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2.1. INTRODUCTION

In an carlicr paper [Chung, Graham, and Wilson (1991)], the authors
considered a large class of so-called quasirandom graph propertics
that are mutually equivalent in the sense that any graph satisfying one
of the properties must satisfy all of them. Some of these graph
propertics arc the following:

P\: G has at least (1 + o(1))n?/4 edges and at most (1 + o(1))n*/16
4-cycles.

P,(s): For fixed s, each (ordered) graph M(s) on s vertices occurs
1+ o(l))nS/Z(z) times as an induced subgraph of G.

P;: For any subset S of vertices of G, the number e(S) of edges
spanned by S satisfics e(S) = 1|S|* + o(n?).

P{®: For fixed a, 0 < @ < 1, and any subset S ¢ V(G) with |S| =

an,
2
2,2

e(S) = + o(n?).
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24 MAXIMUM CUTS AND QUASIRANDOM GRAPIHS

(In fact, in Chung, Graham, and Wilson (1991) a proof of P; <
P§!/® was given, and P; < P{® can be proved analogously.)

Other possible candidates for quasirandom graph properties are the
following:

Q: For every § ¢ V(G), the number e(S, S) of edges between S
and § satisfies

e(S,S8) = LISIIS| + o(n?).

Q': For a fixed a, 0 < a < 1 and for every S € V(G) with |S] =
an,

e(S,8) = ta(l — a)n® + o(n?).

We will use the following convention. Supposc we have two proper-
ties P = P(0o(1)) and P’ = P'(o(1)), each with occurrences of the
asymptotic o(1) notation. By the implication P = P’, we mean that
for cach € > 0 there is a 8 > 0 such that if G(n) satisfics P(3), then it
also satisfies P’(e), provided n > ny(e). For example, P(8) = Ps(e)
means “If G has at least (1 + 8)n?/4 edges and at most (1 + §)n*/16
4-cycles, then for any subsct S of vertices of G, |e(S) — HSIZI < en?,
provided n > ny(e).”

It is easy to see that P; = Q = Q. However, there is an obvious
obstacle for the reverse implication as illustrated by the following
example: Let H have vertex set 4 U B, where |A| = | B] = n/2, with
n even. The edge set of H consists of all pairs in 4 and a random
bipartite graph between A4 and B. In other words, each {a, b}, a € 4
and b € B, is in E(H) independently with probability 1. It is straight-
forward to check that almost all H satisfy Q!"/? but do not satisfy P,
or P{/?,

Nevertheless, it turns out that the value a = % is very special. We
will prove the following theorem:

Theorem 2.1. For a # 3, Q' = P§{!/? Therefore O is a quasiran-
dom property for a # 3.

Before proceeding to a proof of the theorem, we need the following
(weaker) property (which we term “almost regularity”):

P,(e): For all except en vertices, all degrees deg(v) satisfy
|deg(v) — n/2| < en.
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In Section 2.2 we will prove that Q implies P,. Section 2.3 contains
the proof of the main theorem. Section 2.4 includes remarks and
further questions.

We note that Q@ = QU= so that we can assume without loss of

generality that a < 3.

2.2. ALMOST REGULARITY
Lemma 2.1. Q = P,

Proof. Suppose P,(€) is violated. Thus, there is a sct X < V = V(G),
IX| = en, such that for all x € X, |deg(x) — n/2| > en. That is,
either deg(x) > n/2 + en or deg(x) < n/2 — en. We first consider
the case that the subset X’ = {x € X: deg(x) > n/2 + en} has at
least |X|/2 = en/2 vertices. (The other case can be dealt with in a
similar way.) Thus,

n n
(X, X) 2 1[5 + en = Ix1) = X1 3,

e(X', )7) /2 1 e
st
Xl = (1—e/2)n 4

and so,
X T > x| 7 il PRELA P
7 14 2_ 7 ! +_ —_ .
(X, X') 2 5 8( 2)”

This contradicts Q(8) if 8 < €2/16 and consequently, Lemma 2.1 is
proved. O

Note that for each § € V, we have

2e¢(S) +e(S,5) = Y deg(x). (2.1)

xeSs

Lemma 2.2. Q < P,. Thus, Q is a quasirandom property.

Proof. = From Lemma 2.1, we know Q = P,. Using P,, Q, and
(2.1), we have

n | —
2¢(8) = EISI ——2—|S| |S] + o(nz)
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or
Nk ,
e(S) = e + o(n®).

Therefore, P; holds.
< In Chung, Graham, and Wilson (1991) it is proved that P; = P,,.
Therefore,

e(S,5) = —;—ISI ~2e(S) + o(n?)

1 _
= —|SI IS] + o(n?),
2
and so @ is a quasirandom property. O

Lemma 2.3. For fixed a, 0 < a < 1,
(Q'“ and P,) < P{v.
Proof. The proof follows from (2.1) and Lemma 2.2. O

To show Q® is quasirandom it is sufficient to show Q* < P,; this
turns out to be true for all a € (0, 1) except a = %

2.3. PROOF OF THE MAIN THEOREM

It suffices to show Q® = P, for @ < 3. The proof is more compli-
cated than that of Lemma 2.1. Suppose Q‘*(8) holds but P(e) fails,
where 8 < (1 — 2a)e?/16. Let X denote the set of vertices in V(G)
with |deg(x) — n/2| > en, and suppose |X| > en. Further, suppose
X' ={x € X: deg(x) —n/2 > en} has Bn vertices with B > e/2.
[The other case that |{x € X: deg(x) — n/2 < en}| > en/2 can be
dealt with in a similar way and will be omitted.] As in the proof of
Lemma 2.1, we have

e(X',:\’—’) = plX'|(n — |X']) 2 1X'|n/2,
where the first equation defines p which implies

1
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We now apply Q(8) for two diffcrent ways of choosing S:

1. We consider all § € V containing X'. Let W range over all
subscts of '\ X' with |[W| = an — |X’[. We then have

' T VI 1 Vo n_lX’!—l

%V:e(WUX,WUX)Ze(X,X)( an - X )
7 n—|X'|—2

+2€(X)(an _ x| - 1).

Thus, there exists a W, such that

e(Wo UX', W, UX)
1

Z(—ﬁﬂ—)-%e(WUX',WUX’)
an — | X'|

,—7,(]"““) - (1 —a)(a = B)
ZE(X,X) 1=5) +2(3(X) (1_3)2 .

By our hypothesis, we have
sa(l —a)n® +8n* > (W, U X', W, U X')
z (pB(1 — @) + y(1 — a)(a — B))n?,

2
2. We consider all § € V\ X’ with |S| = an. We then have

where e(X’) = y( Xl )

Y e(S,S) =e(X',)_(—’)(n — X - 1) + 2e(?)(n - X - 2).

Scy-x' an — an — 1
Thus, there exists an S, such that

- ZSCV\XC(S’E)
e(SO,S(,) < n— X
")

PR a —a(l =B —a)
T
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From our hypothesis, we obtain
1¢(1 — a)n? - 8n® < ¢(S,, ;) < (pBa + ra(1 — B — a))n.
From method 1 we have

sa(l —a) + 8 — pB(1 — a)
(1 —a)(a~-p) ’

whereas from method 2 we get

%a(l—a)—ﬁ—pﬂa
a(l —a — B)

Together, these imply

6((1 —a)(a - B) +a(l —a - B))
2 za(1 = a)((1 - a)(a = B) - a(l = B - a))
+pBa(l —a)(l —a—B —a+ B),

which in turn implies
6(2a(l —a) — B) za(l — a)B(1 - 2a)(p — 3)-

Since B > e/2 and p > 1/(2(1 — B)), we see that

e) a(l —a)(l - 2a)e?

5(2“(1 ma) -y 8(1 — ¢/2)

However, this is impossible since we have chosen
8 < (1 —2a)e?/l16.
This shows that Q' = P for @ < 3 and the proof of the main
thcorem is complete. 0O
2.4. A DIFFERENT PROOF

It may not be immediately obvious why the property Q™ fails to be
quasirandom just for the unique value a = i. In this section we
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outline a different proof of this fact that helps to explain the occur-

rence of this singular value.
To begin with, we define for integers r and ¢, with 3 < r < t¢/2, the

matrix M = M, , = (M(I, ¢)) where I ranges over all ([‘1), the set of

r-element subsets of [¢] = {1,2,...,t}, e ranges over (l'l) and

1, iflenll =
M(l,e) ={ "
(Ie) { 0, otherwise.

We can think of forming a complete graph K, on [t], and for each
complete bipartite graph K(I, I) (on vertex sets [ and [ == [¢IND
and each edge e, letting M(I, e) indicate which e are edges of K(I, I).
A related, but somewhat more complicated, matrix M* = (M*(e, I))
is given by

—~(r=1)(r(t =2r)+2(r-1)), iflenlIl=0
(r=1(t—r—1(t—-2r), iflenlIl =1,
—(t—=r=1((t=r)—-2r)

=2(t —r—1)), iflenlI] =2,

M*(e, 1) =

where, asin M, I € ([") and e (['l) In particular, M is ( )by( )

and M* IS( )by()
The two matrices M and M* are related by the following:

Fact.
M*M = 2(t — 2 (t~2)! 1d
R U (T rp— Y (1)
where Id ) is the identity matrix of size ( ;,_). This follows by direct

¢
(5
computation using the dcfinitions of M and M*. Thus, M* is a
(scalar multiple of a) left inverse of M and it follows, in particular,

that M has full rank; that is, rank equal to (;) We remark that for

t = 2r, thc matrix M, , = M_,, only has rank (2’2‘ ‘). This turns out
to be the underlying reason for the special behavior of the value a = %
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Now, consider the property Q'“Xe) for € > 0, a < 1:

QY e): If S € V(G) with |S — an| < en, then le(S,S) — La(l —
a)n?| < en?, n > n,(e), where, as usual, we assumc G is a graph
on n vertices.

We want to apply O®(a) to G = G(n) in the following way. Let ¢
be large (but fixed) and assume for ease of exposition that n = tm for
some integer m. Partition the vertex set V' of G into disjoint sets
C,C,,...,C,, each of size m, and define

1
pij = r—n—ze(C,.,Cj), l<i<j<t.

We can associate with this construction a weighted complcte graph K,
on [¢] with the edge e = {i, j} of K, recciving the weight p(e) = p,.

We now fix r with 3 <r <t/2, so that B8 :=r/t is close to a (we
will be more precise later). We will actually first apply Q% e) to G.

This then implics that for cach I C ([:]), if we form S = U,;.,C,
then the number e(S, S) = c(I) of crossing edges, which is just

C(I) = ze(C,,Cl) =m22p,-j,
iel iel
Jel jel

satisfies
m*Mp = ¢, (2.2)

Bwhere p = [p(e)]ee((.z.) and ¢ = [c(I)],E(.:,) are column vectors. By
Q®)(€), we know

(1) = (3801 — B) + e(I))n?, (23)

where le(D)] < e, I € (1),
Now, we invert (2.2) by left-multiplying by M* to get

(e —2)! a .

(r=2)Wt—r—21"" 24

2]}

m2M*Mp = 2(t — 2r)
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However, direct computation shows that

- 2(t — 2r)(t — 2)! -
M1 = r(t—r)(r—Z)!(t—r—Z)!l’ (2:5)

where 1 denotes a column vector of all 1s. Thus, we obtain from (2.3),
(2.4), and (2.5),

|p(e) = 3B(1 — B)n?| < en? (2.6)

for each e € ([;]) and n > ny(e). This means that all the “edge

densities” p;; between the various clusters C; and C; in G are very
close to what is expected. Of course, to apply Q™ rather than Q®,
we choose a sufficiently close rational approximation 8 = r/t to a. It
then finally follows that any n/2 points of G span sa(l — a)n? +
o(n?) edges, which in turn implies quasirandomness [see Chung,
Graham, and Wilson (1991)]. This argument works for @ # + and fails

for @ = § precisely because the matrix M, , has full rank (;) for

2<r<t—2,r+#t/2 butonly has rank (’;1) when r = t/2 (which
corresponds to a = 3).

2.5. CONCLUDING REMARKS

In a recent paper, Chung, Graham, and Wilson (1991) considered
various quasirandom properties for tournaments 7. Recall that a
tournament T = (N, A) is given by a set N of nodes together with a
set A of ordered pairs of nodes, called arcs, such that for all
u,0 € N, u # v, either (u,v) € A or (v, u) € 4 (and not both).

One property considered in Chung and Graham (1991a) is the
following (where we take N = [n]):

X(a): For fixed a, 0 <a < 1, if S N with |S| = (1 + o(1))an,
then

Y ”{u € Sl(x,u) EA}’ —l{u e Sl (v, x) EA}H = o(n?).

xES

_ In other words, almost all nodces of S have about %Igl arcs going to
S and about 3|S] arcs coming from .
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It turns out that for all a, 0 <a <1, X(a) is a quasirandom
property for tournaments. This holds, in spite of the following result
relating quasirandom graphs and quasirandom tournaments. For a
tournament T = T(n) = (N, A), let 7: N — [n] be an arbitrary or-
dering of N and let G = T} = (N, E) be the (“increasing arc”) graph
on N given by

e={i,j) € E iff w(i) <w(j)and (i, ]) € A.

Theorem [Chung and Graham (1991b)]. T is a quasirandom tourna-
ment iff T} is a quasirandom graph.

We conclude by noting that a number of results have recently been
proved that focus on the equivalence of various “random-like” prop-
erties of graphs and hypergraphs. Some of these are included in the
papers of Rodl (1986), Thomason (1987a, b), Frankl, R&dl, and
Wilson (1988), Haviland and Thomason (1991), Spencer and Tetali
(1991), Graham and Spencer (1971), Bollobds and Thomason (1981),
and Chung and Graham (1990, 1991a). We believe that this work has
only scratched the surface of this fascinating topic, and that many
more such results will be forthcoming in the near future.
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