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Large Deviation Inequalities

1 An Alternate Model

Before we go into large deviation inequalities, we first introduce an alternate random graph
model, the weighted graph model G(w). Here we consider a weight vector w = (w1, w2, . . . , wn)
where each wi ≥ 0. In particular, we will let wk be the expected degree at vertex k. Then
Pr
(
{i, j} is an edge

)
=

wiwj∑n
k=1 wk

. Thus we need to place some sort of restriction so that each
wiwj∑n
k=1 wk

< 1. For instance, we can restrict each wi <
√∑

k wk. So now if we let X = the degree of

some fixed vi, then X =
n∑

j=1

Xi,j , where Xi,j = 1 if {i, j} is an edge and Xi,j = 0 otherwise. Thus:

E(X) =
∑

j

E(Xi,j) =
∑

j

wiwj∑
k wk

= wi

If we look at the special case that each wi = np for some 0 < p < 1, then this model reduces to the
familiar G(n, p) model. Also we note that here (and throughout the rest of this lecture) we allow
loops.

2 Two Large Deviation Inequalities

2.1 First Large Deviation Inequality

Let X = X1+X2+ . . .+Xm, where the Xi’s are mutually independent indicator random variables.
We will assume that Pr(Xi = 1) = pi and Pr(Xi = 0) = 1− pi, where each pi is between 0 and 1.
Thus, E(X) =

∑
i = 1mpi. Our first large deviation inequality is:

Pr
(
|X − E(X)| > t

)
< 2 exp

(
− t2

2E(X) + 2
3 t

)
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2.2 Second Large Deviation Inequality

This is the generalized martingale inequality with which we are already familiar (see notes from
the last two weeks). Here is a brief recap: Here we have a sequence X0, X1, . . . , Xm = X and a
nonnegative vector c = (c1, c2, . . . , cm). The vector c gives us a c-Lipschitz condition: |Xi−Xi−1| ≤
ci. So we have the following inequality:

Pr
(
|X − E(X)| > t

)
< 2 exp

(
− t2

2
∑

c2
i

)
+ Pr(B)

where Pr(B) represents the probability of following a “bad path” (i.e., the c-Lipschitz condition
is violated).

3 Applications of the Large Deviation Inequalities

3.1 Maximum Degree in G(n,p)

We will look at G(n, p) and choose p = c/n for some constant c. This is definitely a sparse graph
model! We claim that the maximum degree is≤ (

√
2/3+ε) log n with probability 1 as n approaches

infinity, where ε > 0 is as small as we wish. We pick t = (
√

2/3 + ε) log n. Let v be any vertex
and d be its degree. Then since np = c becomes negligible compared with d and with log n as n
approaches infinity, we have from the first large deviation inequality:

Pr

(
d >

(√
2/3+ε

)
log n

)
≤ Pr

(
|d−np| >

(√
2/3+ε

)
log n

)
< 2 exp

(
−(1+δ) log n

)
= 2n−1−δ

where δ =
√

6ε + ε2. Thus:

Pr

(
some v ∈ V (G) has d > (

√
2/3+ε) log n

)
≤

∑
v∈V (G)

Pr

(
d(v) > (

√
2/3+ε) log n

)
≤ (2n)(n−1−δ) = 2n−δ

The right hand term approaches 0 as n approaches infinity, and our desired result follows.
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3.2 Maximum Codegree

In G(n, p), fix two vertices u and v. Let Xu,v = the number of common neighbors of u and v. Then
for any given vertex w, Pr(w is a common neighbor) = p2. So E(Xu,v) = np2. We claim now that
if we now let p = 1/

√
n (we are looking now at a denser graph than in the previous example) then

any pair of vertices will have less than (4/3 + ε) log n common neighbors as n increases without
bound, where ε > 0 is as small as we wish. We once again use the first large deviation inequality.
We choose t = (4/3+ ε) log n. Then for any given u and v, Pr

(
|Xu,v−E(Xu,v)| > t) < 2 exp

(
(−2−

(3/2)ε) log n
)

= 2n−2−δ, where δ > 0. So the probability that any u and v have more than t
common neighbors is less than or equal to:

∑
u,v

Pr

(
|Xu,v − E(Xu,v)| > t

)
< (2n2)(n−2−δ) = 2n−δ

The right hand side approaches zero as n approaches infinity, and the result follows.

3.3 Counting Triangles

Here we use the results from the previous section, along with the generalized martingale inequal-
ity. In G(n, p) let X be the number of triangles. As the triangles are not independent, our first
inequality does not apply. Now E(X) = n3p3. So we will try letting p = 1/

√
n. And let t = n3/2.

From our previous result, we will here let our Lipschitz constants ci = 2 log n, where we let ε = 1/3
to avoid messiness. We also see from previous result that Pr(B) << n2e−t. So Pr(B) approaches
0 as n approaches infinity. So:

Pr

(
|X − n3p3| > t

)
≤ 2 exp

(
−t2

8
(
n
2

)
log2 n

)
+ Pr(B)

But since t = n3/2, the right hand side approaches 0 as n approaches infinity. So we see that we
almost certainly have less than n3/2 triangles.
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