Math 262 Lectures Notes

Large Deviation Inequalities

1 An Alternate Model

Before we go into large deviation inequalities, we first introduce an alternate random graph model, the weighted graph model $G(w)$. Here we consider a weight vector $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ where each $w_{i} \geq 0$. In particular, we will let w_{k} be the expected degree at vertex k. Then $\operatorname{Pr}(\{i, j\}$ is an edge $)=\frac{w_{i} w_{j}}{\sum_{k=1}^{n} w_{k}}$. Thus we need to place some sort of restriction so that each $\frac{w_{i} w_{j}}{\sum_{k=1}^{n} w_{k}}<1$. For instance, we can restrict each $w_{i}<\sqrt{\sum_{k} w_{k}}$. So now if we let $X=$ the degree of some fixed v_{i}, then $X=\sum_{j=1}^{n} X_{i, j}$, where $X_{i, j}=1$ if $\{i, j\}$ is an edge and $X_{i, j}=0$ otherwise. Thus:

$$
E(X)=\sum_{j} E\left(X_{i, j}\right)=\sum_{j} \frac{w_{i} w_{j}}{\sum_{k} w_{k}}=w_{i}
$$

If we look at the special case that each $w_{i}=n p$ for some $0<p<1$, then this model reduces to the familiar $G(n, p)$ model. Also we note that here (and throughout the rest of this lecture) we allow loops.

2 Two Large Deviation Inequalities

2.1 First Large Deviation Inequality

Let $X=X_{1}+X_{2}+\ldots+X_{m}$, where the X_{i} 's are mutually independent indicator random variables. We will assume that $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p_{i}$, where each p_{i} is between 0 and 1 . Thus, $E(X)=\sum i=1^{m} p_{i}$. Our first large deviation inequality is:

$$
\operatorname{Pr}(|X-E(X)|>t)<2 \exp \left(-\frac{t^{2}}{2 E(X)+\frac{2}{3} t}\right)
$$

2.2 Second Large Deviation Inequality

This is the generalized martingale inequality with which we are already familiar (see notes from the last two weeks). Here is a brief recap: Here we have a sequence $X_{0}, X_{1}, \ldots, X_{m}=X$ and a nonnegative vector $c=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$. The vector c gives us a c-Lipschitz condition: $\left|X_{i}-X_{i-1}\right| \leq$ c_{i}. So we have the following inequality:

$$
\operatorname{Pr}(|X-E(X)|>t)<2 \exp \left(-\frac{t^{2}}{2 \sum c_{i}^{2}}\right)+\operatorname{Pr}(B)
$$

where $\operatorname{Pr}(B)$ represents the probability of following a "bad path" (i.e., the c-Lipschitz condition is violated).

3 Applications of the Large Deviation Inequalities

3.1 Maximum Degree in G(n,p)

We will look at $G(n, p)$ and choose $p=c / n$ for some constant c. This is definitely a sparse graph model! We claim that the maximum degree is $\leq(\sqrt{2 / 3}+\epsilon) \log n$ with probability 1 as n approaches infinity, where $\epsilon>0$ is as small as we wish. We pick $t=(\sqrt{2 / 3}+\epsilon) \log n$. Let v be any vertex and d be its degree. Then since $n p=c$ becomes negligible compared with d and with $\log n$ as n approaches infinity, we have from the first large deviation inequality:
$\operatorname{Pr}(d>(\sqrt{2 / 3}+\epsilon) \log n) \leq \operatorname{Pr}(|d-n p|>(\sqrt{2 / 3}+\epsilon) \log n)<2 \exp (-(1+\delta) \log n)=2 n^{-1-\delta}$
where $\delta=\sqrt{6} \epsilon+\epsilon^{2}$. Thus:
$\operatorname{Pr}($ some $v \in V(G)$ has $d>(\sqrt{2 / 3}+\epsilon) \log n) \leq \sum_{v \in V(G)} \operatorname{Pr}(d(v)>(\sqrt{2 / 3}+\epsilon) \log n) \leq(2 n)\left(n^{-1-\delta}\right)=2 n^{-\delta}$

The right hand term approaches 0 as n approaches infinity, and our desired result follows.

3.2 Maximum Codegree

In $G(n, p)$, fix two vertices u and v. Let $X_{u, v}=$ the number of common neighbors of u and v. Then for any given vertex $w, \operatorname{Pr}(w$ is a common neighbor $)=p^{2}$. So $E\left(X_{u, v}\right)=n p^{2}$. We claim now that if we now let $p=1 / \sqrt{n}$ (we are looking now at a denser graph than in the previous example) then any pair of vertices will have less than $(4 / 3+\epsilon) \log n$ common neighbors as n increases without bound, where $\epsilon>0$ is as small as we wish. We once again use the first large deviation inequality. We choose $t=(4 / 3+\epsilon) \log n$. Then for any given u and $v, \operatorname{Pr}\left(\left|X_{u, v}-E\left(X_{u, v}\right)\right|>t\right)<2 \exp ((-2-$ $(3 / 2) \epsilon) \log n)=2 n^{-2-\delta}$, where $\delta>0$. So the probability that any u and v have more than t common neighbors is less than or equal to:

$$
\sum_{u, v} \operatorname{Pr}\left(\left|X_{u, v}-E\left(X_{u, v}\right)\right|>t\right)<\left(2 n^{2}\right)\left(n^{-2-\delta}\right)=2 n^{-\delta}
$$

The right hand side approaches zero as n approaches infinity, and the result follows.

3.3 Counting Triangles

Here we use the results from the previous section, along with the generalized martingale inequality. In $G(n, p)$ let X be the number of triangles. As the triangles are not independent, our first inequality does not apply. Now $E(X)=n^{3} p^{3}$. So we will try letting $p=1 / \sqrt{n}$. And let $t=n^{3 / 2}$. From our previous result, we will here let our Lipschitz constants $c_{i}=2 \log n$, where we let $\epsilon=1 / 3$ to avoid messiness. We also see from previous result that $\operatorname{Pr}(B) \ll n^{2} e-t$. So $\operatorname{Pr}(B)$ approaches 0 as n approaches infinity. So:

$$
\operatorname{Pr}\left(\left|X-n^{3} p^{3}\right|>t\right) \leq 2 \exp \left(\frac{-t^{2}}{8\binom{n}{2} \log ^{2} n}\right)+\operatorname{Pr}(B)
$$

But since $t=n^{3 / 2}$, the right hand side approaches 0 as n approaches infinity. So we see that we almost certainly have less than $n^{3 / 2}$ triangles.

