
Math 261B
Final Solutions

1. A treap is a binary tree whose nodes contain two values, a key x, and
a priority px. Keys are drawn from a totally ordered set and the priorities
are given by a random permutation of the keys. Without loss of generality,
we assume that the set of elements is X = {1, 2, . . . , n}. The tree is a heap
according to the priorities (i.e., if x is a parent of y, then px < py). And the tree
is a search tree according to the keys, (i.e., if a node has a key x, then its left
subtree contains nodes with keys < x and its right subtree contains nodes with
keys > x). For example, if X = {1, 2, 3, 4, 5, 6, 7, 8} and p = (3, 1, 5, 4, 8, 6, 2, 7),
we have that p1 = 2, p2 = 7, p3 = 1 and so on.

Tweaps allow for fast insertion, deletion and search of an element. The cost
of these operations is proportional to the height of the treap. In what follows you
will show that this quantity is O(log n) with high probability. The analysis boils
down to the following problems on random permutations on [n] = {1, 2, . . . , n}:
Given a permutation p : [n]→ [n] of the n elements, an element is checked if it
is larger than all the elements appearing to its left in p. For instance, if

p = (3, 1,5, 4,8, 6, 2, 7), (1)

the elements that are checked are in bold. The problem is to show that the
number of checks is concentrated around its expectation as described in the
following subproblems:

(1a) Given a key x, let x− be the set of elements that are smaller than or equal
to x, We will use px− to denote the permutation induced by p on x−. For
example, using p from (1), we have that p6− = (3, 1, 5, 4, 6, 2). Show that
all elements of x− that are checked in px− appear along the path from the
root to x in the tree.

(1b) Prove an analogous statement for the set x+ of all elements ≥ x and use
this to calculate exactly the number of elements from the root to x in the
tree.

(1c) Denoting with Xn the number of elements that are checked for a random
permutation p : [n]→ [n], prove that

E[Xn] = 1 +
1

2
+ . . .+

1

n
.

(It is known that Hn =
∑n
i=1 1/i, the nth harmonic number, is Θ(log n).)

(1d) Let Yi be an indicator random variable denoting whether the ith element
of the permutation (starting from the left) is checked. Prove that

Pr[Yi = 1 | Yi+1 = yi+1, . . . , Yn = yn] =
1

i

for any choice of the y′s.
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(1e) Show that for any index set S,

Pr

[∧
i∈S

(Yi = 1)

]
≤
∏
i∈S

Pr[Yi = 1]. (2)

(1f) Prove that under the condition (2) the Chernoff bound holds for Y =∑n
i=1 Yi. Using this, give a concentration result for Xn.

Solution: (1a) Fix some x and consider p−x . Let c be some checked element
of p−x . Clearly if x = c, then c is on the path from x to the root. Thus we may
assume that x 6= c. In order to show that c is on the path from x to the root,
it suffices to show that x is a descendant of c. Suppose not, then there is some
proper ancestor c′ of c, such that either c′ = x or such that x is a descendant
of c′ in the subtree not containing c. If x = c′, then the px = pc′ < pc, but as
x is the largest element in p−x this contradicts that c is checked. Thus x must
be a proper descendant of c′. We have either c < c′ < x or x < c′ < c. In the
first case c′ is in p−x and c′ has higher priority than c, contradicting that c is
checked. We can not have the second case, since neither c′ or c is in p−x .
Solution: (1b) For p+x , a similar argument as above shows that all checked
elements of p+x appear on the path from the root to x.

To show that every vertex on a path from x to the root r is checked in either
p+x or p−x , we first note that r is clearly checked in one of these, as it is the
highest priority element. Now each of the subtrees are treaps with priorities
given by p−r−1 or p+r+1. Furthermore, other than r, the checked vertices are the

same in
(
p−r−1

)−
x

and p−x , and similarly for
(
p+r+1

)+
x

and p+x . Thus by induction
every vertex on the path from r to x is checked in p+x or p−x . Thus the number
of checked vertices is one more than total number of vertices on the path from
x to r.
Solution: (1c) We proceed by induction. Clearly X1 = 1 as there is only
one permutation of one element. Now consider a random permutation τ on
{2, 3, . . . , n} and insert 1 randomly in one of the n possible positions. The
element 1 is checked if and only if it is inserted in the first position, which
occurs with probability 1

n . Thus the expected number of checked elements is
1
n + E [Xn−1] =

∑n
i=1

1
i .

Solution: (1d) Let a1 < a2 < · · · < ai be the elements occurring in the first i
positions. Independently of the configuration of the elements in the final n− i
positions, the position i is checked if and only if ai is in position i. But the
conditional distribution is independent of the choice of a1 < · · · < ai, and thus
the probability is 1

i .
Solution: (1e) We proceed by induction. Clearly if |S| = 1, the bound holds.
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Thus suppose that |S| ≥ 2 and s is the least element of S. Then

P(∧i∈SYi = 1) = P
(
Ys = 1 | ∧i∈S−{s}Yi = 1

)
P
(
∧i∈S−{s}Yi = 1

)
≤ P

(
Ys = 1 | ∧i∈S−{s}Yi = 1

) ∏
i∈S−{s}

P(Yi = 1)

by induction

=
1

s

∏
i∈S−{s}

P(Yi = 1)

=
∏
i∈S

P(Yi = 1) .

Solution: (1f) Note that from (1d), we have P(Yi = 1) = 1
i for all i. Thus

P(Yi = 0) = 1 − 1
i for all i. As an extension of part (1e), we can derive in a

similar way that P
(
∧i∈SYi = 1,∧j /∈SYj = 0

)
≤
∏
i∈S P(Yi = 1)

∏
j /∈S P(Yj = 0).

Now for any t > 0, we have

P(Y ≥ (1 + δ)E [Y ]) = P
(
etY ≥ et(1+δ)E[Y ]

)
≤

E
[
etY
]

et(1+δ)E[Y ]

=

∑
S⊆[n] P

(
∧i∈SYi = 1,∧j /∈SYj = 0

)
et|S|

et(1+δ)E[Y ]

≤
∑
S⊆[n]

∏
j /∈S P(Yj = 0)

∏
i∈S
(
P(Yi = 1) et

)
et(1+δ)E[Y ]

=

∏
i (P(Yi = 0) + P(Yi = 1) et)

et(1+δ)E[Y ]

=

∏
i E
[
etYi

]
et(1+δ)E[Y ]

.

We note that E
[
etYi

]
= 1 − 1

i + 1
i e
t = 1

i (e
t − 1) + 1 ≤ e

et−1
i , where the last

inequality comes from observe that 1 + x ≤ ex for all x. Thus

P(Y ≥ (1 + δ)E [Y ]) ≤
∏
i e

et−1
i

et(1+δ)E[Y ]
=
e(e

t−1)
∑
i

1
i

et(1+δ)E[Y ]
= e(e

t−(1+δ)t−1)E[Y ].

Letting t = ln(1 + δ), we have

P(Y ≥ (1 + δ)E [Y ]) ≤
(

eδ

(1 + δ)(1+δ)

)E[Y ]

.
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In the other direction, we have that for t > 0

P(Y ≤ (1− δ)E [Y ]) = P
(
e−tY ≥ e−t(1−δ)E[Y ]

)
≤

E
[
e−tY

]
e−t(1−δ)E[Y ]

=

∑
S⊆[n] P

(
∧i∈SYi = 1,∧j /∈SYj = 0

)
e−t|S|

e−t(1−δ)E[Y ]

≤
∑
S⊆[n]

∏
j /∈S P(Yj = 0)

∏
i∈S
(
P(Yi = 1) e−t

)
e−t(1−δ)E[Y ]

=

∏
i (P(Yi = 0) + P(Yi = 1) e−t)

e−t(1−δ)E[Y ]

=

∏
i E
[
e−tYi

]
e−t(1−δ)E[Y ]

.

Again, observing that 1 + x ≤ ex, we have E
[
e−tYi

]
≤ e 1

i (e
−t−1), and thus

P(Y ≤ (1− δ)E [Y ]) ≤ eE[Y ](e−t−1+t(1−δ)) ≤ eE[Y ]
(
1−t+ t2

2 −1+t(1−δ)
)

= e
E[Y ]

(
t2

2 −δt
)
.

Choosing t = δ
2 , gives P(Y ≤ (1− δ)E [Y ]) ≤ e−

δ2E[Y ]
2 . As Y = Xn, this implies

that there are constants c1, c2, c3 > 0 such that P(c1 ln(n) ≤ Xn ≤ c2 ln(n)) ≥
1− n−c3 .
2. The following type of geometric random graphs arises in the study of power
control for wireless networks. We are given n points distributed uniformly at
random within the unit square. Each point connects to the k-closest points. Let
us denote the resulting (random) graph as Gnk .

(2a) Show that there exists a contant α such that if k ≥ α log n, then Gnk is
connected with probability at least 1− 1/n.

(2b) Show that there exists a constant β such that if k ≤ β log n, then Gnk is
not connected with positive probability.

Solution: (2a) Let T be an integer and consider partitioning the unit square
into T 2 squares, each 1

T on a side. The probability that any particular point
lands in a fixed square is 1

T 2 , thus the expected number of points in a square is
n
T 2 and by Chernoff bounds the probability there is some square that has less

than n
2T 2 points or more than 3n

2T 2 points is at most 2T 2e−
n

24T2 = 2e2 ln(T )− n
24T2 .

If T ≤
√

n
48 ln(2n) , then this is at most 1

n .

Now consider two adjacent squares. The maximum distance between any

two points in these squares is
√
5
T . Now from any square S there are at most 48

other squares that contain a point of distance at most
√
5
T from S. Thus if every

square has at least one vertex and at most k
49 vertices, then for every square S,

the vertices inside the square are connected to each other, and there is a vertex
connected to a vertex in a neighboring square. That is, if every square has at
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most k
49 vertices and at least one vertex, then the graph is connected. But by

the above each square has at most 3
2
n
T 2 ≤ 3

248 ln(2n) = 72 ln(2n) vertices. Thus,
letting k ≥ 3528 ln(2n) suffices.
Solution: (2b) The basic idea behind it is pretty straight forward but some
very significant probabilistic analysis is necessary. See the paper
https://netfiles.uiuc.edu/prkumar/www/ps files/connect.pdf.

3. Consider the following parallel and distributed vertex-coloring algorithm.
Every vertex u in a graph G initially has a list of colors Lu = [∆(G) + 1]
where ∆(G) denotes the maximum degree for vertices in G. The algorithm is
in rounds. In each round the following happens.

• Every vertex not yet colored wakes up with probability 1/2.

• Every vertex that woke up picks a tentative color uniformly at random
from its own list of colors.

• If tu is the tentative color picked by u, and no neighbor of u picked tu,
then u colors itself with tu.

• The color list of each uncolored vertex in the graph is updated by removing
all colors successfully used by its neighbors.

• All uncolored vertices go back to sleep.

(3a) Show that the algorithm computes a legal coloring.

(3b) Show that in every round, each uncolored vertex colors itself with proba-
bility at least 1/4.

(3c) Show that within O(log |V (G)|) many rounds, the graph will be colored
with high probability.

Solution: (3a) It is clear that at any stage no adjacent pair of vertices are
colored the same color. Thus it suffices to show that after every step the partial
coloring may be extended to a full coloring of the graph. To that end consider
greedily coloring every vertex in an arbitrary order. For any vertex in the greedy
coloring process, the set of forbidden colors is at most ∆ (since the maximum
degree is at most ∆), thus every vertex has at least one color choice available
to it for any partial coloring.
Solution: (3b) When considering whether a vertex colors itself we may assume
that the waking status and tentative color of all other vertices have been decided.
Thus, suppose that a vertex v has 0 ≤ d ≤ ∆ uncolored neighbors and w of
these neighbors have woken up. Then the probability that v colors itself is at
least d+1−w

d+1 . Hence the probability a vertex colors itself is at least

1

2

d∑
w=0

(
d

w

)
2−d

(
1− w

d+ 1

)
=

1

2

(
1−

d∑
w=0

(
d

w

)
2−d

w

d+ 1

)
=

1

2

(
1− d

2(d+ 1)

)
=

1

4
.
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Solution: (3c) Let n = |V (G)|. We use the stochastic recurrence relation
method of Karp. Let T (n) be the total number of rounds necessary to color
n vertices and let H(n) be the random variable representing the number of
uncolored vertices from a round where there were n vertices. T (n) satisfies the
recurrence T (n) = 1 + T (H(n)). Observing that by part (b), E [H(n)] ≤ 3

4n,
we consider the deterministic recurrence u(n) = 1 + u(3/4n) with u(x) = 0 if

x < 1. Thus u(n) =
⌈
ln(n)

ln( 4
3 )

⌉
. Thus the probability that it takes more than⌈

ln(n)

ln( 4
3 )

⌉
+ t rounds is at most 3

4

t
for each node, and so with high probability it

the algorithm terminates in O(ln(n)) rounds.

4. Let f(x1, . . . , xn) be a Lipschitz function with constant c. Namely, changing
any coordinate changes the value of f by at most c. Let σ be a permutation of [n]
chosen uniformly at random. Show a strong concentration for f(σ(1), . . . , σ(n)).
Solution: (4) We first consider the form of E [f | X1, . . . , Xi−1, Xi = ai]. To
that end let A = [n]− {X1, . . . , Xi−1} ∪ {ai} and note

E [f | X1, . . . , Xi−1, Xi = ai] =
∑
τ∈SA

1

(n− i)!
f(X1, . . . , Xi−1, ai, τ1, . . . , τn−i),

where SA is the set of permutations of A. Similarly,

E [f | X1, . . . , Xi−1, Xi = bi] =
∑
τ∈SB

1

(n− i)!
f(X1, . . . , Xi−1, bi, τ1, . . . , τn−i).

But SB = (ai, bi)SA and thus

|E [f | X1, . . . , Xi−1, Xi = ai]− E [f | X1, . . . , Xi−1, Xi = bi]|

=

∣∣∣∣∣ ∑
τ∈SA

1

(n− i)!
f(X1, . . . , Xi−1, ai, τ1, . . . , τn−i)−

∑
τ∈SB

1

(n− i)!
f(X1, . . . , Xi−1, bi, τ1, . . . , τn−i)

∣∣∣∣∣
=

∣∣∣∣∣ 1

(n− i)!
∑
τ∈SA

f(X1, . . . , Xi−1, ai, τ1, . . . , τn−i)− f(X1, . . . , Xi−1, bi, (ai, bi)τ1, . . . , (ai, bi)τn−i)

∣∣∣∣∣
≤
∑
τ∈SA

1

(n− i)!
2c

= 2c,

where the inequality comes from the c-Lipschitz property of f and the fact that
the two evaluations of f differ in two coordinates. But then by the bounded

difference version of Azuma-Hoeffding, P(|E [f ]− f | ≥ t) ≤ 2e
−t2

4c2n .
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