Math 262A Spring 2009 Exercises

Notice: I'm a week late at posting the exercise from May 11. Don't miss it!

May 20, 2009

1. Show that a non-negative matrix is irreducible if and only if the associated directed graph is strongly connected.
2. Let G_{1}, G_{2} be two graphs on the same vertex set. Define $G=G_{1} \cup G_{2}$ by taking the union of the edge sets. Then $\|G\| \leq\left\|G_{1}\right\|+\left\|G_{2}\right\|$.
3. Let A be a symmetric, non-negative matrix, and let $c_{1}, \ldots, c_{n}>0$. We have a lemma which says that

$$
\|A\| \leq \max _{i=1 \ldots n} \frac{1}{c_{i}} \sum_{j=1}^{n} a_{i j} c_{j}
$$

Find examples which show that each of these conditions is necessary.
4. Show that $\left\|K_{s, t}\right\|=s t$, where $K_{s, t}$ is the complete bipartite graph whose parts have s and t vertices.

May 18, 2009

1. Show that a graph with the discrepancy property is also almost regular - that is: all but $o(n)$ vertices have degree $(1+o(1)) \frac{n}{2}$.
2. Show that $t_{3}\left(n, K_{4}^{(3)}\right) \geq \frac{5}{9}\binom{n}{3}$. That is: show that any 3 -uniform hypergraph on n vertices with at least $\frac{5}{9}\binom{n}{3}$ edges must contain four vertices with every 3 -subset of them as an edge.

May 13, 2009

1. Show that $r(k, k)$ is (asymptotically) greater than $(\sqrt{2})^{k}$, where $r(k, k)$ is the smallest number so that every 2-edge-coloring of the complete graph on $r(k, k)$ vertices must have a monochromatic K_{k}.

May 11, 2009

1. Show that, for each $\varepsilon>0$, a random graph in $G(n, p)$ has $(p+\alpha)\binom{n}{2}$ edges, for some $|\alpha|<\varepsilon$.

April 29, 2009

1. Show that $\Delta_{T V}(s)=\frac{1}{2} \max _{y \in V} \sum_{x \in V}\left|P^{s}(y, x)-\pi(x)\right|$
2. Show that $\Delta(s) \leq\left(1-\lambda^{\prime}\right)^{s} \cdot \frac{\operatorname{vol}(G)}{\min d_{x}}$, where $\Delta(s)$ is the relative pointwise distance.

April 22, 2009

1. If G is edge-transitive and k-regular, does it have to be vertex-transitive?

April 20, 2009

1. Find graphs where $\chi(G)$ is closely approximated by $1+\max \frac{1}{\lambda_{w}-1}$.
2. Compute h_{G} for $G=Q_{n}, P_{n}$.
3. Verify the Cheeger inequality for Q_{n}, P_{n}.

April 13, 2009

1. Find $i_{a b}$ for a simple graph.
2. Suppose $f: V \rightarrow \mathbb{Z}$ satisfies $R(f)=\lambda=\lambda_{1}$. Construct $f^{\prime}: V \mathbb{R}$ by $f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)+\varepsilon / d_{x_{0}}$, and $f^{\prime}(x)=f(x)-\varepsilon /\left(\operatorname{vol}(G)-d_{x_{0}}\right)$ for all other x.
Verify that $R\left(f^{\prime}\right)-R(f)=\varepsilon\left(\sum_{y \sim x_{0}}\left[f\left(x_{0}\right)-f(y)\right]-\lambda f\left(x_{0}\right) d_{x}\right)+O\left(\varepsilon^{2}\right)$.
3. Verify that there is some graph G and some constant c such that $\lambda_{1}<\frac{c}{D \cdot \operatorname{vol}(G)}$, where D is the diameter of G.

April 8, 2009

1. (Solved in class) Explain why current flow in a graph is uniquely determined by resistances and the position of the sink and source.
2. Let G be a 5 -cycle with an additonal edge, with all edges weighted 1 . Pick a source and a sink for current flow. Determine the current at each edge, and draw the horizontal line graph associated with this flow.

April 6, 2009

1. Find the spectrum of P_{n}, the path on n vertices.

April 1, 2009

1. Find the spectrum of K_{n}, the complete graph on n vertices.
2. Find the eigenvalues of A, where A is the symmetric $n \times n$ matrix given by

$$
A=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \ldots & \ldots & a_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & . \cdot & a_{0} \\
a_{2} & a_{3} & a_{4} & . & . & . \cdot \\
\vdots & \vdots & . \cdot & . \cdot & . \cdot & a_{1} \\
\vdots & . & . & . & . & . \\
a_{n-1} & a_{0} & a_{1} & \ldots & \ldots & \vdots \\
a_{n-2}
\end{array}\right)
$$

3. Let $G=(V, E)$ be a graph, with normalized Laplacian \mathcal{L}. Let \mathcal{L}_{v} be the minor of \mathcal{L} formed by removing the row and column associated with the vertex $v \in V$ (ie \mathcal{L}_{v} is the determinant of that submatrix). Let d_{v} be the degree of the vertex $v, 0=\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1} \leq 2$ be the eigenvalues of \mathcal{L}, and $\tau(G)$ be the number of labelled spanning trees of G. Show that

$$
\sum_{v \in V} \mathcal{L}_{v}=\frac{\sum_{v \in V} d_{v}}{\prod_{v \in V} d_{v}} \tau(G)=\prod_{i=1}^{n-1} \lambda_{i}
$$

March 30, 2009

1. Let $G=C_{5}$ be the five-cycle, with vertices $0,1,2,3,4$, where vertex j has neighbors $j-1$ and $j+1(\bmod 5)$. Show that the eigenvectors of the adjacency matrix of G are given by the vector $c_{\theta}(j)=\theta^{j}$, with eigenvalue $\theta+\theta^{-1}$. Here θ goes over each 5 th root of unity.
2. Let Q_{n} be the n-cube, with vertex set $2^{[n]}$ - each vertex is a subset of $\{1,2, \ldots, n\}$ - and two vertices are adjacent if they differ by one element. Show that the eigenvectors of the adjacency matrix of Q_{n} are given by the vectors

$$
\Phi_{S}(X)=\frac{(-1)^{|S \cap X|}}{2^{n / 2}}
$$

Note this is the X coordinate of the eigenvector associated with $S \subseteq[n]$.

