
6

cycle C = 1-2-4-5-3-1

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

root r

parent of v

. y) (o) (s 2 child of v

a tree the same tree, rooted at 1

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
. Friendster.
. Maze traversal.
. Kevin Bacon number.
. Fewest number of hops in a communication network.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

—_——

//f /
S\ Ll _— LZ | e e Ln—l

BFS algorithm.

,={s}

_, = all neighbors of L.

_, = all nodes that do not belong to L, or L,, and that have an edge
toanode inL,.

. L,,; = all nodes that do not belong to an earlier layer, and that have
an edge toa node inL..

——————
e

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to t iff + appears in some layer.

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containingnode 1={1,2,3,4,5,6,7,8}.

Algorithms: Breadth First Search BFS

Depth First Search DFS

2).

hd
L]
o)
&
P
b ord
&
b
W
]
b
-
-~
~
o
P
“
]
=
i
55

ith
2002,

B e v
¥

e f

£

An induced subgraph of the collaboration graph (wit
Made by Fan Chung Graham and Lincoln Lu in

Yahoo IM graph

‘Reid Andersen 2005

A graph G = (V E)

edge
ind

vertex

Graph Theory has 250 years of history.

Leonhard Euler, 1707-1783

Geometric graphs

Geometric graphs

@)

O

Geometric graphs

@)

O

Geometric graphs

@)

O

Geometric graphs

@)

O

Algebraic graphs

Geometric graphs

(]
@

Algebraic graphs

4] ARG

o Vodaty X .
e “’ \/I \\‘
e = f"— 3 A):!LA:_{A:‘?I I‘ .\. 1 X

!/"
e — :’,,,l‘} \'.’ e
il

v ;‘ ‘ :
Real graphs
(protein interactions
by Jawoong Jeong)

Etwne
MCI
Netcam
RS|
wast
Sprint
UUnet
¥erlo
Linknow

SDSC, skitter

The information we deal with is taking .

on a networked character. 0

What does a massive graph look like?

What does a massive graph look like?

What does a massive graph look like?

prohibitively large
dynamically changing

incomplete information

What does a massive graph look like?

sparse
clustered
small diameter

prohibitively large
dynamically changing
incomplete information

Hard to describe |

Harder to analyze !

Some prevailing characteristic of large
realistic networks

*Small world phenomenon

Small diameter/average distance

Clustering

* Power law degree distribution

A crucial observation

Massive graphs satisfy the power law.

Discovered by several groups independently.

*Barabadsi, Albert and Jeung, 1999.

‘Broder, Kleinberg, Kumar, Raghavan, Rajagopalan
and Tomkins, 1999.

* M Faloutsos, P. Faloutsos and C. Faloutsos, 1999.
- Abello, Buchsbaum, Reeds and Westbrook, 1999.
» Aiello, Chung and Lu, 1999.

The history of power law

» Zipf's law, 1949.
* Yule's law, 1942,
* Lotka's law, 1926.
 Pareto, 1897

Natural language
Bibliometrics
Social sciences

Nature

Massive graphs satisfy the power law.

Power decay degree distribution.

The degree sequences satisfy the power law:

The number of vertices of degree j is
proportional to j-P where 3 is some constant >2.

le+07+H =
Lle+06
Kxx

§ Le+05 \‘%&
Z %
2
 Le+04 -
=]
F
'g Le+03 4
z @k‘

le+02 o,

S
le+0L a%‘)
x SN X
b T MDIK
Le+00 Y T s ; o Savania
Le+00 le+0L le+02 Le+03 le+04 Le+05
Indegree
8/10/98

log_10C# of vetices)

™~ (8] =N
Lo | e) B AN D o | B TS D o | R <N) B |
T T T T T T T T

[N

<

heta=0.9,t=1000000

l Simufation:'seed=5' *
Expected value

1%’
Y
%
1 1 : .l.- —
1 2 3 B 5

log_10(degree)

A graph G = (V,E)

edge
g

Degree sequence (4,4.4,3,3,2)=(d), d.: degree of v,

Degree distribution (0,0,1,2,3)=(f)).
f;: no. of vertices with degree i.

edge

2.51

1.5

0.5

degree 1 degree2 degree3 degree4

Degree distribution (0,0,1,2,3)=(f),
f;: no. of vertices with degree i.

E frequen
B 3-D Col
[03-D Col

Comparisons

le+07+4 =
Le+06 - "
XX
%
& Ler0s %
= %
o %
- E:
w LE+04- \\‘%
Q b,
g),
le+03 v‘,‘
g k)
z A
Le+02 - o,
‘..".'“.'?'
% R,
le+0L - % éﬁ?
.
X TEANK X
= s 4
Le+00 ~————rrrm——r— e .
Le+00 le+0L le+02 le+03 le+04
Indegree
8/10/98

From real data

LRI EORNEN

le+05

log_10C# of vetices)

4.5 .

3.5

2.9

1.5

0.5

beta=0.9,£=1000000

' Simufation:'seedzﬁl +
Expected value

1 2 3 4 5
log_10(degree)

From simulation

A subgraph of a BGP graph

Another subgra

Sty -

A

SPSC, skitter (July 1998

%
~
o
“a
=]
g
P
b o
&
~
W
-~
£
b
e
=
o
P
“
]
=
5 -
(53

f the collaboration graph (with

ho

7

An induced subgrap

Made by Fan Chung Graham and Lincoln Lu in 2002.

100000 £

10000

1000

100 ¢

10 i " A " " A A A i " A " " A A A
1 10 100

The collaboration graph is a power law graph,
based on data from Math Review with 337451
authors with power 2.55

Collaboration graph (Math Review)
+337,000 authors
496,000 edges

Average 5.65 collaborations per person

Average 2.94 collaborators per person
‘Maximum degree 1401. Guess who?
*A giant component of size 208,000
-84 000 isolated vertices

10000 T
[t .dat
1000
100 |
10 L L L " " i " " 1 L i i i " L " "
1 10 100

Ocurrences of words in TLME magazine articles
245412 terms.

.da f
e e
10000 -
1000 ; ; Z At | . 5 2 L Vi
1 10 100

Occurrences of words in WSJ Collection, a 131.6
MB collection of 46449 newspaper articles
(19 million terms). Top 50 terms are included here

v [A]

Airline transportation networks
are power graphs

LE :
4‘"\ o -
QS i]
N = i
A 0L f
0.01F]
0.001F :
0.0001F -

1 10 100 1000
k

Exponents for large power law networks

P(k)~k #
Networks www Actors Citation Power Phone
Index Grid calls
[3 ~2.1) | ~2.3 ~3 ~4 ~2.1
~2.5 (out)

Numerous qustions

* What is a random graph? Which random graphs
can best model real networks?

* Local growth rules versus global behavior?

» Communities and clustering

* network games, dynamics

- Applications----- routing protocals
biological networks
network performance

Questions:

*For a given sequence of integers,
does it represent the degree sequence
of some graph?

Known. An old theorem of Erdos+Gallai 1960.

* For a given degree sequence of a subgraph,

what is the mostly likely degree
distribution of the host graph?

Hope I know! Depends on your random graph modelll

N RER

= A
N

-
IS e T N

"
. 5

o

-
=

°g e
e se
'- ¥

MRS
3

-
-
.

".'J. X
LS

.
. mi’s
o
)
o |
N
R

e

. :.j_\’
‘1;..

An induced subgraph of the collaboration graph (with Erdos number at most 2).

Made by Fan Chung Graham and Lincoln Lu in 2002.

Gale-Sharpley Algorithm:
function stableMatching {
Initialize allm € M and w € W to free
while d firee man m who still has a woman w to propose to
{ w=m's highest ranked such woman
if w is free, (m, w) become engaged
else some pair (m', w) already exists
if w prefers m to m', (m, w) become engaged and
m' becomes free

else (m', w) remain engaged

