Quasi-Random
Tournaments

F.R.K. Chung
BELL COMMUNICATIONS RESEARCH
MORRISTOWN, NEW JERSEY

R.L. Graham
AT & T BELL L ABORATORIES
MURRAY HILL, NEW JERSEY

ABSTRACT

We introduce a large class of tournament properties, all of which are
shared by almost all random tournaments. These properties, which we
term “quasi-random” have the property that tournaments possessing any
one of the properties must of necessity possess them all. In contrast to
random tournaments, however, it is often very easy to verify that a particu-
lar family of tournaments satisfies one of the quasi-random properties,
thereby giving explicit tournaments with “random-like” behavior. This paper
continues an approach initiated in several earlier papers of the authors
where analogous results for graphs (with R.M. Wilson) and hypergraphs
are proved.

1. INTRODUCTION

A tournament T is a directed graph in which between any two of its nodes
v and v’, exactly one of the directed edges (or arcs) (v, v') or (v', v) occurs.
Tournaments form perhaps the most widely studied class of directed
graphs, and much is known about them (e.g., see [16], [17]). Their name
arises from the interpretation of T as representing the outcome of a compe-
tition between all pairs of a set of players, with an arc (v, v') indicating that
v defeated v'. In trying to understand which properties holds for a “typical”
tournament, it has been found useful to introduce the concept of a “ran-
dom” tournament Ty;(n) on n vertices (e.g., see [2] and [13]). In such a tour-
nament, arcs are chosen independently by flipping a fair coin for each pair
{v,v'} of vertices to decide which of (v,v') or (v',v) will be an arc (each
possibility occurring with probability 1/2). More precisely, this process in-
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duces a probability measure on the space J(n) of all possible tournaments
on n vertices, with each tournament T in J(n) having probability 27®. It
turns out that there are many properties P that are possessed by the over-
whelming majority of tournaments in J(n) as n becomes large. We can state
this more precisely by writing

Pr{T € J(n)|T satisfies P} —>1 as n-— .

We abbreviate this by saying that T;,(n) almost always has property P. For
example, all but o(n) nodes v of Ty2(n) have indegree (v) := |{u|(,v) is an
arc of Ti(n)}| and outdegree (v) := |{u|(v, ) is an arc of Ti(n)}| that sat-
isfy |indegree (v) — outdegree (v)| = o(n).

The main thrust of this paper will be to establish the equivalence of a
variety of tournament properties, all of which are possessed by almost all
Ti»(n), in the following sense: Any family of tournaments satisfying any
one of the properties must of necessity satisfy all the others. We term such
properties quasi-random. We follow in much the same spirit as in the re-
cent papers [5,6,7,9,18,20,21], in which many properties of quasi-random
graphs and hypergraphs, pseudo-random graphs and hypergraphs, and
“(p, a)-jumbled” graphs are given.

2. NOTATION AND PRELIMINARIES

A tournament T = (N, A) will consist of a set N = N(T'), called the nodes
of T, and a set A = A(T) of the ordered pairs from N, called the arcs of T.
For any two distinct nodes u and v of T, exactly one of the two pairs (u, v)
and (v, u) is an arc of 7. We use the notation 7(n) to indicate the fact that
T has n nodes. For X C N, we let T[ X ] denote the subtournament of T in-
duced by X, i.e., T[X] = (X, A(T) N X?*) where X* denotes the set of pairs
(x,x') forx,x' € X. We let yr: N> — {—1,1} denote the arc indicator of T,
i.e., foru,v € N,u # v,

1, if(wvyeAd;

xr(u,v) = {_1, if (uv) €A.

Define nd (v) for a node v of T to be {u|(u,v) € A}; similarly, define
nd*(v) to be {u|(v,u) € A}. Further, the indegree d (v) and outdegree
d*(v) of v are defined by

d~(v) := |nd"(v)|, d*(v) := |nd*(v)].

For vE N,X C N, we let d (v, X) := |nd (v) N X|, and d"(v, X) :=
|nd*(v) N X|. Also, for X, X' C N, define
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d°(X,X'):= Xd (nX'), d'XX):=3d"(uX').

vEX vEX

Anorderingof T = (N, A)is a 1-to-1 mapping m:N — [n] := {1,2,..., n}.
An arc (u,v) is said to be w-increasing if (1) < 7(v); otherwise we say
that (u, v) is 7-decreasing. The undirected graph T, on N is formed by cre-
ating for each m-increasing arc (u, v) of T (under the ordering ) an (undi-
rected) edge {u, v} of T},

For two nodes u, v € N, the sameness set S(u, v) is defined by

Su,v) :={z € N|x7(u,2) = x1(v,2)},

and we let s(u,v) denote |S(u,v)|. Also, let S(u,v) := N\S(u,v) and
5, v) := |S(u,v)|. Thus, s(u, v) + 5u,v) = n.

If 7" = (N',A’) is a given tournament (or more generally, a directed
graph), we let N¥(T') denote the number of labeled occurrences of T’ as a
subtournament (or subdigraph) of 7. In other words,

N#(I") = [{A:N' — N |TIAN")] = T'}|

where “=” denotes the obvious tournament isomorphism.
Finally, we define a structure that will be needed in our discussion. We
will call a sequence (vo, v1, v2, v3) an even 4-cycle (denoted by E4C) if

X1(vo,v1)x1(v1,v2) x1(v2,v3) x1(v3,00) = 1. 1)

We will let N#(E4C) denote the number of (labeled) E4Cs in 7.

3. STATEMENTS OF THE MAIN RESULTS

We next consider a set of properties that a tournament T = T'(n) might
satisfy. Each of the properties will contain occurrences of the asymptotic
“little-oh” notation o( ). However, the dependence of different o( )’s on
the particular property they refer to will ordinarily be suppressed.

Suppose we have two properties P and P', each with occurrences of o(1),
so that P = P(o(1)), P' = P'(o(1)). The implication “P => P'” then means
that for each & > 0 there is a 8 > 0 so that if T(n) satisfies P(3) then it
must also satisfy P'(¢), provided n > ng(e).

It is also possible to consider our various properties as applying to a fam-
ily {T(n)| n — =} of tournaments. In this case, a condition containing o(1)
has the usual meaning as n— ». These two interpretations are clearly
equivalent, however.
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We now list a set of properties for tournaments T = T(n) = (N, A) that
are shared by almost all random tournaments T; »(n).

Pi(s): For all tournaments T'(s) on s nodes,

HT'() = (1 + o()n2®

The content of P;(s) is that all of the 2% labeled tournaments on s nodes
occur asymptotically equally often in 7.

P N3(E4C) = (1 + o)) (n4/2).

Ps: S.enls@,v) — (1/2)] = o(n’).

Pi: Se.en]l{w € Nixru,w) =1 = xr(uw)}| — (nfd)| = o(n?).
Ps: Forall X C N, T' = T[X] satisfies

> ldF ) — dr ()| = o(n?).

vEX

In this case we say that 7' is almost balanced.

P.: Every subtournament T’ of T on |n/2] nodes is almost balanced.
P;: For every partition of N = X U Y with | X| = [#/2], |Y] = [n/2],
we have

> ld*@Y) — d (uY)| = o(n?).

vEX

Py: Forall X, Y CN,

D ld*wY) — d (uY)| = o(n?).

vEX

Py:  For every ordering 7 of T,

2

) € A|7w) < 7@} = (0 + 0(1))%.

That is, in any ordering of T, asymptotically one half of the arcs are in-
creasing. In an earlier paper [9], the authors with R. M. Wilson have intro-
duced an equivalence class of quasi-random properties for graphs. Among
these are the graph analogues of P\(s), Ps, P4, P;, and many others. The fol-
lowing properties connect the two classes.

Py: For every ordering 7, the (undirected) graph 7' is quasi-random.
Py: There exists some ordering 7 so that the graph T 7 is quasi-random.

Our main goal will be to show that all these properties are in fact equiva-
lent. We will call these (and any other equivalent) properties quasi-random.
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Occasionally, we will abuse this notation and also refer to tournaments

satisfying any one (and therefore all) of these properties as being quasi-
random as well.

Theorem 1. For s = 4,
PI(S)?Pz:>P3:>P4:>P5:>P6:>P7:>Pg:>P9:>P10:>P11:>P1(S).

Before giving a proof of Theorem 1 (which we do in Section 5), we first
will describe a simpler equivalence class of properties Q; that are all im-
plied by quasi-randomness (and consequently shared by almost all T},(n))
but that are strictly weaker. The proof of their equivalence is a useful
warm-up to the techniques needed for Theorem 1.

Q.: For every tournament 7' = 7'(3) on 3 nodes,

3

NHT') = (1 + o)

Q.: For the “cyclic” tournament C; = (N, A) with N = {1,2,3} and
A ={(12),(23), (31)},

3

n
NFi(Cy) = (1 + 0(1))§-
Qs: T is almost balanced, i.e.,

2 |d* (@) - d~()| = o(n?.

vEN

Q4. For every partition of N = X U Y,
d*(X,Y) — d~(X,Y) = o(n?).

Qs:  For every partition of N = X U Y with |X| = [n/2], |Y| = [n/2],
we have

d*(X,Y) — d(X,Y) = o(n?).
Theorem 2. Q,=> 0, => 03> Q. => 05> 0.

Corollary. P, > Q) forl<i<1l,1<j <35,
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The following tournament T* provides an example that satisfies all of
the O, but none of the P:

Example. 7* = T*(n) = (N*A"), N*=XUY UZ |[X|=[Y|=|Z| =
n/3. Each of the subtournaments T*[ X ], T*Y], T*[Z] will be random, say,
all equal to some Ty2(n/3). The remaining arcs of T* are just all pairs
X xY,Y x Z,Z x X (see Figure 1).

It is easily checked that for almost all choices of T12(n/3), T* satisfies Q;
but not P.
4. PROOF OF THEOREM 2

Our proof will follow the outline given in Figure 2.
The following observation will be useful:

Fact 1. For any tournament T = T(n),
1 2
#(Cy) = gnln” = D). @

Proof. Among the eight possible tournaments on three nodes, two are
cyclic (C; and its complement Cs), and six are acyclic (denoted by A(3)).
Each acyclic tournament A; € A(3) contains a unique pair of nodes
(z*,z") with outdegree(z*) = 2 and indegree(z~) = 2. Thus, the total num-
ber N$(A(3)) of acyclic subtournaments of T satisfies

NIAG) = 6 S l{(d*(v)) ' (d-(v))}

vEN 2 2 2
— 2\ 3 G
> 6n((n ) )/ ) = nln = D(n 3
-

FIGURE 1
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0
N 2%

Lt

FIGURE 2
since d"(v) + d"(v) = n — 1 and () is convex, and there are 3-2 = 6

ways to order z* and z~ in A;.
Finally, since N¥(C3) = N#(C;) and N¥(T(3)) = n(n — 1) (n — 2), then

NH(Cy) = %{n(n -1 -2 - %n(n -1 - 3)} = %n(n2 -1

as claimed. 1
Fact 2. Qz => Q3.

Proof. Suppose
3
" n
N7 (Cy) = (1 + 0(1))§- “4)
It follows directly from (3) that if

NE(As) = (% 4 0(1))n3, 5)

then all but o(n) nodes v must satisfy
d*(v) = 1+ o(W)n/2, d () = (1 + o(l))n/2, (6)

i.e., T is almost balanced. However, since (4) implies (5), then we are
done. §

Fact3. Q;=> Q,.

Proof. Clearly, Q5 implies all but o(n) nodes v of T must satisfy (6).

By (3),
d* d-
N3(A4s) =~;— gN{( 2(")) + ( 2("))}

3

=1+ 0(1))%.

This implies N3 (C3) = (1 + o(1)) (n*/8), which in turn implies Q. 1
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Fact 4. Qs = Q4. Suppose T is almost balanced. Thus, for all but en
nodes v we have

ld*(v) — d (v)| < en.
Consider a partition N = X U Y. Since d (X, X) = d (X, X), then

d*'(X)Y)-d (XY)=d*"(X,X) + d*(X,)Y) —d (X, X) — d(X,Y)

d*(X,N) — d"(X,N)

2 (@*w,N) = d (s N))

vEX

IA

en-n+ |X|-en by hypothesis

2en’.

IA

as required. 1

Fact 5. Qs = Qs. Suppose every partition N = X U Y with | X| = n/2,
|Y| = n/2, satisfies

d*(X,Y) - d~(X,Y) = o(n?). @)

(Strictly speaking, we should take | X| = |n/2], |Y| = [n/2]. However, for
ease of exposition we shall frequently write n/2 when in fact |n/2 ] or [n/2],
or even (n/2) + O(1), is the true value. The reader should have no trouble
understanding what the actual values should be.) We must show T is almost
balanced. Suppose not, i.e., suppose T contains a set W C N of |W| =
w = en nodes satisfying

d*() — % >en, vEW. ®)

(It is not hard to see that such a set must exist.)

We next want to look at the average behavior of Z,cxun{d*(v) — d (v))
as X ranges over all subsets of W = N\W of size (n/2) — w. Of course
some X' C W must achieve a value at least as large as the average. Thus,
since there are (., -",) ways to select such X then for some X' C W of size
(n/2) —w,

Ad*X' UW, X' UW)-d (X' UW, X' UW)

= 2 (@) —d ()

vEX'UW
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=(n/2)—w

z(n_“w) 2 3 @w-dw)
n |x

XCW vEXUW
/2 —w

z;(”‘w )<d+(WW)~d (W, )
n—w\\n2 -—w-
()

("/2) (d*(WN)—d(WN))
2(1/12)—__66~|W]-26n by (8)
= e'n” for 0<esxl

However, this contradicts the hypothesis (7), so we conclude T must be al-
most balanced. 1

Since the implications Q; = Q, and Q, = Qs are immediate, then
Theorem 2 follows from Facts 1-5.

Since it is clear that Py(t + 1) = Pi(t) for any ¢t = 1 and Q, is just Pi(3),
then (modulo Theorem 1), the corollary follows.

This completes our discussion of the properties Q;.

5. PROOF OF THEOREM 1

The proof of Theorem 1 will be accomplished by establishing a sequence of
Facts. A flowchart for the various implications is shown in Figure 3. The
symbolism

®

P =P

>Ps >P9

% M 5

P(s) Pg ‘é—@zl’u# P

9,
B

\

FIGURE 3
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indicates that P; will be shown to imply P, in Fact k. The proofs of un-
labeled implications are immediate and are omitted.

Fact 6. P, > Ps.

Proof. Suppose
NI(E4C) = (1 + 0(1-))512—. )

We observe that

NIEAC) = Y {su,v)e + 5u,v)e}

nn n'
22'7(5—1) =(1+0(1))E (10)

by the Cauchy-Schwarz inequality, where m, denotes m{m — 1). Hence,
by (9) all but o(n’) pairs u,v in N satisfy

s(uv) = (1 + 0(1))%, ) = (1 + 0(1))%.
Thus,

2

u,vEN

s(u,v) — %‘ = o(n’),

which is P;. |
Fact7. P;=> Ps.

Proof. Suppose all but o(n?) pairs u, v in N satisfy
n
s(u,v) = (1 + 0(1))7. (11)
For X C N, where x := | X/, we have

2 @dHzX) +d (z,X) = x(n — x). (12)

zEX
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On the other hand, for 7' = T[X], we have

> s(uv) = gx(d;’(v)(z) +di@e) + 2 (d U, X)e + d (4, X)e)

u,vEX uex

= 2 @i +dr) - 3 (diw) + di )

veEX vEX

+ 2 @' X) + di X)) = 2 (d*(w,X) + d7 (u, X))

uex ueX

= % 2 {d7@) + dr @) + @i @) - dr )}

+ % 2 Ad (u, X) + d (u, X))} + d*(u,X) = d (u, X))}
ueX
—xx =1 —x(n — x) by (12)

=5 S - 1P + @) - diw))

+ lxz(n —x)—x(x = 1) — x(n — x)

2
2
= T @i ~ dr@)) + (1 +o(1) 5 (13)
However, by (11) we have
2.
EEXs(u,v) =1+ 0(1))’% + o(n?). (14)

Combining (13) and (14), we obtain

2 @# ) = dr @) = o(n?),

vEX

so by Cauchy-Schwarz we get

1/2
2 ldf@) = dr@) < |x 2 @) - df'(v))z) = o(n’),

vEX ( veEX

which proves Ps. 1
Fact8. P> P;.

Proof.  Suppose every subtournament T’ of T is almost balanced. Thus,

S |dE@) ~ di(w)] < en’. (15)

veEN'
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However, for X,Y C N we have

SldTxY)—d (xY) <= 2{d*xXUY)-d (x,XUY)

x€EX XEX
+|d*(x, X) — d™(x,X)|
+]d* X NY)—d(x,X NY)}
<2en’+ 2 dT X NY)—d (x,XNY)

xXEX

<3en’ + > {d*(x,X) — d " (x, X))

xeX\Y
+d*(x, X\Y) — d " (, X\Y)|} < 5en®  (16)
which implies Ps. 1

Fact9. FK=> b.

Proof. Suppose for X,Y C N, X N'Y = &, we have

S|d*x,Y) — d~(x,Y)| < €. a7)

EX

Let 7 be an arbitrary ordering of 7. We will show that the difference in ab-
solute value between the numbers of 7-increasing and m-decreasing arcs of
T is bounded by Sen. Let us partition the set of integers {1,2,...,n} into
t = [1/e] blocks of consecutive integers, with each block of length |n/t] or
[n/t]. Denote these blocks by Iy, I, ..., 1, where a € I,,b € I; with i < j
implies a < b. The number of arcs (u, v) with 7(u) and 7(v) belonging to
the same I, is at most en’.

We now apply the hypothesis (17) for various choices of X and Y. Namely,
fori =1,...,t, define

X, :={u € N|m(u) € I, for some j > i},
and
Y, := {v € N|m(v) € [, for some j > i},

A moment’s reflection shows that the absolute value of the difference in
the numbers of m-increasing and w-decreasing arcs is bounded above by
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en® + 2 2 (ld (6, X) - d~(x, X,)| +

i x€l;

ld*(x,Y)) — d~(x,Y))| < en® + Z 2e’n’ < Sen®

and we are done. 1§
Fact 10. Pg = Pl().

Proof.  Suppose for every ordering of 7 of 7, the number e*(m) of -
increasing arcs of 7, and the number e () of m-decreasing arcs of 7T, satisfy

e'(m) — e (m) | < en®. (18)

Let 7y be an arbitrary fixed ordering of 7, and let G : = T, To show that
G is quasi-random, it is enough to prove (see [9]) that any set S of n/2 ver-
tices of G has

2

e(S) - ’11—6

< en’.

Define two orderings 7 and m, as follows:

e S —s {12%} i N\S —— {%+ 1,..,n}

so that for u,v € §,m () < m(v) iff m(u) < mo(v) and for u', v’ € N\S,
m') < m') iff mu') < m(v');

e S —> {%+ I,...,n}, i N\S —— {12%}

so that for u,v € §,mW) < m(v) iff mu) < mo(v) and for u',v' €
N\S, m(u') < m(v') iff mo(u’) > m(v).
By (18), we have

le*(m) — e~ (m)| < en?, 19
le*(m2) — e (m)| < en®.

However, the number of edges spanned by § minus the number of non-edges
spanned by S is just given by

e m) — em) + (e*(m) — e(m) < en’,
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Thus,

2

e(S) — %

< en®

and Py is proved. 1
Fact 11. P11 => Pﬁ.

Proof. 1t suffices to show that if G = T, is a quasi-random graph for
some ordering 7 then T is a quasi-random tournament. Let X C N =
{1,2, ..., n} have size n/2. Since G is quasi-random (see [9]), then for any
e > 0 we have, for n > ny(e),

> |deg(x,Y) — deg(x,Y)| < €’n,

XEY

for any Y C N, where deg(x,Y) denotes {y € Y|{x, y} is an edge of G}| and
deg(x,Y) := |Y| — deg(x,Y).

Let ¢t = [1/€]. Partition N into blocks I}, I, ..., I, of consecutive integers
where |I| = n/t and for i < j, all elements of I; are less than any element of
I. Define X;:= X N L,Y,:=U X,,Z,:= U X;, for 1 =i =<t By the
definition of T, = =

d*(x,Y) — d~(x,Y;) = deg(x,Y;) — deg(x,Y)),

d*(x,Z)) — d(x,Z,) = deg(x, Z;) — deg(x,Z.).
Therefore,

2l X) —d (X)) < X { 2 |d*(x X)) — d™(x, X)|

xEX i=1 \x€X;

+ 2 ld*(xY) — d (Y

x€EX;

+ 2 d* x5 Z) - d_(X,Zi)‘}

XEX;

= 2{(‘”?) + 2 |deg(x,Y) — deg(x,Y))

XEX;

+ X |deg(x, Z)) — dTg(x,z,-n}

XEX;

2
n
< t{ (7) + en? + eznz} < Sen’

which implies Ps. 1
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Fact 12. P(, > P5.

Proof. Suppose every subtournament 7' = (N’, 4’) of T on n/2 nodes
is almost balanced. Thus,

>

vEN'

di(w) — % < e, (20)

Let T" = T[X] be a subtournament of 7 on m = | X| nodes. We consider
the case that m > n/2 (the argument for the other case m < n/2 is very
similar and is omitted). Suppose Ps fails. Then for some set W C X with
|W| = w = 10en we have

di(v) — i’;— > 100en

for all v € W (again, the other cases are similar). By a standard averaging
argument (as used in the proof of Fact 5), we can find a set X' of n/2 nodes
with W C X’ C X so that

1

z d+(‘U,X,) Z - Z 2 d+(U’X//)
e m — w XN”QW vEW
(m/2 _ W) [ X"\=n/2
1 m m - w — l
=7 % ° ey +
> p— w(2 1006n)(n/2_w_1)
nf2 —w
WD =w (L 100e) = (4 + 1007
m-—w 2 4
Thus,
10
S 4w x) - | = T = 106
veEW 4

which contradicts (20). This proves Ps. 1
Fact 13. P7 => PG.

Proof. Suppose for any partition of N = X U Y into two almost equal
parts, we have

2 ld*wY) —d~@wY)| < en?. (21)

vEX
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Since P; = Qs = Q;, T is almost balanced, and so all but o(n) nodes of
T satisfy

ld*(v) — d~(v)| < en.

Let X C N with [X| = n/2, and consider the subtournament T’ = T[X].
Then

2 ldi@) — dr()| < gqu*(v) —d ()| + |d*(Y) — d"(vY|) < 3en?

vVEX
which implies Ps. 11
Fact 14. P5 = P3.

Proof. By Ps, for any € > 0, if n > nole) and X C N then T' = T[X]
satisfies

2 di @) = di(v)| < en®.

Note that
su,v) = d*(u,nd*()) + d (u,nd ~(v), 22)
s(u,v) = dt(u,nd ~(v)) + d " (u,nd *(v)).

Thus,

2 s@wv) = 5wv) = X Zld*w,nd*v) + d"(u,nd(v))
- L d*(u,nd~(v)) — d~(u, nd *(v))|
< X 2{ld*(u,nd*(v)) — d~(u,nd*(v))|
o + |d*(u,nd () — d~(u,nd~(v)]}
<3 {ME”%M Qld *(u, nd*(v)) — d~(u, nd *(v))

+ |d¥(u) — d"(w))

+ 2 (2d*(u,nd (v)) — d (u,nd (v))|

u€nd ~(v)

+ |d*(u) - d‘(u)|)} < Y 10en® < 10en®

by the hypothesis Ps. Since this clearly implies P;, we are done. I



QUASI-RANDOM TOURNAMENTS 189

Fact 15. P4 => P3.

Proof. Suppose P, holds. First, we will show that T is almost balanced.
By P4,

3
Sind*w) N nd*w)| < (1 + 0(1))%.
But also,
X lnd*(w) N nd*(w)| = X |nd~W)| e
1 2
> L (St
n\w
— 2 |nd~(w)| by Cauchy-Schwarz
1 {n\ (n n’
= ; (2) - (2) =1+ 0(1))7
Thereore, almost all w must satisfy
- n R n
|lnd~(w)| = (1 + o(l))—z—, |nd*(w)| = (1 + 0(1))7'
Since P, implies that almost all pairs u, v have
Ind*(w) N nd*()| = (1 + 0(1))-;'—

then
|nd*(u) N nd~(v)| = |nd *(W)| — |nd* () N nd*(v)|

= (L+ o)

and
|nd ~(w) N nd ~(v)| = |nd ()| — |nd*(w) N nd ~(v)|

=1+ 0(1))%.
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Therefore,
s(u,v) = |nd*(u) N nd*(v)| + |nd~(w) N nd ~(v)|

n
=01+ -
(1 +o()7
for almost all pairs u, v. This implies

>

uv

s(u,v) — %l = o(n)

which is just P5. &
Fact 16. P; > P,.

Proof. By P, all but en® pairs of nodes u, v satisfy

< en,

sv) = 5

s(u,v) — —’21— < gn.

Furthermore, P; implies T is almost balanced since we have already shown
P; = Ps, for example. Thus, for all but en nodes v, we have

ww—%

< égn.
2

< gn, ‘d_(v) -z

Since
d*(u) = |nd*(w) N\ nd* (V)| + |nd*(w) N nd~ ()| + xr(u,v)
then by (22) we get
|nd*(u) N nd*(v)| = %(s(u,v) + d*(u) — |nd~ () N nd~(v)
= |nd*(w) N nd ()| — xr(u,v)) (23)

%(s(u v) +dtw) —d (v) < (1 + 3e)n

for all but en’ pairs u, v. This then implies P, and the proof is complete. 1



QUASI-RANDOM TOURNAMENTS 191

Finally, we come to the final link in our cycle of implications.
Fact 17. P, $P1(S)

Proof. Assume that we have

su,v) — =| = o). 4)

2 2

u,v

We will show that for fixed s, if T(s) is any tournament on s nodes, then
N, := N3(T(s)) satisfies

N, =1 + o()n27?.

(We remark that this proof is virtually the same as one appearing in [9] for
the case of graphs. We include it here for completeness.) Assume the node
set of T(s) is {vy,...,v;}. For 1 < r < s, define T(r) to be the subtourna-
ment of M(s) induced by the node set V, := {v,..., v,}. We will prove by
induction on r using a “second moment” method that

N, 1= N&(T(r) = (1 + o(1))ny27® (25)
where, as usual,
npi=nn-1)n-r+1.

Forr = 1, (25) is immediate. Assume for some r, 1 < r < s, that (25) holds.
Define a := (ai,...,a,) where the «; are distinct elements of [n] :=
{1,2,...,n}, which we take to be the node set N of T. Also define ¢ :=
(€1,...,¢), & = =1, and

fle,e) :=[{i € [n]li # an,..., e, and xr(i, @) = ¢;;1 < j < 7},

Note that N, is a sum of exactly N, quantities f,(a, ). Namely, for each
embedding of T(r) into 7, say, Av;) = @;, 1 < j < r, f(a, &) counts the
number of ways of choosing i € [n] so that if we extend A to V., by setting
A(v,+1) = i, and we take &; = yr(v.1, v;), then A becomes an embedding of
T(r + 1) into T. Also note that there are just n,2" quantities f.(a, ¢), since
there are n, choices for a and 2’ choices for e. Our next step will be to
compute the first and second moments of f,(a, ¢).

To begin with, we have

2 2 filee)

r

Ef(a, £) =

n ) 2’ L10) 2’ (26)

2n-r=

n(,) 2’
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since every node i # ay, ..., a, corresponds to a unique choice for e. Thus,

2 fla,e) = (n — Nng = nea. (27)

Next, define

Sy 1= 2 flaye) (filaye) — 1).

We claim that

S, = 250, j)e- (28)

i#j
To see this, we interpret S, as counting the number of ways of choosing

a = (ai,...,a), £ = (€1,...,&) and two other (ordered) nodes i and j in
[n] so that

xrl,an) = ex = xr(j, ax), l<k=<r.
Summing over all possible € reduces this to requiring just that
xrhar) = xr(hew), 1<k <r.

Now, think of choosing i and j first. The required additional r nodes
ai, ..., a, must come exactly from {v € [n]: x7(i,v) = xr(j, v)}. Therefore,
there are just s(i, j),, ways to choose them, which implies (28).

We next assert that (24) implies

230, oy = (1 + o(n'*?27". 29

i#j

To see this, first define
. n
Ej .= S(l,]) 2
By (24), Zi.jle;| = o(n?). Also, |e;| < n. Therefore,

2 lel® = n7 Y ey = o(n**?),  a fixed.
i i#j
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Hence,

256, =2 (_n_ + gif)
<15 "

izj

i#j
r k
=> >c ( ) e; % (for appropriate constants c;)
l#]

k=0
n
- (3o 2 2el3) e
n
< (2fro + 3 Shdet
2 k=0 i#j
n
< (3)”(2) + c Zn 2 |8,,[r k
k=0 l#]
<(£)n +c2n (' ~++2)
5 " o(n
n
(5 ng + o(n™*?)

=0+ o)n 277

as claimed.
Note that by (28) and (29) we have

=1+ o))n+27". (30

Consequently,
2 (flee) = ¥ = ZfHae) = I
= 2 (fHa8) = fila,0) + Zfleae) — np2(n — 27

=8, + ey — npln — 1277 = o(n'*?).

Finally, since from our earlier observation that

Nr+1 = 2 fr(a, 8)

N, choices
of (a,e)
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then

2

INew = NfiP=| 2 (flae) - f)

N, terms

< N, 2 (fle,¢) — f)* by Cauchy-Schwarz

N, terms

IA

N, X (flese) = £)

o(N, - m™*?) = o(n**?)
by induction. Consequently

[Newt = Nf| = o(n™)
and so,

N, = N.f, + o(n'™")
=1+ o)np2™ @ (n— 2" + o(n™*"
= (1 + o(L)ng+n2 3.

This completes the induction step, and Fact 17 is proved. 1§

Finally, since the four (unlabeled) implications Pi(s) = P, Ps = P,
Py = Py, and Py = Py, are all immediate (each implied property is a spe-
cial case of the implying property), then all the links in Figure 3 have been
established, and so Theorem 1 is proved. 1

6. CONCLUDING REMARKS

We close with a collection of remarks and open problems. To begin with, it
would be of interest to expand our family of quasi-random properties for
tournaments. For example is the following property quasi-random:

P12(2k):

n2k

—?
2
Of course, Py;(4) is just P,. We remark that if a graph G has the expected

number of edges and 2k-cycles, then it is quasi-random (see [9]). Also
in this connection one could ask for other directed graphs D = (Np, Ap)

{wo,v1s.. . v2%-1) € NzkIHiXT(Ui,UHI) =1} =1 + o(1)
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(besides E4Cs) so that
N#(D) = (1 + o(l)n¥oi2#

implies T is quasi-random.

An interesting difference occurs between graphs and tournaments with
respect to properties P; and Ps. It is not difficult to show that for any fixed
a € (0,1), the following special case of Py is quasi-random:

Py(@): For all X C N with | X| = |an],

2 ld W X) — d (v, X)| = o(n?).

vEX

Of course, P; is just Py(1/2). It turns out that the analogous theorem does
not quite hold for graphs. Namely, consider the corresponding property for
graphs G(n) = (V, E).

P(a): For all X C V with | X]| = |an],
e(X,X) = (1 + o))a(l — a)n®

where e(X, X) denotes the number of edges between X and X = V\X.

It is shown in [8] that P(a) is a quasi-random property for graphs for all
a € (0,1) except for & = 1/2! A counterexample for this case can be con-
structed by placing a random (or quasi-random) bipartite graph between a
complete graph of size n/2 and an independent set of size n/2.

We have not said much about the explicit construction of quasi-random
tournaments. Of course, any quasi-random graph yields a quasi-random
tournament (by converting edges to increasing arcs), as does any large sub-
tournament of a quasi-random tournament. We should point out here that
in fact we can reverse this process and use it as a powerful way of
constructing quasi-random graphs. Namely, from a given quasi-random
graph G on [n], form the tournament T = T(G) on [n] by replacing each
edge {i, j}, i < j, of G by the arc (i, j), apply an arbitrary ordering = to T,
and then generate the new increasing arc graph G, = T} of T. We plan
to discuss the various properties of the members G, in the orbit of G in a
later paper.

Perhaps the most well-known example of a quasi-random tournament
(e.g., see [16] and [17]) is the so-called Paley tournament Q, = (Z,, A). For
a prime p = 3 (mod 4), the nodes of Q, consist of the integers modulo p.
A pair (i, j) is an arc iff i — j is a quadratic residue modulo p. To see that
Q, is quasi-random, we verify property P;. A node z € S(u, v) iff (z — x)/
(z = y) is a quadratic residue modulo p. However, for any of the i(p — 3)
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quadratic residues r # 0,1, there is always a unique z such that

22 1+ 222 = (mod p).
z—y zZ—y

Thus, s(x,y) = %(p — 3) and P; follows. (This argument, due to R.M.
Wilson, appears in [9].)

The tournament O, was used in [15] (also see [3]) as a concrete example
of tournament T = (N, A) in which

S(k): For any x,,...,x, € N, some z € N satisfies (z,x;) € 4, 1 <
i < k (i.e., any k players all lost to some other player).

However, the character sum estimates of Weil [22] and Burgess [4] used
in the proof there required that p > k?2%72 in order for Q, to satisfy (S).
Can p in fact be taken to be significantly smaller? It is known that

(i) a tournament on ck*2* nodes exists that satisfies S(k) (see [10]);
(ii) any tournament that satisfies S(k) must have at least (k + 2)2¢"' — 1
nodes (see [19]).

More precisely, it would certainly be of interest to obtain more quantita-
tive forms for various quasi-random tournament properties, much in the
spirit of the recent work for graphs by Thomason [20], [21], and Spencer—
Tetali [18]. Of course, lower bounds for various quasi-random properties
offer substantial challenges. It is known [12], for example, that in any tour-
nament T(n) = (N, A), there is always a subset X C N such that

ld* (X, X) — d (X, X)| > cn*”.

In the other direction, how can the non-quasi-randomness of a tourna-
ment be expressed quantitatively? More precisely, if T'(n) fails to satisfy
some quasi-random property, to what extent does it fail the others? For
example, for graphs the following has been shown [7]:

Suppose a graph G(n) = (V, E) fails to contain some graph H(s) as an
induced subgraph. Then for some subset S C V with |S| = [n/2], we have

n2

—(2¢2
16 > 2 (2t +27)n2’

e(S) —

(where e(S) denotes the number of edges spanned by ).

Recent results of this type are available [1], [11] for more drastic devia-
tions from quasi-randomness. For example, it has been shown [1] that if
e < 1072 and G(n) is a graph with at most en” distinct induced subgraphs,
then G(n) contains either a clique or independent set of size at least
(1 — 4¢)n. What are the analogous results for tournaments?
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Finally, this whole line of investigation could be carried out for directed
graphs in general (tournaments being an interesting but rather special case).
Of course, the natural domain for these questions is the set of (binary)
matrices, and some work has begun in [14].
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