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Summary. We prove that a maximum subset of {1,2,...,n} containing no solu-
tions to x + y = 3z has [§] elements if n # 4, thus settling a conjecture of Erdés.
For n > 23 the set of all odd integers less than or equal to n is the unique maximum
such subset.

1. Introduction

Many classical problems in computational number theory focus upon subsets S of
positive integers with the property that for all z,y,z in S, we have x+y # kz, for a
fixed positive integer k. The history can be dated from 1916, when Schur [5], in work
related to Fermat’s Last Theorem, proved that the set of positive integers cannot be
partitioned into finitely many sum-free sets, i.e., sets having no solution to z+y = 2.
This result is a Ramsey-type theorem which predates Ramsey’s Theorem. In 1927,
van der Waerden [9] considered subsets having no solution to  + y = 2z, or in
other words, subsets containing no three-term arithmetic progression. His celebrated
theorem states that the positive integers cannot be partitioned into finitely many
subsets each of which contains no k-term arithmetic progressions. In 1952, Roth
proved that a set of positive upper density contains three-term progressions [4]. This
was improved by Szemerédi to four-term progressions [7] and later to the general
k-term progressions [8].

A problem which appears in several undergraduate combinatorics texts is to
show that a maximum subset of {1,...,n} containing no solutions to = + y = z
(z,9y, z not necessarily distinct) has size [%]. In section 2 of this paper we find all
such subsets and prove the following theorem:

Theorem 1.1. A mazimum subset of {1,...,n} containing no solution to = +
y = z (z,y,z not necessarily distinct) has size [2]. If n > 3 is odd there
are precisely two mazimum subsets: the odd integers less than or equal to n and
{x €Z| 1‘—'2‘51 <z< n} If n > 4 is even there are at least three maximum subsets:

{m € 7| Eztl <zx< n} and the two mazimum subsets for the odd number n — 1.

For even n > 10 these three are the only ones. For smaller even numbers, {1,4},
{2,5,6}, {1,4,6}, and {2,3,7,8} are the only additional ones.

Let f*(n,2) denote the maximum size subset of {1,...,n} containing no three-

term arithmetic progressions (such subsets contain no solutions to x + y = 2z, but
now, for the problem to make sense, z,y, z are distinct). Roth first showed [4] that

. _ n
fn2)=0 (log log n) )

The current best bounds are, for appropriate absolute constant ¢;,
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—c1y/log n * c2n
ne < ff{n,2) < _——(log e

where the lower bound was proved by Salem and Spencer [6] (see also Behrend 1),
and the upper bound was proved by Heath-Brown and Szemerédi [3].

Erdés conjectured that a maximum subset of {1,...,n} having no solutions to
z +y = 3z (z,y, z not necessarily distinct) has size no more than a small constant
more than [Z2]. In section 3 we verify this conjecture by proving the following
theorem:

Theorem 1.2. Let T, be a subset of {1,... ,n} of mazimum size such that x+y =

3z has no solutions with z,y,z € T, (z,y, z not necessarily distinct). If n # 4 then
| Tn |= 531

In section 4 we show that for sufficiently large n there is a unique maximum such
subset:

Theorem 1.3. Ifn > 23 and T, is a subset of mazimum size of {1,... ,n} having
no solutions to x +y = 3z then T, is the set of all odd integers less than or equal
ton.

We use the standard notation | | and | | for least integer not less than and
greatest integer not greater than, respectively. For a and b nonnegative integers we
let [a,b] denote the set of all integers x such that a < z < b.

2. Maximum sum-free sets of {1,...,n}

Proof (of Theorem 1.1). First we show the maximum size is always [5]. Let Up

be a maximum sum-free subset of {1,...,n} and let p be the largest integer in U,.
Then at most one integer in each of the pairs (i, p —14), i = 1,2,..., [L;g] is in

Un, so | Un |< [£] < [5]. Clearly, there are subsets which attain this bound, so
[ Un |= T3]

To characterize the maximum subsets we consider two cases depending on the
parity of n.

Case 2.1 (n odd). Let n > 5 be the smallest odd integer such that there exists a
maximum sum-free subset U, of {1,...,n} which is not the odd integers less than
or equal to n or [2f2, n]. Clearly n € U, (or else | Uy, |< [252] < [2]), so if
n—1 ¢ Uy, then, by the minimality of n, either U, is the set of all odd integers less
than or equal to n (which is impossible by assumption) or U,, = ["T—l, n— 2] u{n}
which is impossible since "—;—l + "T“ = n. So we can assume n — 1 and n are in Uy,

Let G be the graph with vertex set

V = {vilie [2,153] U [%1, n—Z]} of size n — 4 where {v;,v;} is an
edge of G if and only if i+ j = nor i1+ j = n — 1. Then G is the path
Un—2,02,Un=3,V3, -+, Un=3, Vi1 (with an odd number of vertices). Since n — 1

2

and n are in Uy, 1 and '—‘;—1- are not, so the other "~;§ integers in U, must be the

indices of an independent set of vertices in G (i.e., no two of them adjacent). The
only sufficiently large independent set in G is the maximum independent set which
has indices [1‘—31, n— 2], so U, = [ﬂg—l, n].
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Case 2.2 (n even). If n > 4 is even and n € U, then certainly U, must be one
of the two maximum subsets for the odd integer n — 1. It is easy to check that
the statement in the theorem about when n is 4,6, or 8 is correct. Let n > 10
be the smallest even integer such that there exists a maximum sum-free subset

Un of {1,...,n} which contains n but is not [% +1, n]. Ifn—-1¢&U,, welet

Un—2 = UpN{l, n—2],s0 that | Up—2 | = ”T_Z Un—_2 cannot be the odd integers less

than or equal to n— 3 because 3+(n—3) = n. And U,_» cannot be ["T_Q, n— 3] or

{%, n — 2] because § & Un. So Un—2 cannot be any of the three kinds of maximum
subsets for even n described in the theorem. So by the minimality of n we would
have to have n = 10 and Un_2 = {2,3,7,8}. This cannot be because 2 + 8 = 10.
Hence, as with the odd case, n — 1 and n are both in U,.

Now let H be the graph with vertex set V = {v,- i€ [2, "T_z] U ["T“, n— 2]}
of size n — 4 where {v;,v;} is anedge of H if and only if i+j=nori+j=n—1
or {i,7} = {n -2, ”;2}. Then H is the cycle Un—2,V2,Un=3, 03, .-, Unt2, V2.

Since n—1 and n are in Uy, 1 and % are not, so the other "—;f‘- integers in U,, must
be the indices of an independent set of vertices in H. There are two possibilities:
[2, ”T_z] and [1‘{—2, n— 2]. If n > 10 the first of these cannot occur because it
contains 2 and 4 (If n = 6 the first possibility gives us {2,5,6} while if n = 8 it
gives {2,3,7,8}.). So we have U, = [% + 1, n] which completes the proof.

3. The Size of a set with no solution to z +y = 3z

We observe that if T, is a set containing no solutions to z + y = 3z and if w € Ty,
then %w, %w, %w, and 2w cannot be in T}, (because z,y, z need not be distinct).

Proof (of Theorem 1.2). The set of all odd integers less than or equal to » has no
solutions to z +y = 3z so | T [> [F]. It is easy to check that | T, |= [2] for
n =1,2,3,5 (There are three ways to choose Ts: {1,3,4},{1,3,5}, or {1,4,5}. The
first of these shows that | Ty |= 3.) So it remains to show | T,, |< [2] for n > 6.
Let n be the smallest integer greater than or equal to 6 such that | T, |> [2]. We
can assume n is even and n € T, (otherwise n — 1 is a smaller counter-example).

Case 3.1. T, has no integer z such that F<z< ZT” By the minimality of n at

most [L—%—i—‘ of the integers in [1, L%J] are in T;, provided [ §| # 4. So

}rl 135+ 1]

ifn=0or 2 (mod 6)
+1 ifn=4(mod6).

Tl < [

{

So we are done if n # 4 (mod 6) and | 2| #4.If [2] =4 thenn =12 0orn =14
and the respective candidates for a set of size greater than 5 are {1,3,4,9,10,11, 12}
and {1,3,4,10,11,12, 13, 14}. However, neither is acceptable because 1 +11 = 3 - 4.

It remains only to consider n = 6k+4 (k = 1,2,3,...), in which case the candi-
date for a counter-example is to choose k+1 of the integers in [1,2k+ 1] and all the
integers in [4k + 3, 6k +4]. If 2k + 1 ¢ T,, then more than half of the first 2k inte-
gers are in Ty, so 2k = 4, n = 16, and the candidate is {1,3,4,11,12,13, 14, 15, 16}

,__
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which fails again because it contains 1,4, and 11. So 2k + 1 € T,, and 6k + 3 is a
forbidden sum. Since [4k + 3, 6k 4 2] C T, it follows that 7, N [1,2k] = 0. This is
impossible since k£ 4+ 1 of the first 2k + 1 integers are in T},.

Case 3.2. T, has an integer x such that F<z< %"

In fact z # %” since n € T,,. Assume z is the largest integer in T, such 3 <
o < 2% Then the integers in W = [3z — n,n| can be arranged in pairs as follows:

Bz—n+j4, n—j) j:O,l,Q,...n—-[%-‘

Since the sum of the integers in each pair is 3z, at most one integer from each
pair can be in T),.

If 2 is even then | W | is odd and one of the pairs is (37”, 37’) In this case T),
contains at most 3 (] W | —1) integers from W and, by the minimality of n, at
most &VZVH—I integers from [1,3z —n —1]. So | T < 2.

If z is odd, then | W | is even and at most % | W | integers from W can be in
T». So at most 3 (n— | W |) integers from [1, 3z —n — 1] can be in T}, provided
3z —n — 1# 4. So we are done except for the possibility that 3z — n = 5. In this
case one of the pairs of integers in W is (%, -312—“) = (ﬂ#, ﬂ—;—ﬁ) Since z is the
largest integer in T, which is less than 2—3” and since x = %5 < %*’—4 < %f—ﬁ, we must
have "—‘;6 > %’i (so that one integer in this pair can be in T),). Solving this gives
n < 18. Since n > 6, the only possibilities are n = 10, z =5 and n = 16, z = 7.
The first of these is impossible because n € T}, but T}, cannot contain both 5 and
10. For the second possibility, since 7 € T}, certainly 14 ¢ T, so the only candidate
is {1,3,4,7,11,12,13,15,16}. But T, cannot contain 1, 4, and 11 so the proof is
complete.

4. Maximum sets with no solutions to = 4 y = 3z

Choosing lots of smaller integers to go into a set 7}, which has no solutions to
T + y = 3z clearly eliminates some of the larger integers from inclusion. If the
smaller included integers follow a simple pattern it may be possible to get a simple
description of the eliminated larger integers.

Lemma 4.1. Let w be an odd integer greater than or equal to 3. If T is a set which
contains no solutions to x + y = 3z and if T contains all odd positive integers less
than or equal to w, then T contains no even integer less than 3w.

Proof. The result is easy to verify for w = 3. If w > 5 and v is any even number
less than 3w, then (precisely) one of the integers v+ 1, v+ 3, v + 5 is equal to 3¢
where ¢ is an odd number less than or equal to w.

In proving Theorem 1.3 we will make frequent use of the maximum size subsets
of {1,...,n} with no solutions to z+y = 32 for n < 22. We have calculated them all
and display them for even n between 6 and 22 inclusive. To get all such maximum
subsets for n = 2p — 1 for p = 3, 4,...,11, just choose the ones for n = 2p which
do not include the integer 2p.
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Ln] In

61134 156
145 256

811347 1568
1567 2568
2567 1678
1458 2678

101134710 178910
137910 278910
147910 378910

12113471012 139101112

14 1 13910111213 1310111213 14
13910111214 341011121314
134101213 14

16 | 134710121316 1341213141516
3471112131516 13111213141516
134712131516 341112131415 16
1371112131516

181 1341213141516 17 1341314151617 18

201 134131415161718 19 1341415161718 19 20
1341314151617 18 20

22 1134710121316 19 21 22 1351516 1718 19 20 21 22
1341516171819202122 1451516 17 18 19 20 21 22

Table 4.1. Maximum subsets of 1,...,n with no solutions to z + y = 3z for
6 < n < 22 (except the set of all odd integers less than or equal to n).

Proof (of Theorem 1.3). Suppose the theorem is false and let 7 > 23 be the smallest
counter-example with T, a subset of {1,...,n} of size [%] which contains an even
integer. It is easy to see that 23 cannot be added to any of the maximum subsets
of {1,...,22} listed in the table without producing a solution to « + y = 3z, so
n > 24. By the minimality of the counter-example we can assume n is even and
n € T,. We divide the proof into cases (and subcases) along the lines of the proof
of Theorem 1.2.

Case 4.1. T, has no integer x such that 2 <z < 2" . Let y be the largest integer
in T, such that y < Z. Then 3y is a forbldden sum and at most one member of
each pair (¢,3y — ) z =1,2,...,y can be in Ty. Since T, has no integers strictly
between y and 2y

5 =Tl Sy+ Byl =n—2y+1

So, y < [$(n +2)] and, since T;, N [vy+1, 122 =0

n

2

IA

T (1l + 2]
B s

<[22

The only even solutions greater than 22 for this inequality are n = 26, 28, 34 with
corresponding values y = 7, 7, 9 respectively. If n = 34 and y = 9 then T}, must
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contain five of the first nine integers, which (see Table) must be {1, 3, 5, 7, 9},
and everything in {23, 34]. Since 24 + 3 = 3.9 this cannot happen. If y = 7 and
n = 26 or n = 28, then 7T, contains everything in [18, 26] or [19, 28] respectively.
But 7 € Ty, so 21 is a forbidden sum, and, since 19 and 20 are in T}, (in both cases),
neither 1 nor 2 can be in T,,. Since four of the first seven positive integers must
be in T, this is a contradiction (see Table). If y = 4, then |T}, N [1, ]| could be as
much as 3 in the above inequalities, but % <34 [%] has no solutions for n > 24.
So Case 1 cannot occur.

Case 4.2. T, has an integer y such that

n 2n

<& }
3 <Y< 3 (4.1)

Let z be the largest integer in T}, satisfying (4.1). Then 3z is a forbidden sum and
the integers in W = [3z — n, n] can be arranged in pairs ([%’J -, (3] + z) i=
0, 1,...,n — [37”] such that the sum of the integers in each pair is 3z. If z is

even then 32 is paired with itself. All other pairs (for z even or odd) have distinct

integers.

If z is even then, because of the above pairing,

T, "W| < (4.2)

Wi-1
2
But by Theorem 1.2,

n—|W|+1
2

T, N1, 3x—n—1]5[3“—2”_1]= (4.3)

Since % + le"—l = 2, equality must hold in (4.2) and (4.3). So T,, contains
precisely one integer out of each pair of distinct integers above. And T, N1, 3z —
n — 1] must be a maximum subset of [1, 3z —n — 1 containing no solutions to
T+y=3z2.

If = is odd then |W] is even, so T}, must contain precisely one integer out of each
pair of Wand T, N[1, 3z —n—1] = 22=2=1 'ypless 3x —n—1=4. [f3z—n—1 =4
then it would be possible to have T, N[1,4] = {1,3,4} and T, contain precisely one
integer from all but one of the pairs and no integer from that one pair.

Subcase 4.21. [3Z1] < 2n.

If z is even then both integers of the pair (%z -1, 371 + 1) are less than or equal
to %n Since x is the largest integer in T}, which is less than or equal to %n, neither
integer in this pair is in T}, which is a contradiction.

If z is odd, neither integer in the pair (L3—2’J, [%‘]) can be in T, which again
is a contradiction unless 3z — n — 1 = 4. But since n >24

3z+3 n+8
2 2

so neither integer in the pair (L%’J - 1,387+ 1) can be in 77, either, so subcase
2a cannot occur.
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Subcase 4.22. Assume the two following inequalities:

3z+1 2

[ : ] > 3n (4.4)
and

3z — n> 23 (4.5)

Since T, N [1, 3z — n — 1} is a maximum subset of [1, 3z —n — 1] containing
no solutions to z + y = 3z and since 23 < 3z — n — 1 < n, by the minimality of n
as a counter-example, T, N [1, 3z — n — 1] must be the set of all odd integers less
than or equal to 3z — n — 1. By Lemma 1, T,, contains no even integer less than or
equal to 68, so n > 70.

If = is even, then inequality (4.4) becomes

S in -6
5
And 3z — n — 1 is odd so, by Lemma, 1, T, contains no even integers less than or

equal to 3(3z —n — 1) — 1, which by (4.6) is greater than n — 10. If z is odd then
(4.4) becomes

(4.6)

n -3
9

and T, contains no even integers less than or equal to 3(3z — n — 2) — 1 which
by (4.7) is also greater than n — 10. So T, contains at most five even integers,
and hence there are at most five odd integers less than n which are not in T,,. Let
m; =2[2]1+2i—1and p; = 3m; —n,i = 1,2,...,11. It is easy to check that {m,}
and {p;} are each sets of 11 distinct odd integers less than or equal to n and clearly
not both m; and p; can be in Ty, for any ¢ = 1,...,11. Hence there are at least six
odd integers less than n which are not in T,,, which shows subcase 2b cannot occur.

x>

(4.7)

Subcase 4.23. Inequality (4.4) holds but (4.5) does not.

Hence

2 3z +1 n
= LA I gid .
3n<[ 5 ] +12 (4.8)

from which it follows that n < 70. So only a finite number of possibilities remain to
be checked, and this could be done one by one (by hand or computer). We prefer
to avoid this by considering the following possibilities.

4.28(i). Assume (4.8) holds and also assume

'rg-l%-BSng (4.9)

If = is even, inequality (4.8) simplifies to

An —
"6 < ";22 (4.10)

And if z is even then, as we showed before, [T,M[1, 3z—n—1]} = 3’”;“ . By inequality
(4.9),3z—n—-1>9>5s03z—n—1€T,. Since T,N [cc +1, [232]] = (), we must
have [3.13 — L%“J +1,2x — 1} C T, since these integers are each paired with an
excluded integer in the pairing of [3z — n, n] we discussed before (3z — | 22 | might

not be in T, because it might be equal to 32). But 3(3z — n — 1) is a forbidden
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sum so T, N [7Te—3n—2, 6z ~3n+ 3| —4] = 0. Let a = 7Tz — 3n — 2,b =
6z — 3n + | 22] — 4, and ¢ = 3z — n — 1. With z satisfying (4.9) and (4.10) it is
easy to check that a > 0 and ¢ > 9. Since T, N [a,b] = @ and ¢ € T,, we certainly
have a contradiction if a < ¢ € b. We also have a contradiction if a < b < ¢ and
b—a+ 12> c-— b+ 2 because then

c+1

=[Tanl, ] < [Tan[La-1]|+(c-b)
< g+c—b
< c—1
- 2

Hence we have a contradiction if the conditions a < ¢ and 2b > a + ¢+ 1 are both
satisfied, i.e., if

2n 2n+1
- = <zr< .
n |~3J+3_:):~ 1

But that is precisely our assumption in (4.9).
If z is odd then inequality (4.8) simplifies to

n-3 n+23

9 <3

(4.11)

and the argument is similar. In this case it turns out that [3w —%],22 - 1] CTh
and that 9z —3n—3 or 92— 3n —6 is a forbidden sum, but we still get a contradiction
with inequality (4.9).

4.23(1). Assume (4.8) holds and = > %.

If z is even there are eight ordered pairs of values for n > 24 and = which satisfy
(4.8) when z > 3. We list them as triples (n,2,3z —n —1):

(24, 14, 17) (30, 16, 17)

(26, 14, 15) (32, 18, 21)
(26, 16, 21) (34, 18, 19)
(28, 16, 19) (38, 20, 21)

Since |T, N [1, 3z —n — 1]} = 22=2 we see (by the Table) that if 3z —n — 1
is equal to 21 or 15 then T, must contain all the odd integers less than or equal
to 15 and (by Lemma 1) no even integers at all. That eliminates four triples. Since
3z —n—1¢€ T, and z is the largest integer in T, less than 33?-, we cannot have
z<3r~-n—-1< %" That eliminates three more triples, leaving only (24, 14,17).
If 3z —n — 1 =17, then 15 € T,, (by the Table). But z = 14 < 15 < 2 .24, so we
get a contradiction here as well.

If = is odd there are ten such triples (n,z,3¢ —n—1):

(24, 13, 14) (30, 17, 20)
(24, 15, 20) (32, 17, 18)
(26, 15, 18) (34, 19, 22)
(28, 15, 16) (36, 19, 20)
(28, 17, 22) (40, 21, 22)

We will show just the argument for (32,17, 18) here. Since [ % | = 21, we must have
T N[18,21] = @. Since |T, N [1,18]| = 9, by the Table (or by Theorem 2) 17 must
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be in Ty. Also, [T N [22,32]| must be 7. Since 51 is a forbidden sum, at most one
integer in each of the pairs (22, 29), (23, 28), (24,27), (25,26) is in T},. By the Table
15 € T}, so 30 € Ty, which means |T}, N [22,32]| < 6 a contradiction. The other
nine triples can be disposed of with similar (and mostly simpler) arguments.

4.23(iii). Assume (4.8) holds and = < [%] + 3.

The only possibility here is n = 28 and ¢ = 12. Then 3z—n = 8, s0 |T,,N[1,7]| =
4 and T;, contains precisely one member of each pair (18 —,18 +4) ¢ = 1,2,...,10.
Since |22} = 18,7, N [13,18] = 0, so [19,23] C T,. But 21 is a forbidden sum,
so neither 1 nor 2 can be in T;,. This is a contradiction since (by the Table) if
|Tn N [1,7]| = 4, either 1 or 2 must be in Ty,.

5. Related problems and remarks

For k a positive integer not equal to 2, let f(n, k) be the maximum size of a subset
S of {1,...,n} such that there are no solutions to z + y = kz with z,y,2 (not
necessarily distinct) integers in S (the problem does not make sense for k = 2). In
this paper we determined f(n,1) and f(n,3) for all n and found all maximum such
subsets. The determination of f(n,k) when k > 4 has a very different flavor, and
we have some results in this direction [2].

Let g(t) be the maximum “size” (appropriately defined) of a subset S of the
closed interval [0, 1] having no solutions to z + y = tz where t is a fixed positive
number. Finding g(k) is a continuous analog of finding f(n, k). It turns out there is
a strong connection between these problems if kK > 4, but not for k = 3. For k=1
we remark that the maximum set “%lj,n] of Theorem 1 does have a continuous
analog, while the set of all odd integers less than or equal to n does not.

In [2] we show that if k£ > 3 then the positive integers can be partitioned into
finitely many subsets each of which has no solutions to = + y = kz.

For k any positive integer, let f*(n,k) be the maximum size of a subset of
{1,...,n} having no solutions to z +y = kz where x,y, z must be distinct. Clearly,
f(n, k) < f*(n,k). It is easy to show that f*(n,1) = [%11 There are many
values of n for which f(n,3) is smaller than f*(n,3). For example, the set [1,4] U
(12, 18] shows that f*(n,3) > 11. However, we join Paul Erdés in conjecturing
that f*(n,3) = f(n,3) = [%] for sufficiently large n. We also suspect there is a
unique maximum set for sufficiently large n. One could do some computer work to
obtain some information as to the likelihood of this conjecture being correct. To
get a proof one could follow the lines of our proofs in this paper. Unfortunately,
the minor inconvenience of f(4,3) being greater than 2 would become the major
headache of f*(n,3) being greater than [%] for many small values of n.

Of course the problem of narrowing the bounds for f*(n,2) is one of the most
intriguing problems in combinatorics.
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