
Fan Chung *

Guessing secrets

(Extended Abstract)

R o n a l d G r a h a m *t T o m L e i g h t o n t$

1 Introduction

We consider a variant of the familiar "20 questions"

problem in which one tries to discover the identity of

some unknown "secret" by asking binary questions (e.g.,

see [2]). In this variation, there is now a set of two (or

more) secrets. For each questio asked, an adversary

gets to choose which of the secrets to use in supplying

the answer, which in any case must be truthful. We

will describe a number of algorithms for dealing with

this problem, although we are still far from a complete

understanding of the situation. Problems of this type

have recently arisen in connection with certain Internet

traffic routing applications.

2 The basic setup

To begin with we will restrict ourselves to the case that

the adversary A has just two (distinct) "secrets", say

S = {S1,S2} - taken from a finite set ft. A question is

then just a function F : ~ --~ {0, 1}. The questioner

Q's job is to select questions so as to determine as much

about the secrets as effectively as possible. We first

remark that Q can never hope to learn with certainty

more than just one of A's secrets, since A can always

answer every question using the same Si E S. We can

model the situation in terms of graphs. Let g N denote

the complete graph on the set f~. A pair of secrets

{$1, $2} corresponds to an edge of Kw. Each question

F induces a partition ~ = F -1 (0) U F - 1 (1) of the vertex

set of KN. The answer to the question F given by A,

e.g., F --~ 0, implies that S N F - I (1) = I~. That is, Q can

remove all the edges spanned by F - l (1) C ft as possible

candidates for S. Q now chooses another question F ~

and repeats the process. Q is finished when the set of

surviving edges contains no pair of disjoint edges. Thus,

" - - '~vers i ty of California, San Diego
t Akamai Technologies
:tMIT

these edges now either form a star on some vertex So

(and so So is one of A's secrets), or a triangle on three

vertices A, B, C (and S can be any two of these three).

We first note that this is the most Q could hope for

under these constraints, or A always has the option for

a fixed vertex So of always choosing the part F-1(5)
containing So. In this way, no edge containing So

will ever be removed, although Q might be able to

assert that So is at least one of A's secrets. Howev

, A can prevent even this from happening with the
following strategy. Namely, A chooses a fixed set
S' = {S~,S~,S~} of three distinct secrets. For every

question F, A selects the part F -1(5) to keep which

contains at least two of the three S t. In this way, any

of the three pairs {S~, S~}, {S~, S~}, {S~, S~} could have

been A's secret pair, and so in this case Q cannot even

claim that any particular element So had to be in S.

However, this is the most ambiguity t t A can enforce,
as we will now see.

3 Adaptive algorithms

We first focus on adaptive algorithms, i.e., where future

questions can depend on past answers.

We say that there is an edge-separating strategy

of length t if no matter how A answers, Q can find

questions which guarantee that after t steps, the set of

surviving edges contains no disjoint pairs of edges. Let
f (N) denote the smallest value of t such that there is

an edge-separating strategy of length t.

THEOREM 3.1.

f (N) < 4log 2 N + O(1)

Proof sketch. Proof is by induction on N. Let K(a, b)
denote a complete bipartite graph with all edges be-

tween two sets of a and b vertices. Also, denote
by K(a,b,c) the corresponding triparti te graph, and

723

let K(a,b) denote the subgraph of K(a,b) formed by

adding in all the edges with both endp nts in b. Given

either of the configurations K(a, b) or K(a, b, c), by ask-
ing suitable questions Q can force A to create similar

(but smaller) configurations of these types. For exam-
ple, starting with K(a, N - a), two questions can lead
to either hT(a/2, N - a/2) or K(a/2, a/2, (N - a)/2).
Hence,

f (K(a, N - a))

- a a K a a N
< 2 + m a x { f (K (3 , g - 3) , f ((3 ' 2' ~-a))

Also, starting with K(a, a, N - 2a), four questions can
reduce the graph to K(a/2, a/2, N/2 - a). Therefore,

N
f (g (a , a, N - 2a)) < 4 f (K (~

a

- ' 2 ' 2 a))

A careful treatment of the corresponding recurrences

yields the desired upper bound of 4 log 2 N+O(1) (where
we observe that the starting c figuration KN can be
reduced by one question to K(N/2 , N/2).

T H E O R E M 3 . 2 .

f (N) > 3 log 2 N + O(1)

Proof: Observe that for any graph G on N vertices,
the set of triangles of G killed by removing the edges
in F - l (0) is disjoint from the set of triangles killed by
removing the edges in F - l (1) . Since Q is not finished
until at most one triangle remains, and we start with
(3 N) triangles in KN, then A can force Q to ask at
least log 2 (~) - 1 questions until at most one triangle is

left, simply by always choosing the answer F(5) which

minimizes the number of triangles destroyed. This gives
the claimed lower bound.

Note that in the classical case where A has a single

secret, log 2 N questions are required by the standard
information-theoretic bounds [3]. We suspect that in

fact f (N) ,.. co log2 N for an appropriate co (perhaps
co = 47).

4 O b l i v i o u s a l g o r i t h m s

In the case of oblivious algorithms (where all questions
are asked before any answers are given), let fo(N)
denote the corresponding minimum number of questions
needed to separate edges in KN.

THEOREM 4.1.

4
fo(N) < (log 2 8/7)log 2 N

4 = 2 0 . 7 6 . .) (Note: log2 s/7

Proof sketch: Label each vertex S of g/independently
with a binary t-tuple A(S) = (S(1), S(2) , . . . , S(t)).The
value of S(i) will correspond to the part of the i-th

partition ~'/= Fi-l(0) LJF~-I(1) to which S belongs. The

assignment A separates the disjoint pairs S = {S1, $2}
and T = {T1,T2} provided for some i, Si(i) = $2(i)
Tl(i) = T2(i). There are therefore just 14 of the 16
possible choices for the i-th coordinate so that this does
not happen. Hence, the probability that ~ does not

7 t separate S from T is < (~) . Since there are just
½(~) (N~-2) disjoint pairs in KN, then some separating

must exist provided

7 , l / N \

which yields the asserted bound.

We do not have any better lower bound at present
for f0 than what Theorem 2 gives.

5 I n n e r p r o d u c t s t r a t eg i e s

One disadvantage of the preceding approaches is that
the questions needed to ach ve the c log N bounds might
in fact require cN bits for their description. We would
like questions for Q which can be represented very
compactly, e.g., using just c l o g N bits. One way to
do this is as follows. Let us represent ~ as GF(2) u,

an n-dimensional vector space over GF(2) (so that
N = 2n). A question now is represented by a vector

F = (F(1), F(2) ,F(n)), F(i) e {0, 1}. The answer

to the question F will be F . Si, the inner product (rood
2) of F with some Si E S. We will call strategies

for separating edges in this setting "inner product"
strategies.

THEOREM 5.1. There is an inner product edge-
separating strategy with at most log~/7 l°g2N ques-
tions.

Proof sketch: Choose a random set of ---~---n inner log 2 8/7
product questions. A particular question F will sepa-

rate the pair S = ($1,$2) and T = (T1,T2) provided

724

F . $1 -~ F . $2 ~ F . T1 ~- F . :/~ (mod 2). One can show

that for S A T = q}, a random F separates and T with

probability > 1/8. This implies the asserted bound.

Another way of generating inner product questions

is to select all the consecutive blocks of length n in a

longer binary sequence B of length fin. For this case,

we look at the 3 x n array A given by

A = As(l) A 2 (2) . . . As(n) = A2
A3(1) A a (2) . . . A3(n) A3

where

, ~ (i) ~ X l (i) - x s (i)

A s (i) _= x s (i) - Y~(i)

A3(i) ~ Y l (i) - Y2(i)

for 1 < i < n. It is not hard to show that there are

always at most three columns of A, say, in positions

i , j and k, such that by choosing the values of F in

these positions (namely F(i) , F(j) , F(k)) correctly, we

can guarantee that F . A1 ~ 0, F . A1 -~ 1, F . A3 ~ 0,

i.e., F separates X = {X1,X2} from Y = {YI,Y2}.
Thus if F does not separate X from Y then (at least)

one of the eight choices for F (i) , F (j) , F (k) must be

forbidden. The idea is now to pack as many disjoint

translates of the pattern {i, j , k} into {1, 2 , . . . , f n } as

possible where we know that { i , j , k } C {1 ,2 , . . . ,n}.

Any translate of the pattern could separate X and Y

for some translated question (all cyclic translates are

allowed) and so must have restricted F values. It is not

hard to show that if f > 10, for example, then at least

! f n disjoint translates of the pattern { i , j , k } can be 5
found in {1, 2 , . . . , f n} . Thus, the probability that F is

bad for the pair X, Y (i.e., does not separate them) is
< (7/8) flu/5. Since there are at most 23n choices for the

A entries then our bound follows, and we have

THEOREM 5.2. There is an inner product edge-

separating strategy made up of consecutive blocks from
some sequence B of length (I ~ 7 - 7) l°gs N.

One way to make the sequences in Theorem 5 more

constructive is to select for B a sequence which has some

provable random-like properties. One such sequence is
the characteristic function for the quadratic residues of
a large prime.

For this construction, we choose a prime p > 144n s
and we form the sequence Q = (q(1), q (2) , . . . , q(p - 1))

where q(k) = ½(1 + xp(k)) e {0, 1} and Xp is a non-

trivial quadratic character modulo p, i.e.,

xp(k) = {
1 if k is a quadratic residue of p,
- 1 if k is a quadratic non-residue of p,
0 if k_=0 (modp) .

As before, for a given disjoint pair X = {xl ,x2} and

Y = {yl, ys}, we form the difference array A:

A1 = X 1 - X s = A i (1) A i (2) . . . A i (n)
A2 = Y 1 - X 2 = A2(1)A2(2) . . .A2(n)
A3 = Y2 - Yi = A3(1)Aa(2) . . .A3(n)

We want to show that if p is sufficiently large then there

must be a block F of Q of length n such that

(5.1) F. ~2 ~ F . As =- 1
Aa F . A3 0

For this application we would like to consider 0 to be a

quadratic residue of p. So define,

:f p(k) irkS0, x~(k) [1 i f k = 0

Next, we consider the following sum:

(5.2) w =
p--1 n
E (1 - H X * (x + ~1(i)))
x=0 i=1

n

(1 + lII x*(x +
j=l

(1 -- H x*(x + ~3(k)))
k=l

Note that the term 1 - l[Ii~1X*(x + Ai(i)) is 0 if an

even number of the terms X*(x + At(i)) are -1 , and 2

otherwise. Thus,

n

(5.3) ~(1 -- l ie X*(x + ~ l (i))) : f x ' ~ i (rood 2)
i = l

where Fx is the n-block of Q shifted to the left by x.
Hence, W L2 0 in any case, and W > 0 if and only if
some block F of Q satisfies (5.1). To estimate W, we

725

first expand it into 8 terms.

(5.4)

W =

p--1 p-1 n

E 1 - E ~ I x ; (x W Ai (i)) i . . .
x=O x=0 i= 1

p--1 n f i

- lHx;(x + Ai(i)) + ± . . .
x=0 i=1 j=l
p--I n

+ I] +
x=O i=I

" / I [I x;(x + x;(x +
j=l k=l

We next recall the powerful Burgess-Well character sum

bound:

T h e o r e m (Burgess [1]):

For distinct a l , a2 , . . . ,as modulo p, s > 1,

p-1 s

(5.5) I E H Xp(X + ak) [_< (s - 1)x,,'~
x=O k= 1

A simple modification of (5.4) with X~ replacing Xp

gives

p-1

(5.6) I E l~I X;(X + ak) I< sxfp
x=0 k= 1

for p > s 2.

Observe that the only way for any of the sums in
p-1 (5.6) to "collapse" (except for ~ x = 0 1 = p) is if each

term Xp(x + ai) occurs in the product exactly twice.

However, the assumption that X N Y = 0 implies that

this cannot happen. Hence, applying (??) to the terms

in (5.4) gives

(5.7) w > p - (3n + 3.2n + 1- 3n)

= p - 12nx/~

which is greater than zero for p > 144n 2. This proves

Theorem 6. The inner product strategy made

up of the p consecutive blocks of length log s N of the
characteristic function sequence of the quadratic re dues
of a prime p (where 0 is considered to be a quadratic
residue) is edge-separating, provided p > 144(log 2 N) 2.

Note that as before, our sliding window is allowed
to go "around the corner" , i.e., all p cyclic translates

are allowed.

We believe that this construction may well be valid

for much smaller values of p, e.g., p = O((log N) 3/2) or

even O(logN). To prove, however, this would require

a much more careful analysis of the various terms in

(5.4). We have perfor d some limited computational

experiments which are consistent with this belief.

Another way for constructing even shorter questions

is to use very short inner product questions. One such

example is the set of vectors with at most three l 's. This

is an edge-separating set of inner product questions of

size roughly ~(log 2 N) 3. However, in contrast to the

preceding sets constructed by probabilistic methods nd

also the quadratic residue construction), a secret (or the

secret "triangle") canbe reconstructed from the answers

in a reasonably efficient way (most of the time) by a

backtrack and pruning algorithm.

6 F ina l r e m a r k s

One can also study this problem in the cases that A

has more than two secrets, and/or there are more than

two possible answers to the questions. Naturally, more

secrets make it harder for Q to learn anything, while

more possible answers make it easier. For example, if

Q can ask just a single question with a 2-bit answer in

the inner product scenario, then Q can always identify

some secret of A (i.e., Q can resolve the 2-out-of-3
ambiguity). On the other hand, suppose A has a set

of r (t - 1) + 1 secrets from which to choose to answer

Q's question, but each question can now have one of t

different answers. Then by a simple majority strategy,

A can make sure that Q will never be able to claim

that any particular r-element set T C ~ contains one of

A'ssecrets. The preceding analyses can also be carried

out for these cases as well, although not as much is

known here. One could also look at other variants,

e.g., suppose A is allowed to lie a certain number (or

fraction) of times. Now what should Q do?

R e f e r e n c e s

[1] A. Burgess, On character sums and primitive roots,
Proe. London Math. Soc. 12 (1962), 179-192.

[2] I've Got a Secret, a classic '50's television gameshow,
see http://www.timvp.ivegotse.html

[3] D. E. Knuth, The Art of Computer Programming, vol.
3, Sorting and Searching, Addison Wesley, 2nd Edition,
1998.

726

