
April 5, 2010
Franklin Kenter

PageRank, Spectral Graph Theory, and the
Matrix Tree Theorem

Introduction

1 Introduction

In this lecture, we will go over the basics of the PageRank algorithm and how it relates to graph
theory. Then, we will start our study in spectral graph theory by proving the Matrix Tree Theorem.

2 PageRank

There are two predominant ranking algorithms. PageRank and HITS. PageRank was developed
by Brin and Page and is the foundation for what is now the Google search engine in 1997. The
other, lesser known, is the HITS algorithm which focuses on “hubs” and “authorities” developed
by Kleinburg [1] in 1999. Both of these algorithms are important, most notably, because they are
able to capture the essence of a graph without doing any global pattern matching. Further, it
should be noted that even though Kleinburg “did not receive any Google stock,” mathematically,
his algorithm is still very important today. Here, we will focus on the PageRank algorithm, for
more information on the HITS algorithm, please see the references below.

As developed by Brin and Page, PageRank is a voting system whereby the weight of each vote
is linearly propotional to the total value of the votes it receives. [3] This might seem paradoxial.
However, this sets up a linear equation! More specifically, let G = (V,E) be a directed graph. We
seek the vector f ∈ R|V |, indexed by the verticies in G, that satisfies the following:

f = α1/n+ (1− α)fP

f1∗ = 1

Where α is a constant between 0 and 1, and P is the probability transition matrix of the directed
graph.

1

In particular, f is an eignvalue of the matrix α1∗1/n+(1−α)P with eigenvalue 1. The PerronFrobe-
nius Theorem guarentees that there exists an eigenvector with eigenvalue 1, and provided that P
is strongly connected, all other eigenvalues have modulus strictly less than 1.

Before we continue, we should go over other interpretations of PageRank. Above we gave the
vauge voter interpration. However there are two other interprations. First, as described by Brin
and Page [3], PageRank also models a bored surfer that surfs the graph (i.e., internet) as follows:
at each site, with probability α, the surfer jumps to a random node, each with equal probability,
and with probability 1 − α, the surfer clicks on a random link on the page we is currently navi-
gating. This process creates a modified random walk on the original network with the modified
probability transition matrix P̄ = f(α1∗1/n + (1 − α)P. The PageRank vector, f , is the station-
ary distribution of this modified walk. Another, surprising interpretation is the impatient sufer.
Suppose instead, the impatient surfer starts at a random node (or website), each node with equal
probability. Then with probability α, the surfer stops surfing, and with probability 1−α, the surfer
chooses a random incident outward arc (i.e. clicking a link on the page), each arc with equal prob-
ability, and consequently, moves to that new node (i.e., the new website). The impatient surfer
repeats this process until he stops. The entries of the vector f represent the probability that the
impatient surfer stops at the corresponding node.

To see the second interpretation above, let us look at:

f = α1/n+ (1− α)fP

And solve for f :

f − (1− α)fP = α1/n

f(I− (1− α)P) = α1/n

f = α1/n
I

(I− (1− α)P)

Here, it looks silly to “divide” matrices. However, in this case we are dividing the identity by a
linear polynomial in P, so commutitivity is not an issue. However, we do this to emphasize the
geometric series:

I

(I− (1− α)P)
=

∞∑
n=1

(1− α)nPn

Hence, we get:

2

f = α
1

n

∞∑
n=1

(1− α)nPn

Which corresponds exactly to the second interpretation above: α corresponds to the chance stop-
ping. 1

n corresponds to choosing a random initial node, and the sum corresponds to taking n steps
before stopping.

One observation to make is that the vector 1
n is, in fact, arbitrary. There is no reason we have to

use 1
n . We could use a general probability distribution vector, v. Hence would could define our

“personalized PageRank” using a vector v by solving the following for f :

f = αv + (1− α)fP

Or similarly,

f = αv
∞∑
n=1

(1− α)nPn

Now that we understand what PageRank is, let us emphasize ways to (and not to) compute it!

First, solving the initial equation, for a large directed graph, is expensive. PageRank is intended
to be used upon very large networks- for example, the internet, with billions of nodes. It is not
reasonable to solve a 1000000000×1000000000 matrix! Further, even when we solve for f , we must
invert a matrix which is not much different. There must be some other way, and indeed there is.

Brin and Page used the following recurrence:

ft+1 = α
1

n
+ (1− α)ftP

For some reasonable initia probability distributionl vector f0.

Hence, here, instead of solving a linear equation, or inverting a large matrix, we instead perform
matrix multiplication several thousand times, after which ft will be close to f . Brin and Page have
some results of their simulations here [3].

One thing to keep in mind is the secret role eigenvalues play in PageRank. For the standard
random walk with probability transition matrix P (i.e., α = 0), the random walk converages to
a vector in the eigenspace corresponding to eigenvalue 1. Furthermore, the rate of convergence
is determined by next largest eigenvalue in modulus. For example, if alpha = 0 the recurrance
becomes:

3

ft = f0P
t

Hence, if one were to decompose f0P
t using eigenspaces, we would see that the total error of f0Pt

depends upon its next highest eigenvalue in modulus.

In that sense matrices of the form

α11∗/n
I

(I− (1− α)P)

Have received a lot of attention and are the study of a lot of research. This is the probability
transition matrix of the modified random walk for the original form of PageRank, and its spectra,
as mentioned above, plays a crutial role in the convergance of the modified random walk. In
particular, α pushes all non-maximal eigenvalues away from 1, and hence, causes the process to
converge faster. Though, one should be careful, for ifα is too big, we loose much of the information
captured in the PageRank.

Now that we see have eigenvalues play a crutial role in graph theory, we can turn our attention to
another important result in graph theory: the Matrix Tree Theorem:

3 The Matrix Tree Theorem

First, let us define some special matrices:

Definition 1. The diagonal degree matrix, D of a graph, is a |V (G)| × |V (G)| indexed by the verticies
such that Duv = dv whenever u = v, and =0 otherwise.

Definition 2. The adjacency matrix, A of a graph, is a |V (G)| × |V (G)| indexed by the verticies such that
Auv = 1 whenever {u, v} ∈ E(G), and 0 otherwise.

Definition 3. Given an orientation of the edges in G (i.e., for each edges, designate one end to the head and
the other to be the tail). The oriented incidence matrix, B of a graph, is a |V (G)| × |E(G)| indexed by the
verticies and edges such that Aue = 1 if v is the head of e, =-1 if v is the tail of e, and =0 otherwise.

Now, let us define the combinatorial Laplacian:

Definition 4. The combinatorial Laplacian, L, of a graph, is the |V (G)| × |V (G)| indexed by the verticies
such that L := D−A. Where D and A have the same indices as prescribed by L.

Now, this seemlying innocent matrix, is in fact, very special, it produces Kirchhoff’s Matrix Tree
Theorem:

4

Theorem 1. Kirchhoff 1847 Let Lv be the matrix L with the row and column corresponding to some vertex
v deleted.

Then, regardless of the choice for v, the number of spanning trees of a graph G is DetLv.

Proof. Designate an orientation of the edges in G Let B be the oriented incidence matrix of the
graph, and let Bv be the same matrix with the row corresponding to v deleted.

The following facts are left as an exercise:

Fact 1 L = BB∗

Fact 2 Lv = BvB
∗
v

So DetLv = DetBvB
∗
v

Now, for X ⊂ E, let Bv,X denote the n− 1× n− 1 matrix with only the columns in X . Then,

Lv = BvB
∗
v =

∑
X⊂E,|X|=n−1

(DetBv,X)2

Fact 3 (Also left to the reader.) |DetBv,X | = 1 if X forms a spanning tree, =0 otherwise.

Using fact 3, the sum

∑
X⊂E,|X|=n−1

(DetBv,X)2

counts all spanning trees. Hence, the claim is proved.

One key remark: DetA =
∏

i λi where λ1 ≤ . . . λn are the eigenvalues of A. Hence, the Matrix
Tree Theorem is, in fact, a result in spectral graph theory.

References

[1] Kleinberg, Jon (1999). ”Authoritative sources in a hyperlinked environment”. Journal of the
ACM 46 (5): 604632. http://www.cs.cornell.edu/home/kleinber/auth.pdf

[2] Kirchhoff, G. ”ber die Auflsung der Gleichungen, auf welche man bei der untersuchung der
linearen verteilung galvanischer Strme gefhrt wird.” Ann. Phys. Chem. 72, 497-508, 1847.

5

[3] Brin, S.; Page L. (1997). ”The Anatomy of a Large-Scale Hypertextual Web Search Engine”
http://infolab.stanford.edu/ backrub/google.html

6

