Matchings in Regular Graphs from Eigenvalues

Jake Hughes

University of California, San Diego

jthughes@math.ucsd.edu

May 3, 2011
$G(V, E)$ a simple graph with $|V| = n$, $|E| = e$. $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ the eigenvalues of A.

Uses of Eigenvalues of A

- μ_1: Chromatic Number, Independence Number, Clique Number
- μ_2: Expansion Properties
- μ_n: Chromatic Number, Independence Number, Maximum Cut
$G(V, E)$ a simple graph with $|V| = n$, $|E| = e$. $\mu_1 \geq \mu_2 \geq ... \geq \mu_n$ the eigenvalues of A.

Uses of Eigenvalues of A

μ_1: Chromatic Number, Independence Number, Clique Number
$G(V, E)$ a simple graph with $|V| = n$, $|E| = e$. $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ the eigenvalues of A.

Uses of Eigenvalues of A

- μ_1: Chromatic Number, Independence Number, Clique Number
- μ_2: Expansion Properties
G(V, E) a simple graph with |V| = n, |E| = e. \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n \) the eigenvalues of A.

Uses of Eigenvalues of A

- \(\mu_1 \): Chromatic Number, Independence Number, Clique Number
- \(\mu_2 \): Expansion Properties
- \(\mu_n \): Chromatic Number, Independence Number, Maximum Cut
Matching Number

- $\nu(G) \coloneqq$ maximum size of a matching of G.

Theorem (Perfect Matching Theorem)

Let G be a connected, k-regular graph. If $\mu_3 < \rho(k)$, then $\nu(G) = \lfloor \frac{n}{2} \rfloor$.

Theorem (Factor Critical Theorem)

Let G be a connected, k-regular graph, with n odd. If $\mu_2 < \rho(k)$, then G is factor critical (i.e., $\forall x \in V, G \setminus \{x\}$ has a perfect matching).
Matching Number

- $\nu(G) :=$ maximum size of a matching of G.
- $\rho(k)$ a function to be defined later
Matching Number

- $\nu(G) := \text{maximum size of a matching of } G$.
- $\rho(k)$ a function to be defined later

Theorem (Perfect Matching Theorem)

Let G be a connected, k-regular graph. If

$$\mu_3 < \rho(k),$$

then

$$\nu(G) = \left\lfloor \frac{n}{2} \right\rfloor$$
Matching Number

- $\nu(G) :=$ maximum size of a matching of G.
- $\rho(k)$ a function to be defined later

Theorem (Perfect Matching Theorem)

Let G be a connected, k-regular graph. If

\[\mu_3 < \rho(k), \]

then

\[\nu(G) = \left\lfloor \frac{n}{2} \right\rfloor \]

Theorem (Factor Critical Theorem)

Let G be a connected, k-regular graph, with n odd. If

\[\mu_2 < \rho(k), \]

then G is factor critical
Matching Number

- $\nu(G) :=$ maximum size of a matching of G.
- $\rho(k)$ a function to be defined later

Theorem (Perfect Matching Theorem)

Let G be a connected, k-regular graph. If $\mu_3 < \rho(k)$, then $\nu(G) = \lfloor \frac{n}{2} \rfloor$.

Theorem (Factor Critical Theorem)

Let G be a connected, k-regular graph, with n odd. If $\mu_2 < \rho(k)$, then G is factor critical (\(\forall x \in V, G \setminus \{x\}$ has a perfect matching)
Defining ρ

$\mathcal{H}(k) =$ set of graphs G such that:

- G is connected

$\rho(k) := \min_{G \in \mathcal{H}(k)} \mu^1(G)$
Defining ρ

\[\mathcal{H}(k) = \text{set of graphs } G \text{ such that:} \]
- G is connected
- G has max degree k

\[\rho(k) := \min_{G \in \mathcal{H}(k)} \mu_1(G) \]
Defining ρ

$\mathcal{H}(k) = \text{set of graphs } G \text{ such that:}$

- G is connected
- G has max degree k
- G has odd number of vertices

$\rho(k) := \min_{G \in \mathcal{H}(k)} \mu_1(G)$
Defining ρ

$\mathcal{H}(k) = \text{set of graphs } G \text{ such that:}$

- G is connected
- G has max degree k
- G has odd number of vertices
- $2e \geq kn - k + 2$
Defining ρ

$\mathcal{H}(k) =$ set of graphs G such that:
- G is connected
- G has max degree k
- G has odd number of vertices
- $2e \geq kn - k + 2$
- G has at least 4 vertices of degree k when k is odd, and at least 3 when k is even
Defining ρ

$\mathcal{H}(k) = \text{set of graphs } G \text{ such that:}$

- G is connected
- G has max degree k
- G has odd number of vertices
- $2e \geq kn - k + 2$
- G has at least 4 vertices of degree k when k is odd, and at least 3 when k is even

Definition

$$\rho(k) := \min_{G \in \mathcal{H}(k)} \mu_1(G)$$
Computing ρ

Theorem

$$\rho(k) := \begin{cases}
\theta & \text{if } k = 3 \\
\frac{1}{2} \left(k - 2 + \sqrt{k^2 + 12} \right) & \text{if } k = 2j, j \geq 2 \\
\frac{1}{2} \left(k - 3 + \sqrt{(k + 1)^2 + 16} \right) & \text{if } k = 2j + 1, j \geq 2
\end{cases}$$

where θ is the maximum root of the polynomial $x^3 - x^2 - 6x + 2$.
Lemma

Let G be a connected, k-regular graph with $k \geq 3$. If $\nu(G) \leq \frac{n-2}{2}$, then G has three vertex disjoint induced subgraphs $H_1, H_2, H_3 \in \mathcal{H}(k)$.

Proof.

We consider the case where k is even. The Berge-Tutte Formula tells us that

$$\nu(G) = \frac{1}{2}(n + \min_{S \subseteq V} (|S| - odd(G \setminus S)))$$

where $odd(H)$ is the number of odd components of H.
Lemma

Let G be a connected, k-regular graph with $k \geq 3$. If $\nu(G) \leq \frac{n-2}{2}$, then G has three vertex disjoint induced subgraphs $H_1, H_2, H_3 \in \mathcal{H}(k)$.

Proof.

We consider the case where k is even. The Berge-Tutte Formula tell us that

$$\nu(G) = \frac{1}{2}(n + \min_{S \subset V} (|S| - odd(G \setminus S))),$$

where $odd(H)$ is the number of odd components of H. Suppose that $\nu(G) \leq \frac{n-2}{2}$. Then there exists $S \subset V$ such that

$$2\nu = n + s - q,$$

where $s = |S|$, $q = odd(G \setminus S)$.
Proof of Lemma

Proof.

Note that $q \geq s + 2$, and $s > 0$.
Let H_1, \ldots, H_q be the odd components of $G \setminus S$, where H_i has n_i vertices and e_i edges. Let $t_i = |E(H_i, S)|$. G is connected so $t_i \geq 1$. Since vertices in H_i are adjacent to those in H_i or S, we get that

$$2e_i = kn_i - t_i = k(n_i - 1) + k - t_i.$$
Proof.

Note that $q \geq s + 2$, and $s > 0$.

Let H_1, \ldots, H_q be the odd components of $G \setminus S$, where H_i has n_i vertices and e_i edges. Let $t_i = |E(H_i, S)|$. G is connected so $t_i \geq 1$. Since vertices in H_i are adjacent to those in H_i or S, we get that

$$2e_i = kn_i - t_i = k(n_i - 1) + k - t_i.$$

Since n_i is odd, we get that $k - t_i$ is even, so k and t_i have the same parity for all i.

We claim there are at least 3 i's such that $t_i < k$. Suppose not. Then there are $q - 2$ i's such that $t_i \geq k$. This implies that

$$\text{vol}(S) = ks \geq \sum i t_i \geq k(q - 2) + 2 \geq ks + 2,$$

a contradiction. WLOG denote these H_1, H_2, H_3.

Jake Hughes (UCSD)
Matchings in Regular Graphs from Eigenvalue
May 3, 2011 7 / 14
Proof of Lemma

Proof.

Note that $q \geq s + 2$, and $s > 0$.
Let $H_1, ..., H_q$ be the odd components of $G \setminus S$, where H_i has n_i vertices and e_i edges. Let $t_i = |E(H_i, S)|$. G is connected so $t_i \geq 1$. Since vertices in H_i are adjacent to those in H_i or S, we get that

$$2e_i = kn_i - t_i = k(n_i - 1) + k - t_i.$$

Since n_i is odd, we get that $k - t_i$ is even, so k and t_i have the same parity for all i.

We claim there are at least 3 i such that $t_i < k$.

Proof of Lemma

Proof.

Note that \(q \geq s + 2 \), and \(s > 0 \).

Let \(H_1, \ldots, H_q \) be the odd components of \(G \setminus S \), where \(H_i \) has \(n_i \) vertices and \(e_i \) edges. Let \(t_i = |E(H_i, S)| \). \(G \) is connected so \(t_i \geq 1 \). Since vertices in \(H_i \) are adjacent to those in \(H_i \) or \(S \), we get that

\[
2e_i = kn_i - t_i = k(n_i - 1) + k - t_i.
\]

Since \(n_i \) is odd, we get that \(k - t_i \) is even, so \(k \) and \(t_i \) have the same parity for all \(i \).

We claim there are at least 3 \(i \) such that \(t_i < k \). Suppose not. Then there are \(q - 2 \) \(i' \)'s such that \(t_i \geq k \). This implies that

\[
\text{vol}(S) = ks \geq \sum_i t_i \geq k(q - 2) + 2 \geq ks + 2,
\]

a contradiction. WLOG denote these \(H_1, H_2, H_3 \).
Proof of Lemma

Proof.

Now since \(t_i \) and \(k \) have the same parity, those \(t_i \leq k - 2 \). Since \(t_i \leq k - 2 \) we get that

\[
2e_i = kn_i - t_i \geq kn_i + 2 - k,
\]

but since

\[
n_i(n_1 - 1) \geq 2e_i,
\]

we have that

\[
n_i \geq k + \frac{2}{n_i - 1}
\]

Thus \(n_i \geq k + 1 \geq t_i + 3 \). Thus each \(H_1, H_2, H_3 \) has at least 3 vertices of degree \(k \), so \(H_1, H_2, H_3 \in \mathcal{H}(k) \).
The Inclusion Principle

Lemma (The Inclusion Principle)

Let A be a Hermitian matrix, and $1 \leq r \leq n$. Let A_r denote any $r \times r$ principal submatrix of A. Then for any j such that $1 \leq j \leq r$,

$$
\mu_k(A) \geq \mu_k(A_r) \geq \mu_{k+n-r}(A).
$$
Theorem (Perfect Matching Theorem)

Let G be a connected, k-regular graph. If

$$\mu_3 < \rho(k),$$

then

$$\nu(G) = \left\lfloor \frac{n}{2} \right\rfloor$$
Proof of Perfect Matching Theorem

Proof.
Suppose G satisfies the condition of the Perfect Matching Theorem and $\mu_3 < \rho(k)$. Suppose, for contradiction that $\nu(G) \leq \frac{n-2}{2}$. Then by Lemma 1, G has three vertex disjoint induced subgraphs $H_1, H_2, H_3 \in \mathcal{H}(k)$. Thus by the inclusion principle

\[\mu_3(G) \geq \mu_3(H_1 \cup H_2 \cup H_3) \geq \min_i \mu_1(H_i) \geq \rho(k), \]

a contradiction. Thus $\nu(G) > \frac{n-2}{2}$.

A Generalization

Theorem

Let G be a connected, k-regular graph. If

$$\mu_r \leq \rho(k),$$

for $3 \leq r < n$, then

$$\nu(G) > \frac{n - r + 1}{2}$$
Exercises and Research Problems

- Prove the Inclusion Principle
Prove the Inclusion Principle
Hints: Use either the interlacing inequalities, or Courant-Fisher
Exercises and Research Problems

- Prove the Inclusion Principle
 Hints: Use either the interlacing inequalities, or Courant-Fisher
- Prove the Factor Critical Theorem
Prove the Inclusion Principle
Hints: Use either the interlacing inequalities, or Courant-Fisher

Prove the Factor Critical Theorem
Hints: Adapt the technique of the lemma’s proof.
Exercise and Research Problems

- Prove the Inclusion Principle
 Hints: Use either the interlacing inequalities, or Courant-Fisher

- Prove the Factor Critical Theorem
 Hints: Adapt the technique of the lemma’s proof.

- Can this theorem be applied meaningfully? Find a non-trivial family of graphs where one has good control on μ_3.

All the proofs were for regular graphs, what can be said if the graph is "nearly regular", e.g. if $|d_v - k| \leq c$ for some small c.

Jake Hughes (UCSD)
Matchings in Regular Graphs from Eigenvalue
May 3, 2011
13 / 14
Exercises and Research Problems

- Prove the Inclusion Principle
 Hints: Use either the interlacing inequalities, or Courant-Fisher

- Prove the Factor Critical Theorem
 Hints: Adapt the technique of the lemma’s proof.

- Can this theorem be applied meaningfully? Find a non-trivial family of graphs where one has good control on μ_3.

- All the proofs were for regular graphs, what can be said if the graph is "nearly regular", e.g. if $|d_v - k| \leq c$ for some small c
Cioabă, Gregory, Haemers (2008)
Matchings in Regular Graphs from Eigenvalues.
Journal of Combinatorial Theory.