1 Spectral Techniques in Extremal Graph Theory

Two of the most fundamental results in extremal graph theory are Turán’s Theorem and the Erdős-Stone Theorem. Turán’s Theorem tells us that if an \(n \)-vertex graph \(G \) has more than \((1 - \frac{1}{r} + o(1)) \frac{n^2}{2} \) edges, then \(K_{r+1} \subset G \). The Erdős-Stone Theorem proves that for large enough \(n \), not only do we get a \(K_{r+1} \) subgraph, but a \(K_{r+1}(t) \) subgraph (a complete \(r+1 \)-partite graph with \(t \) vertices in each part) for arbitrarily large \(t \).

Theorem 1.1 (Erdős, Stone [5]) Let \(\epsilon > 0 \) and let \(r, t \geq 1 \) be integers. There exists an \(n_0 = n_0(\epsilon, r, t) \) such that if \(G \) is any \(n \)-vertex graph with \(n \geq n_0 \) and

\[
e(G) > (1 - \frac{1}{r} + \epsilon) \frac{n^2}{2}
\]

then \(K_{r+1}(t) \subset G \).

Bollobás and Erdős proved a strengthening of the Erdős-Stone Theorem by establishing a good lower bound on how big one can expect \(t \) to be in terms of \(r \) and \(\epsilon \).

Theorem 1.2 (Bollobás, Erdős [1]) Let \(\epsilon > 0 \) and let \(r \geq 1 \) be an integer. There exists an \(n_0 = n_0(\epsilon, r) \) such that if \(G \) is any \(n \)-vertex graph with \(n \geq n_0 \) and

\[
e(G) > (1 - \frac{1}{r} + \epsilon) \frac{n^2}{2}
\]

then \(K_{r+1}(t) \subset G \) for some \(t \geq \epsilon \log n / (2^{r+1}(r-1)! \).

It would be nice to have spectral versions of such theorems. Fan Chung [3] proved a spectral version of Turán’s Theorem improving upon a result of Sudakov, Szabó, and Vu [12]. Recently Nikiforov [10] has obtained a spectral version of Theorem 1.2 by combining classical extremal techniques with spectral techniques. Our purpose is to describe some of the spectral techniques that played a role in Nikiforov’s proof. First some notation.

Given a graph \(G \), let \(k_r(G) = k_r \) be the number of \(r \)-cliques in \(G \) and let \(k_r(v) \) be the number of \(r \)-cliques that contain vertex \(v \). A \(k \)-walk is a sequence of vertices \(v_1, \ldots, v_k \) such that \(v_i \) is adjacent to \(v_{i+1} \) for \(1 \leq i \leq k-1 \). Let \(w_k(G) = w_k \) be the number of \(k \)-walks in \(G \) and let \(w_k(v) \) be the number of \(k \)-walks in \(G \) that start at \(v \). Let \(A(G) \) be the adjacency matrix of \(G \) and \(\mu = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \) be the eigenvalues of \(A(G) \).

A good starting point that leads to Nikiforov’s spectral Erdős-Stone-Bollobás type theorem is the following theorem of Bollobás and Nikiforov.

Theorem 1.3 (Bollobás, Nikiforov, [2]) For every graph \(G \) and integer \(p \geq 2 \)

\[
\mu^{p+1} \leq (p + 1)k_{p+1} + \sum_{s=2}^{p}(s - 1)k_s \mu^{p+1-s}
\]

In order to prove Theorem 1.3, we need a lemma whose proof does not rely on any spectral theory and is omitted.

Lemma 1.4 (Nikiforov, [7]) If \(G \) is an \(n \)-vertex graph with \(2 \leq p \leq \omega(G) \) then for every integer \(k \geq 1 \)
\[\sum_{i=1}^{n} (k_p(v_i)w_{k+1}(v_i) - k_{p+1}(v_i)w_k(v_i)) \leq (p - 1)k_p w_k \]

Proof of Theorem 1.3. Assume that \(2 \leq r < \omega(G) \). Fix an integer \(m \geq 1 \). Apply Lemma 1.4 with \(2 \leq p \leq r, k = m + r - p \) and sum up these inequalities over \(p \) to obtain

\[\sum_{i=1}^{n} k_2(v_i)w_{m+r-1}(v_i) - \sum_{i=1}^{n} k_r(v_i)w_m(v_i) \leq \sum_{p=2}^{r} (p - 1)k_p w_{m+r-p} \]

The leftmost term is just \(w_{m+r} \). Rearranging the inequality and using the fact that \(w_m(v_i) \leq w_{m-1} \) for every \(v_i \),

\[
\begin{align*}
w_{m+r} &\leq \sum_{i=1}^{n} k_r(v_i)w_m(v_i) + \sum_{p=2}^{r} (p - 1)k_p w_{m+r-p} \\
&\leq w_{m-1} \sum_{i=1}^{n} k_{r+1}(v_i) + \sum_{p=2}^{r} (p - 1)k_p w_{m+r-p} \\
&= w_{m-1}(r + 1)k_{r+1} + \sum_{p=2}^{r} (p - 1)k_p w_{m+r-p}
\end{align*}
\]

This implies

\[\frac{w_{m+r}}{w_{m-1}} \leq (r + 1)k_{r+1} + \sum_{p=2}^{r} (p - 1)k_p \frac{w_{m+r-p}}{w_{m-1}} \]

There are nonnegative constants \(c_1, \ldots, c_n \) with \(c_1 > 0 \) such that

\[w_m = c_1\mu_1^{m-1} + \cdots + c_n\mu_n^{m-1} \]

([4], page 44). Since \(\omega(G) > 2 \), \(G \) is not bipartite and so \(\mu_1 > |\mu_n| \) thus for every fixed integer \(s \geq 1 \)

\[\lim_{m \to \infty} \frac{w_{m+s}}{w_{m-1}} = \mu^{s+1} \]

This equation together with the inequality proves Theorem 1.3 when \(2 \leq r < \omega(G) \). The remaining cases are left to the reader.

See Exercise 3 for another example of a bound that is obtained using a similar technique.

Theorem 1.3 is then used to obtain a lower bound on \(k_{r+1} \) in terms of \(\mu \).

Theorem 1.5 (Bollobás, Nikiforov, [2]) If \(G \) is an \(n \)-vertex graph and \(r \geq 2 \) then

\[k_{r+1} \geq \left(\frac{n}{r} - 1 + \frac{1}{r} \right)^{r(r-1)\left(\frac{n}{r} \right)^{r+1}} \]
The idea of the proof of Theorem 1.5 is to first suppose there are many small cliques i.e., k_s is big for some $2 \leq s \leq r$. A theorem of Moon and Moser (see [6], Ch. 10, Exercise 40) relates k_{s+1} to k_s, so that if k_s is big, then k_{r+1} is big too. On the other hand, if k_s is small for $2 \leq s \leq r$, then we apply Theorem 1.3 to get

$$(r + 1)k_{r+1} \geq \mu^{r+1} - \sum_{s=2}^{r} (s - 1)k_s \mu^{r+1-s}$$

and then substitute bounds on k_s into the above inequality in order to obtain the desired bound on k_{r+1}.

Next Nikiforov uses Theorem 1.3 along with the following theorem whose proof does not use spectral theory.

Theorem 1.6 (Nikiforov, [9]) Let $r \geq 2$ and $\epsilon > 0$. If $\epsilon^r \log n \geq 1$ and G is an n-vertex graph with $k_r \geq \epsilon n^r$ then $K_r(s, \ldots, s, s') \subset G$ where $s = \lfloor \epsilon^r \log n \rfloor$ and $s' > n^{1-\epsilon^{-1}}$.

We conclude with Nikiforov’s spectral Erdös-Stone-Bollobás type theorem.

Theorem 1.7 (Nikiforov, [10]) Let $r \geq 3$ be an integer and $c > 0$. If $(c/r^r) \log n \geq 1$ and G is an n-vertex graph with

$$\mu(G) \geq (1 - \frac{1}{r-1} + c) n$$

then $K_r(s, \ldots, s, s') \subset G$ where $s \geq \lfloor (c/r^r) \log n \rfloor$ and $s' > n^{1-\epsilon^{-1}}$.

Proof. The hypothesis and Theorem 1.5 imply

$$k_r > \frac{c(r-1)(r-2)}{r} \left(\frac{n}{r-1} \right)^r > \frac{c}{r^r} n^r$$

Let $\epsilon = \frac{c}{r^r}$ and apply Theorem 1.6.

2 Exercises, Questions, and Problems

In all exercises G is an n-vertex graph with $V(G) = \{v_1, \ldots, v_n\}$. A k-walk is a sequence of k vertices v_1, \ldots, v_k such that $v_i v_{i+1} \in E(G)$ for $1 \leq i \leq k-1$ and w_k is the number of k-walks in G. $A(G)$ is the adjacency matrix of G and $\mu = \mu_1 \geq \cdots \geq \mu_n$ are its eigenvalues.

1. Show that for any k, there exists non-negative constants c_1, \ldots, c_n with $c_1 > 0$ such that

$$w_k = \sum_{i=1}^{n} c_i \mu_i^{k-1}$$

2. Let G be an n-vertex graph with e edges and minimum degree δ. In [7], Nikiforov proves the inequality
\[\mu \leq \frac{\delta - 1}{2} + \sqrt{2e - n\delta + \frac{(1+\delta)^2}{4}} \]

Prove this inequality under the additional assumption that \(\mu > |\mu_n| \). Hint: The inequality is equivalent to

\[\mu^2 - (\delta - 1)\mu - (2e - (n - 1)\delta) \leq 0 \]

For \(k \geq 4 \), note \(w_k = \sum_{i=1}^{n} w_{k-2}(v_i) \left(\sum_{v_j \in N(v_i)} d(v_j) \right) \). Derive the bound

\[\sum_{v_j \in N(v_i)} d(v_j) \leq 2e - (n - 1 - d(v_i))\delta - d(v_i) \]

to obtain the inequality \(w_k \leq (2e - (n - 1)\delta)w_{k-2} + (\delta - 1)w_{k-1} \).

3. Question: If \(G \) is an \(n \)-vertex graph does \(\mu(G) < \mu(T_r(n)) \) imply \(e(G) < e(T_r(n)) \)?
 This question is due to Nikiforov [11].

4. Question: Let \(k_{r, t} \) be the number of \(K_r(t) \) subgraphs of \(G \). With this notation, Theorem 1.3 says that for any integer \(p \geq 2 \)

\[\mu^{p+1} \leq (p + 1)k_{p+1, 1} + \sum_{s=2}^{p} (s - 1)k_{s, 1}\mu^{p+1-s} \]

Is there a similar formula for \(t \geq 2 \)?

5. Problem: Find a spectral version of the Erdős-Stone Theorem that relies entirely on spectral theory.

References

