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1 Introduction 

We consider a variant of the familiar "20 questions" 

problem in which one tries to discover the identity of 

some unknown "secret" by asking binary questions (e.g., 

see [2]). In this variation, there is now a set of two (or 

more) secrets. For each questio asked, an adversary 

gets to choose which of the secrets to use in supplying 

the answer, which in any case must be truthful. We 

will describe a number of algorithms for dealing with 

this problem, although we are still far from a complete 

understanding of the situation. Problems of this type 

have recently arisen in connection with certain Internet 

traffic routing applications. 

2 The basic setup 

To begin with we will restrict ourselves to the case that 

the adversary A has just two (distinct) "secrets", say 

S = {S1,S2} - taken from a finite set ft. A question is 

then just a function F : ~ --~ {0, 1}. The questioner 

Q's job is to select questions so as to determine as much 

about the secrets as effectively as possible. We first 

remark that Q can never hope to learn with certainty 

more than just one of A's secrets, since A can always 

answer every question using the same Si E S. We can 

model the situation in terms of graphs. Let g N  denote 

the complete graph on the set f~. A pair of secrets 

{$1, $2} corresponds to an edge of Kw. Each question 

F induces a partition ~ = F -1 (0) U F -  1 (1) of the vertex 

set of KN. The answer to the question F given by A, 

e.g., F --~ 0, implies that S N F - I ( 1 )  = I~. That  is, Q can 

remove all the edges spanned by F - l ( 1 )  C ft as possible 

candidates for S. Q now chooses another question F ~ 

and repeats the process. Q is finished when the set of 

surviving edges contains no pair of disjoint edges. Thus, 
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these edges now either form a star on some vertex So 

( and so So is one of A's  secrets), or a triangle on three 

vertices A, B, C (and S can be any two of these three). 

We first note that  this is the most Q could hope for 

under these constraints, or A always has the option for 

a fixed vertex So of always choosing the part F-1(5) 
containing So. In this way, no edge containing So 

will ever be removed, although Q might be able to 

assert that So is at least one of A's  secrets. Howev 

, A can prevent even this from happening with the 
following strategy. Namely, A chooses a fixed set 
S' = {S~,S~,S~} of three distinct secrets. For every 

question F,  A selects the part F -1(5)  to keep which 

contains at least two of the three S t. In this way, any 

of the three pairs {S~, S~}, {S~, S~}, {S~, S~} could have 

been A's  secret pair, and so in this case Q cannot even 

claim that any particular element So had to be in S. 

However, this is the most ambiguity t t A can enforce, 
as we will now see. 

3 Adaptive algorithms 

We first focus on adaptive algorithms, i.e., where future 

questions can depend on past answers. 

We say that there is an edge-separating strategy 

of length t if no matter  how A answers, Q can find 

questions which guarantee that  after t steps, the set of 

surviving edges contains no disjoint pairs of edges. Let 
f (N )  denote the smallest value of t such that there is 

an edge-separating strategy of length t. 

THEOREM 3.1. 

f (N )  < 4log 2 N  + O(1) 

Proof sketch. Proof  is by induction on N. Let K(a, b) 
denote a complete bipartite graph with all edges be- 

tween two sets of a and b vertices. Also, denote 
by K(a,b,c) the corresponding triparti te graph, and 
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let K(a,b)  denote the subgraph of K(a,b) formed by 

adding in all the edges with both endp nts in b. Given 

either of the configurations K(a,  b) or K(a, b, c), by ask- 
ing suitable questions Q can force A to create similar 

(but smaller) configurations of these types. For exam- 
ple, starting with K(a,  N - a), two questions can lead 
to either hT(a/2, N - a/2) or K(a/2, a/2, (N - a)/2). 
Hence, 

f (K(a,  N - a)) 

- a  a K a a N  
< 2 + m a x { f ( K ( 3 , g - 3 ) , f (  (3 '  2'  ~-a)) 

Also, starting with K(a, a, N -  2a), four questions can 
reduce the graph to K(a/2, a/2, N/2 - a). Therefore, 

N 
f ( g ( a ,  a, N - 2a)) < 4 f ( K ( ~  

a 

- ' 2 '  2 a)) 

A careful treatment of the corresponding recurrences 

yields the desired upper bound of 4 log 2 N+O(1)  (where 
we observe that the starting c figuration KN can be 
reduced by one question to K(N/2 ,  N/2). 

T H E O R E M  3 . 2 .  

f (N)  > 3 log 2 N + O(1) 

Proof: Observe that  for any graph G on N vertices, 
the set of triangles of G killed by removing the edges 
in F - l ( 0 )  is disjoint from the set of triangles killed by 
removing the edges in F - l (1 ) .  Since Q is not finished 
until at most one triangle remains, and we start  with 
(3 N) triangles in KN, then A can force Q to ask at 
least log 2 (~) - 1 questions until at most one triangle is 

left, simply by always choosing the answer F(5) which 

minimizes the number of triangles destroyed. This gives 
the claimed lower bound. 

Note that  in the classical case where A has a single 

secret, log 2 N questions are required by the standard 
information-theoretic bounds [3]. We suspect that  in 

fact f ( N )  ,.. co log2 N for an appropriate co (perhaps 
co = 47). 

4 O b l i v i o u s  a l g o r i t h m s  

In the case of oblivious algorithms (where all questions 
are asked before any answers are given), let fo(N) 
denote the corresponding minimum number of questions 
needed to separate edges in KN. 

THEOREM 4.1. 

4 
fo(N) < (log 2 8/7)log 2 N 

4 = 2 0 . 7 6 . . )  (Note: log2 s/7 

Proof sketch: Label each vertex S of g/independently 
with a binary t-tuple A(S) = (S(1), S(2) , . . .  , S(t)).The 
value of S(i) will correspond to the part of the i-th 

partition ~'/= Fi-l(0) LJF~-I(1) to which S belongs. The 

assignment A separates the disjoint pairs S = {S1, $2} 
and T = {T1,T2} provided for some i, Si(i) = $2(i) 
Tl(i) = T2(i). There are therefore just 14 of the 16 
possible choices for the i-th coordinate so that this does 
not happen. Hence, the probability that  ~ does not 

7 t separate S from T is < (~) . Since there are just 
½(~) (N~-2) disjoint pairs in KN, then some separating 

must exist provided 

7 , l / N \  

which yields the asserted bound. 

We do not have any better lower bound at present 
for f0 than what Theorem 2 gives. 

5 I n n e r  p r o d u c t  s t r a t eg i e s  

One disadvantage of the preceding approaches is that  
the questions needed to ach ve the c log N bounds might 
in fact require cN bits for their description. We would 
like questions for Q which can be represented very 
compactly, e.g., using just c l o g N  bits. One way to 
do this is as follows. Let us represent ~ as GF(2) u, 

an n-dimensional vector space over GF(2) (so that  
N = 2n). A question now is represented by a vector 

F = (F(1), F(2) . . . .  ,F(n)), F(i) e {0, 1}. The answer 

to the question F will be F .  Si, the inner product (rood 
2) of F with some Si E S. We will call strategies 

for separating edges in this setting "inner product" 
strategies. 

THEOREM 5.1. There is an inner product edge- 
separating strategy with at most log~/7 l°g2N ques- 
tions. 

Proof sketch: Choose a random set of ---~---n inner log 2 8/7 
product questions. A particular question F will sepa- 

rate the pair S = ($1,$2) and T = (T1,T2) provided 
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F .  $1 -~ F .  $2 ~ F .  T1 ~- F .  :/~ (mod 2). One can show 

that for S A T = q}, a random F separates and T with 

probability > 1/8. This implies the asserted bound. 

Another way of generating inner product questions 

is to select all the consecutive blocks of length n in a 

longer binary sequence B of length fin. For this case, 

we look at the 3 x n array A given by 

A =  As( l )  A 2 ( 2 ) . . .  As(n) = A2 
A3(1) A a ( 2 ) . . .  A3(n) A3 

where 

, ~ ( i )  ~ X l ( i )  - x s ( i )  

A s ( i )  _= x s ( i )  - Y~( i )  

A3(i)  ~ Y l ( i )  - Y2(i) 

for 1 < i < n. It is not hard to show that there are 

always at most three columns of A, say, in positions 

i , j  and k, such that by choosing the values of F in 

these positions (namely F(i) ,  F( j ) ,  F(k) )  correctly, we 

can guarantee that F .  A1 ~ 0, F .  A1 -~ 1, F .  A3 ~ 0, 

i.e., F separates X = {X1,X2} from Y = {YI,Y2}. 
Thus if F does not separate X from Y then (at least) 

one of the eight choices for F ( i ) , F ( j ) , F ( k )  must be 

forbidden. The idea is now to pack as many disjoint 

translates of the pattern {i, j ,  k} into {1, 2 , . . .  , f n }  as 

possible where we know that { i , j , k }  C {1 ,2 , . . .  ,n}. 

Any translate of the pattern could separate X and Y 

for some translated question (all cyclic translates are 

allowed) and so must have restricted F values. It is not 

hard to show that if f > 10, for example, then at least 

! f n  disjoint translates of the pattern { i , j , k }  can be 5 
found in {1, 2 , . . .  , f n} .  Thus, the probability that F is 

bad for the pair X, Y (i.e., does not separate them) is 
< (7/8) flu/5. Since there are at most 23n choices for the 

A entries then our bound follows, and we have 

THEOREM 5.2. There is an inner product edge- 

separating strategy made up of consecutive blocks from 
some sequence B of length ( I ~ 7 - 7 )  l°gs N. 

One way to make the sequences in Theorem 5 more 

constructive is to select for B a sequence which has some 

provable random-like properties. One such sequence is 
the characteristic function for the quadratic residues of 
a large prime. 

For this construction, we choose a prime p > 144n s 
and we form the sequence Q = (q(1), q ( 2 ) , . . . ,  q(p - 1)) 

where q(k) = ½(1 + xp(k))  e {0, 1} and Xp is a non- 

trivial quadratic character modulo p, i.e., 

xp(k) = { 
1 if k is a quadratic residue of p, 
- 1  if k is a quadratic non-residue of p, 
0 if k_=0 (modp) .  

As before, for a given disjoint pair X = {xl ,x2} and 

Y = {yl, ys}, we form the difference array A: 

A1 = X 1 - X s  = A i ( 1 ) A i ( 2 ) . . . A i ( n )  
A2 = Y 1 - X 2  = A2(1)A2(2) . . .A2(n)  
A3 = Y2 - Yi = A3(1)Aa(2) . . .A3(n)  

We want to show that if p is sufficiently large then there 

must be a block F of Q of length n such that 

(5.1) F.  ~2 ~ F .  As =- 1 
Aa F .  A3 0 

For this application we would like to consider 0 to be a 

quadratic residue of p. So define, 

:f p(k) irkS0,  x~(k) [ 1 i f k  = 0 

Next, we consider the following sum: 

(5.2) w = 
p--1 n 
E ( 1  - H X * ( x  + ~1(i)))  
x=0 i=1 

n 

(1 + lII x*(x + 
j=l  

(1 -- H x*(x + ~3(k)) )  
k=l 

Note that  the term 1 - l[Ii~1X*(x + Ai(i ) )  is 0 if an 

even number of the terms X*(x + At(i ) )  are -1 ,  and 2 

otherwise. Thus, 

n 

(5.3) ~(1 -- l ie X*(x + ~ l ( i ) ) )  : f x ' ~ i  (rood 2) 
i = l  

where Fx is the n-block of Q shifted to the left by x. 
Hence, W L2 0 in any case, and W > 0 if and only if 
some block F of Q satisfies (5.1). To estimate W, we 
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first expand it into 8 terms. 

(5.4) 

W = 

p--1 p-1 n 

E 1 -  E ~ I  x ; ( x  W Ai ( i ) )  i . . .  
x=O x=0 i= 1 

p--1 n f i  

- lHx;(x + Ai(i)) + ± . . .  
x=0 i=1 j=l  
p--I n 

+ I ]  + 
x=O i=I 

" / I  [ I  x;(x + x;(x + 
j=l k=l 

We next recall the powerful Burgess-Well character sum 

bound: 

T h e o r e m  (Burgess [1]): 

For distinct a l , a2 , . . .  ,as modulo p, s > 1, 

p-1 s 

(5.5) I E H Xp(X + ak) [_< (s - 1)x,,'~ 
x=O k= 1 

A simple modification of (5.4) with X~ replacing Xp 

gives 

p-1 

(5.6) I E l~I X;(X + ak ) I<  sxfp 
x=0 k= 1 

for p > s 2. 

Observe that  the only way for any of the sums in 
p-1 (5.6) to "collapse" (except for ~ x = 0  1 = p) is if each 

term Xp(x + ai) occurs in the product exactly twice. 

However, the assumption that  X N Y = 0 implies that 

this cannot happen. Hence, applying (??) to the terms 

in (5.4) gives 

(5.7) w > p -  (3n  + 3.2n + 1- 3n ) 

= p -  12nx/~ 

which is greater than zero for p > 144n 2. This proves 

Theorem 6. The inner product strategy made 

up of the p consecutive blocks of length log s N of the 
characteristic function sequence of the quadratic re dues 
of a prime p (where 0 is considered to be a quadratic 
residue) is edge-separating, provided p > 144(log 2 N) 2. 

Note that as before, our sliding window is allowed 
to go "around the corner" , i.e., all p cyclic translates 

are allowed. 

We believe that  this construction may well be valid 

for much smaller values of p, e.g., p = O((log N) 3/2) or 

even O(logN).  To prove, however, this would require 

a much more careful analysis of the various terms in 

(5.4). We have perfor d some limited computational 

experiments which are consistent with this belief. 

Another way for constructing even shorter questions 

is to use very short inner product questions. One such 

example is the set of vectors with at most three l 's. This 

is an edge-separating set of inner product  questions of 

size roughly ~(log 2 N) 3. However, in contrast to the 

preceding sets constructed by probabilistic methods nd 

also the quadratic residue construction), a secret (or the 

secret "triangle") canbe reconstructed from the answers 

in a reasonably efficient way (most of the time) by a 

backtrack and pruning algorithm. 

6 F ina l  r e m a r k s  

One can also study this problem in the cases that  A 

has more than two secrets, and/or  there are more than 

two possible answers to the questions. Naturally, more 

secrets make it harder for Q to learn anything, while 

more possible answers make it easier. For example, if 

Q can ask just a single question with a 2-bit answer in 

the inner product  scenario, then Q can always identify 

some secret of A (i.e., Q can resolve the 2-out-of-3 
ambiguity). On the other hand, suppose A has a set 

of r ( t  - 1) + 1 secrets from which to choose to answer 

Q's question, but  each question can now have one of t 

different answers. Then by a simple majority strategy, 

A can make sure that  Q will never be able to claim 

that  any particular r-element set T C ~ contains one of 

A'ssecrets. The preceding analyses can also be carried 

out for these cases as well, although not as much is 

known here. One could also look at other variants, 

e.g., suppose A is allowed to lie a certain number (or 

fraction) of times. Now what should Q do? 
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