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1 Introduction

Given a fixed graph H on ¢ vertices, a typical graph G on n vertices
contains many induced subgraphs isomorphic to H as n becomes large.
Indeed, for the usual model of a random graph G* on n vertices (see
[4]), in which potential edges are independently included or not each
with probability 3, almost all such G* contain {1+ 0(1)}n2~® induced
copies of H as n — . Thus, if a large graph G contains no induced
copy of H, it deviates from being ‘typical’ in a rather strong way. In
this case, we would expect it to behave quite differently from random
graphs in many other ways as well. That this in fact must happen fol-
lows from recent work of several authors, e.g., see Chung, Graham &
Wilson [5] and Thomason [7], [8]. In this paper we initiate a quantita-
tive study of how various deviations of randomness are related. The
particular property we investigate (‘uniform edge density for half sets’ —
see Section 3) is just one of many which might have been selected and
for which the same kind of analysis could be carried out.

This work also shares a common philosophy with several recent
papers of Alon & Bollobas [1] and Erdés & Hajnal [6], which investi-
gate the structure of graphs which have an unusually small number of
non-isomorphic induced subgraphs. This is a strong restriction and such
graphs must have very large subgraphs which are (nearly) complete or
independent.

2 Preliminaries

By a graph G we will mean a finite set V(G) called vertices, together
with a set E(G) of unordered pairs of vertices called edges. We often
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denote the fact that G has n vertices by writing G as G(n). If
X C V(G), we let e(X) denote the number of edges {v, v’} € E(G) with
v,v’ € X. The adjacency matrix A(G) is the matrix (a(v,v’)) indexed
by (a fixed ordering of) the vertices of G with

(o, v') = [1 if {v,v'} € E(G),

0 otherwise.
For v,v’ € V(G), we define
s(v,v") = |{v" € V(G): a(v,v") = a(v’,v")}|.

In other words, s(v,v’) is the number of vertices of G which are either
joined to both v and v’ or joined to neither of them.

We say that H is an induced subgraph of G (written H < G) if there
is a 1-1 mapping A: V(H) — V(G) such that

{v,v'} € E(H) < {A(v),A(v")} € E(G).

We let [{A: H < G}| denote the number of such mappings.
Other terminology will be introduced as it is needed. The reader can
consult [3] for standard graph-theory terminology.

3 The main result

Theorem Let H(t) be an arbitrary fixed graph on t vertices and suppose
H(f) is not an induced subgraph of G(n). Then there exists S C V(G(n))
with |S| = |3n] and

le(S) — &n?| > 2_2('2+27)n2, 1)
provided n is sufficiently large.

Comment With probability tending to 1 as n— , a random graph
G*(n) has the property that every subset S of vertices of size |3n] spans
E{l+o)}n? edges. This we call the ‘uniform edge density for half
sets’ property. The inequality (1) asserts that this property must fail in
a strong way whenever any fixed f-vertex graph fails to occur as an
induced subgraph.

The following outline gives the main ideas of the proof. More
detailed calculations for some of the steps can be found in [5].

Sketch of the proof We first show that
[{A: HO) < Gm)}| < ny@ @ =127 @)

implies
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> |s(v,v")—3n| = 2-+3),3, 3)
0,0’ EV(G(n))
where nyy := n(n—1)---(n—k+1) and n is large.

Assume the contrary, i.e. that (2) holds but (3) does not hold. Write
V(H(®)) = {v1,v5,...,v,}. For 1 <r=<¢, define H(r) to be the sub-
graph of H(f) induced by {v;,...,v,}. Let N, denote |{A: H(r) <
G(n)}|. We prove by induction on r that

N, = ny@ ¥ =277, 4)

This is immediate for r =1 since Ny =n. Assume for some r
(1 <r <) that (4) holds. Define @ := (ay,...,qa,), where the a; are
distinct elements of [n] := {1,2,...,n}, which we can take for V(G(n))
without loss of generality. Also define € := (¢q,...,¢,) (¢, =0o0r1) and

fle,e) ;= {i€[n]:i# ay,...,a, and a(i,e;) = ¢ (1 < j < N}|.

Observe that N,_; is the sum of exactly N, quantities f,(a,€). Namely,
for each embedding of H(r) in G(n), say A(v;) = a; (1 < j <7), fa,€)
counts the number of ways of choosing i € [n] so that if we extend A to
{v1,09,..., 0,11} by defining A(v,,;) =i and we take € = a(v,+1,0)),
then A becomes an embedding of H(r+1) into G(n). Also, there are
just n»2" quantities f,(a,€), since there are n;, choices of & and 2’
choices for €. Simple counting arguments now show that

= 1 n—r
fr= ; D, He,e) = —
n(,)2 z 2
and
512 2 fla e =1t = £ o0 ®)
«,€ )
Define €; := s(i, j) —3n. Thus
2 S(i,j)(,-) = 2 (%n+eij)(r)
i#j i#j
< X (3ntey)”
i#j
r—1 ’
r k r—k
< (3n)'ng) + Z 2 (k)(%n) €]
i#j k=0
r—1
< (Gn)'ng +2 3 Gk 3 el
k=0 i#j
nr+2 r-1 L ko1 P
< > +27 3 (3n)*(3n)” > el
k=0 i#j
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nr+2

2"

nr+2

= — +2rn""1 > |s(v, v") — 3n|
v, v'€V(G(n))

< nr+22—r+2rnr+22—(t2+3) (6)

I

+2m™ 1Yy leij]
i#f

by hypothesis. Thus,
S, < n"Y2Q T 42 12)
so that
2 {fr(a,e) _fr}z = E frz(a’e) - 2 frz
2 {frz(aye)—'fn(a9€)} + 2 fr(a’e)

—np2(n—r2
=8, +np11)—npn— N
< a2 D) 4 Reny—Npyn—n22"
<272 —(n—-n"Y + 2 @+2) Rea1)

2
< 27Hr+2)n" 4y R

< nr+2(’.2—(¢2+2)+ 2) (7)

n

for n large. Since we have noted that

Nr+1 = E f,(a,e),

N, choices of (a,€)

then
2
|1Vr+1_lvrfr|2 = E {fr(a,f) _fr}
N, terms
= Nr E {f,(a, 5) _fr}Z’
N, terms

by the Cauchy—Schwartz inequality
= Nr 2 {fr(a, E) _fr}2
o, €

<o 2), o
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since N, < n". Thus,

Nr+1 = Nr_r—nr+1\/:2__(t2+T+§
n
= Nr(n_r)z—r_nr+lm
n
= "(r)(z_(i)—\/;f'z/z)(n—2)2"—n’+1\/W

by induction

= n(,+1)(2_(r51) —\/?2—r2—t2/2) —prtl [po-(+2) 4 %
= n(r+1)(2-(’;1) - Vr+ 1 2—12/2) (10)

for n sufficiently large, where the last step follows by a simple calcula-
tion. This completes the inductive step and proves (4), which for r = ¢
asserts

N, = n(,)(Z-(é) - \/?2"2/2)

contradicting (2). Therefore (2) = (3) as claimed.
We next claim that (3) implies: for some S C V(G(n)),

|e($) — IS P| = 3e%n?, (11)

where € = 5273,
To see this, suppose (11) does not hold, that is, for all S C V(G(n)),
we have

le(S) — 1|51 < 3e%n?. (12)

A standard argument now shows that all vertices of G(n) except for a
set Y of size at most 2en have degrees between (3 —€)n and (3 +¢€)n.
For vertices v,v’ € V(G(n)), define

fi{v, ) := [{w € V(G)): alv,w) = i, a(v’,w) = j}|
for 0 < i,j < 1. Thus,
|fi, ")+ fop(0,0") = 30| < en

if v,0' € V(Gm)\Y := V' and (i,j) = (0,0) or (1,1) and (', ;') = (1,0)
or (0,1). Therefore, in this case,

| f11(v, ') = foo(v, V)| < 2en, | fio(v, v") = fou (v, v)| < 2en.
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For a fixed v € V', let X(v) denote the set
{v' € V': |s(v,v")~3in| > 8en}.
We consider two cases.

Case (a) Forallv € V', | X(v)| < 2en.
We then have

2 sw,e)-dnl< 3 3 |sw,0")-3n]

v, v'€V(G(n)) veV' v'ev(Gn)

+2 2 |sw,v)-3n

VEV' »'eV(Gn))
< n(2enX 3n+nx8en) + 2enx in?
= 10en>.
This contradicts (3).

Case (b) For some vy € V', | X(vg)| > 2en.
Either there are en vertices in the set

X1(vo) = {u: sy, u) > 3n+8en},

or there are en vertices u’ with s(vg,u’) < 3n—8en. We will examine
the case that there are en vertices u with s(vg,u) > in+8en and omit
the (similar) proof for the other case. Now, s(vg,u) > in+8en implies

J11(vg, v) = 3{s(vy,u) —2en} = in+3en.

The number of ordered pairs (u,v) with u € X, and v € nd(vy),
denoted by e(X;,nd(vy)), is at least |X;|(3n+3en) (where nd(v,)
denotes the neighbourhood of vy, i.e., the set of vertices adjacent to
vp). From (12) we have:

e(Xy) = 11X, )° - 3e2n?,
e(nd(vy)) = %|nd(vy|*— 1e%n?,
e(X;Nnd(vy)) < %X, Nnd(vy|*+ 1€2n?,
e(X;Und(vg)) < 3| X,Und(vy|?+ Le2n2.

However, we now reach a contradiction since a simple counting argu-
ment shows we must always have

e(X1Und(vg)) = e(X;) +e(nd(vg)) + | X, | (n+3en) — 3e(X,Nnd(vy)).
Therefore we conclude that (12) does not hold and, so, (11) follows.
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The last step is to show that (11) implies the following: for some
S C V(G(n)) with |S| = |3n] we have

le(S) — sn?| = o-(@*+27) 2. (13)

Suppose (13) does not hold, i.e., for all § C V(G(n)) with |S| = |3n]
we have

le(S) — %nzl < Zz€’n’, (14)
From (11) we know that there is a set ' C V(G(n)) such that
le(s) — 415" | = 3e’n®.
There are two possibilities.

Case (a’) |S'| = 3
By averaging over all subsets S” of 8’ of size |3n], we get

e(s') < Z T%%
ses’ (Hf”l —2)

(IS I)(l + 162)

Similarly, we can also show that

Sl
«s) > (13)a -1,
This implies |e(S) 118 2| < le’n?, contradicting (11).
Case (b’) |S'| < in.

Let §' denote V(G(n))\S’. From the proof of Case (a’) we have

Ie(gr)_%|§r|2| < %EZ(LZ |)

and
e(Gm) - 47l < 3(3).
First we note that
e(s',S5") = e(G)—e(S") —e(S").

Now consider the average value of e(S'US"), where S” ranges over all
subsets of S’ with [3n]| —|S’| elements. This average is
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e(S'US")

, ( n—|s| )

s'es \Lzn] - 18]
(Lnf = 1S'D(3n] - |S'| - D)

B e T T
[3n] -8 s
—Fe(S, | S’

[3n] ) n_llfllJ el( |I fll)] [3n] 15|
_dznl L (el IS'DIER] o 13n] -8
B T I B ekt
> [2n] (3152 + 1e2n?)

n_ls,l q 3

(13n] = IS'D3n] (n-|§'] 1.2
‘(n—lS'l>(n—|S'|—1)( 2 )(%+§e)
I_%nJ-lS’l ny 2
+T|S'|<2)(§—‘%E)
= £n?+ ke’n?

This contradicts (14) asserting that any set with |4n] elements spans at
most &n?+ Le?n? edges.
This completes the proof of the main theorem since H(r) < G(n) cer-

tainly implies (2). O

4 Concluding remarks

As we remarked earlier, the assumption H(H) € G(n) must also be
reflected in the failure of all so-called quasi-random properties for G(n)
(see [5]). For example, it follows that, for some &(r) > 0, either
e(G(n)) < {3 -8(1)}n2, or [A(G(@n))—3in| > 8(®)n, or A(G(n)) > 8(t)n
for n sufficiently large, where A,(G(n)) denotes the kth largest eigen-
value of the adjacency matrix of G(n). However, we leave the quantita-
tive interrelationships between these various properties for a later paper.

With respect to the condition studied here, namely H(f) <€ G(n), it
would be of interest to know what the ‘correct’ values of the constants
are. In particular, can the factor 2-%**2") be replaced by a substantially
larger quantity, such as ¢/, for a constant ¢ > 1? On the other hand,
we have no interesting upper bounds here. We have not tried to see
how different graphs H(s) on ¢ vertices affect the estimates. Clearly
some graphs have a stronger effect than others. We have no idea which
graphs are the most influential from this point of view.
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The best value of the constants are not even known for the small
cases of H(¢). For example, when H(f) = Kj;, the complete graph on
three vertices, an old conjecture of Erdds asserts the following.

Conjecture If e(S) > 2n? for every S C G(10n) with |S| = 5n then
K; C G(10n).

The graph G'(10n) consisting of 5 independent sets I,(2n) of size 2n,
with complete bipartite graphs between 1;(2n) and I;,,(2n) (1 < i <5),
with Ig(2n) := I;(2n), shows that, if true, this result would be best possi-
ble. For K, (¢ = 4) the corresponding conjecture is the following. Let
Ti(n) denote the Turan graph for K, (see [3]), i.e., the (unique) graph
on n vertices having the maximum possible number of edges which con-
tains no K,. Let b,(n) denote the minimum number of edges spanned
by any set of 3n vertices of T,(n).

Conjecture If every set of in vertices of G(n) spans more than b/n)
edges then K, C G(n).

Finally, let us call a set E of edges of G(n) a bisector if E is the set of
edges joining a set S C V with |S| = |3n] to S:= V\S (see [2]). In
almost all random graphs on n vertices, all bisectors have size
{1+0(1)}n% One might easily guess that the analogue of the theorem
holds for bisectors, i.e., if H(f) € G(n) then, for some 8() > 0, there is
a bisector E with ||E|—%n?| > 8(f)n®. This is not the case, however,
as the following graph B(n) shows. B(n) will consist of disjoint vertex
sets V; and V, with |V;| = |3n] and |V,| = [3n]. V, spans a com-
plete graph and V, spans an empty graph (i.e., with no edges).
Between V; and V, we choose a random (bipartite) graph with edge
probability 3. A simple computation shows that every bisector of B(n)
has size §n2+ O(n). However, B(n) has no induced 4-cycle C,. This
cannot happen for graphs which also have all but o(n) vertices with
degrees 3{1+o(1)}n (i.e., ‘almost regular’). In this case, it is not hard
to show that ‘almost regular’ together with ‘all bisectors have size
{1+ 0(1)}n?’ is a quasi-random property (see [5]).
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