Math 261
 Midterm take home

Due: 1pm, Wednesday, May 12, 2010

You are only required to do three of the following four problems:

1. For two graphs $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$, the box-product graph $G \square H$ denote the graph with vertex set $\left\{(u, v): u \in V, v \in V^{\prime}\right\}$ and edge set
$\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}:\left(u=v\right.$ and $\left.\left\{u^{\prime}, v^{\prime}\right\} \in E^{\prime}\right)$ or $\left(u^{\prime}=v^{\prime}\right.$ and $\left.\left.\{u, v\} \in E\right)\right\}$. For the cycle C_{n} on n vertices, compute the number of spanning trees in $C_{n} \square C_{n}$. (Find a simple expression for your answer, if possible.)
2. In a connected graph G, we consider a subset of vertices, denoted by S. Suppose the induced subgraph on S is connected. The Green function \mathcal{G}_{S} is defined to be the inverse of the Laplacian \mathcal{L}_{S}. Recall that $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$. Now, we consider a cycle C_{n+1} with vertices $0,1, \ldots, n$ and vertex j is adjacent to vertex $j+1$ for all j modulo $n+1$. Choose $S=\{1,2, \ldots, n\}$. Show that for $x \leq y$,

$$
\mathcal{G}_{S}(x, y)=\frac{2}{n+1} x(n+1-y)
$$

3. For a connected induced subgraph S of a graph G and for a real $t \geq 0$, the Dirichlet heat kernel of S is defined by

$$
\begin{aligned}
\mathcal{H}_{t} & =e^{-t \mathcal{L}_{S}} \\
& =I-t \mathcal{L}_{S}+\frac{t^{2}}{2!} \mathcal{L}_{S}^{2}+\ldots
\end{aligned}
$$

Show that

$$
\mathcal{G}_{S}(x, y)=\int_{0}^{\infty} \mathcal{H}_{t}(x, y) d t
$$

4. In a connected graph G, let Z denote the lazy random walk $Z=(I+P) / 2$ where P is the transition probability matrix. For a seed s (as a probability distribution) and a jumping constant $\alpha, 0<\alpha<1$, the PageRank $p=\operatorname{pr}_{\alpha, s}$ is defined to be the unique vector satisfies the following recurrence:

$$
p=\alpha s+(1-\alpha) p Z
$$

For $\beta>0$, we consider the α-Green function to be the inverse of $\mathcal{L}_{\beta}=\beta I+\mathcal{L}$. Namely,

$$
\mathcal{L}_{\beta} \mathcal{G}_{\beta}=\mathcal{G}_{\beta} \mathcal{L}_{\beta}=I
$$

Show that

$$
\operatorname{pr}_{\alpha, s}=\beta s D^{-1 / 2} \mathcal{G}_{\beta} D^{1 / 2}
$$

where $\beta=2 \alpha /(1-\alpha)$.

