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ABSTRACT

We investigate the relations among a number of different graph properties for k-uniform-
hypergraphs, which are shared by random hypergraphs. Various graph properties form
equivalence classes which in turn constitute a natural hierarchy. The analogues for binary
functions on k-tuples and for hypergraphs with small density are also considered. Several
classes are related to communication complexity and expander graphs.

1. INTRODUCTION

The theory of “quasi-random” graphs involves a study of graph properties and
their relations. Although the properties of interest are usually satisfied by random
graphs, there is no direct relation to random graphs. However, these properties
can be viewed as measurements of randomness.

Quasi-random graphs were first introduced in [12] by presenting a large class of
graph properties that are mutually equivalent in the sense that any graph having
one of these properties must necessarily have all of them. The analogous version
for hypergraphs was given in [9]. While the roots of quasi-random graphs could be
traced back to various problems in extremal graphs [13, 14, 19, 33, 34], there has
been growing interest and applications as reflected in the recent work in [3, 18,
20, 25, 29, 30].

In this paper we establish a hierarchy by equivalence classes &, for k-
hypergraphs (or k-graphs for short) as follows:

ﬂogﬂlg”'gﬂk

o, is the so called “quasi-random” class that was introduced in [9} and it consists
of various graph properties for a k-graph G such as: ‘All k-graphs on 2k vertices
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appear almost equally often as induced subgraphs of G,” “For any fixed s = 2k all
k-graphs on s vertices appear almost equally often as induced subgraphs of G,”
etc. From the opposite end, in &, there is the property that the number of edges
in G is approximately the same as the number of nonedges in G. In &, there is
the property that G is “almost regular.” &, contains the ‘“jumbled graphs”
property considered by Thomason and others [20, 29, 30]. It turns out that each
o, corresponds to an interesting invariant, the so-called i-deviation (defined in
Section 2) which provides a quantitative indication as to how much the graph
deviates from random graphs.

We will also discuss analogous quasi-random classes for k-tuples, or for
functions from V* to {—1, 1}. These classes are of particular interest because of
their connection to communication complexity, detailed in Section 4.

In Section 5, we consider quasi-random classes involving functions or hy-
pergraphs with small density. Some of these classes are related to expanders,
which arise in many topics in extremal graphs and computational complexity.

2. NOTATION

A k-graph G = (V, E) consists of a set V=V(G), called the vertices of G, and a
subset £ = E(G) of the set K of k-element subsets of V, called the edges of V.
We use the notation G(n) to indicate that V has n elements. Throughout this
paper, G denotes a k-graph unless otherwise specified.

For a k-graph G'=(V', E'), we let u,: (Z)—> {—1,1} denote the edge
function of G, i.e., for

V> . { -1 ifx€E,
x€ < k/’ HolX) = 1 otherwise .

Let V* denote the set of 'k-tuPlc;s (ys-..,0,), U, EV, where the v’s are not
necessarily distinct. Let IT®: V**'— {~1, 1} denote the following function of G.
Hg)(ul,uz,...,u2i,vi+1,...,Uk)=H~~-H;LG(£1,...,ei,vi“,‘..,vk)

81 E‘-
where ¢; € {uy;_,, uy;} for j=iand ps(w,, ..., w,) is defined to be 0 if two of

the w’s are equal. IT¢ is a product of 2 terms each of which is an edge function.
For i =0, we define ITy. = .
The i-deviation of G, denoted by dev,(G), is defined as follows:

1 i
dev(G) =~ 2 TQ(uy, )

Thus dev,(G) assumes a value between —1 and 1. (Another interpretation is that
n**dev, is the difference of the number of “even partial (squashed) octahedrons”
and the “odd partial (squashed) octahedrons” as defined in [9]; also see [11] for
more details.)
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For X CV, G[X] denotes the subgraph of G induced by X, i.e., G[X]

(xen(H))

Let H denote an /-graph where /<k and V(H)=V(G). The set E(G, H) of
edges of G induced by H is defined to be:

E(G,H)= {x € E(G): (’l‘ ) C E(H)}

For [ =1, the edge set of H is just a subset of V(G) and E(G, H) = E(G[H]). We
denote e(G) = |E(G)| and (G, H) = |E(G, H)|.

3. STATEMENT OF THE MAIN RESULTS

We will use the following convention. Suppose we have two classes P = P(o(1))
and P’ = P'(o(1)), each with occurences of the asymptotic o(1) notation. By the
implication “P=> P’”, we mean that for each £ >0 thereisa 6 >0 (a function of
€ and k but independent of n) such that if G(n) satisfies P(8) then it also satisfies
P’(g), provided n > n(e). Two properties P and P’ are said to be equivalent if
P=> P and P> P.

In [9] it was shown that the property dev,(G)= o(1) for a hypergraph G is
equivalent to a number of disparate properties, among which are:

Q:  For all k-graphs G’ on 2k vertices, the number of (laZEeled) occurrences of

G’ in G as an induced subgraph is (1 + o(1))n*2 ‘¥’
Let s denote a fixed integer and s = 2k.
O(s): For all k-graphs G'(s) on s vertices the number of (labeled) occurrences of

G' in G as an induced subgraph is (1 + o(l))ns27(k).

For k =2, the above properties are also equivalent to some additional properties
[10, 12, 27}, including the following:

1
Q': For each subset S = V(G), e(G) = 5 (

|§|> + o(nz).

As noted in [9], the analogous version of Q' for hypergraphs, (i.e., e(G) =

1

3 < K + o(n*)) is not equivalent to Q and therefore is not quasi-random.

In an attempt to generalize Q', Frankl and Rodl suggested the following
property for 3-graphs G as a possible quasi-random property:

e(G,H)= % e(KP, H) + o(n®)

n

where K denotes the complete 3-graph on n vertices.
Here we further generalize the above property FR for fixed integers i and k:
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P;: dev,(G)=o(1).
R;: For every (i —1)-graph H, with i =2,

e(G, H) — (G, H) = o(n")
where G denotes the complement of G with edge set {x S (Z) x& E(G)}.

Also, for i =0 and 1, we define

R,: e(G)— e(G) = o(n").
R,: G is almost regular. That is,

> @y, ) —d Uy, ) =0 T
where d " (uy, ..., up_ ) =[{vEV:{uy,...,u_;, v} € E(G)},
d (uy,...,u )=HveViu,. ..,u , v} LEG)} .

Theorem 1. Properties P, and R, are equivalent for i =0, . . ., k. In particular for
i =2, we have

0 disc(G)= Max LG =G H)

H:(i—1)-graph IV(G)lk <(dev,(G))

(i) dev,(G)<4'(disc,(G))""*

We remark that disc, is often called discrepancy (see [14-16]) and disc, (so-called
the i-discrepancy) is a natural generalization of discrepancy. We note that the
constant 4 in (ii) can probably be improved by more careful analysis. However, it
would be significant if the power 1/2' on the right-hand sides of the inequalities
could be improved.

Theorem 2. Let 54, denote the equivalence class of k-graphs for which P; holds.
Then,

Ay D, Dby DD Ay

The proofs for Theorems 1 and 2 will be given in Sections 6-8. In [12]
Theorems 1 and 2 are proved for the case of k=2 (i.e., “usual” graphs). Frankl
and Rodl proved independently P, <> R, (private communication).

The family of, = ¢* of k-graphs is said to be (k, i)-quasi-random, or some-
times i-quasi-random if there is no confusion. The term ‘‘k-quasi-random” for
k-graphs is the same as “quasi-random’ as in previous papers.

In a k-graph G, we define the neighborhood graph G, of a vertex v having

1%
vertex set G — {v} and edge set E(G,) = {x € (k B 1): {v}uxe E(G)}. We
then have the following:
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Corollary . G is (k, i)-quasi-random if and only if for almost all vertices v, the
neighborhood graphs G, are (k — 1, i)-quasi-random, where i <k.
For two vertices u and v in a k-graph G we define the common graph G, ,
| %4
having vertex set G —{u,v} and edge set E(G,,)= {x S <k 1 ): melx U

(1)) = (e U ().

Corollary 2. G is a (k, i)-quasi-random if and only if for almost all pairs of
vertices u and v, the common graphs G, , are (k — 1, i — 1)-quasi-random.

Corollaries 1 and 2 are immediate consequences of the definition of dev, and
Theorems 1 and 2.

4. QUASI-RANDOM CLASSES AND COMMUNICATION COMPLEXITY

Let f denote a function from V* to {—1, 1}. All the definitions for k-graph have
natural analogs for functions on k-tuples, or k-functions for support.

Let [ denote a subset of size i of {1,...,k}=[k] and define H(f{),:
V¥ = {1, -1} by

Hf,](un ces »uk+c)=H"'nf(81,. Ces E)
EI Ek

where & € {u;,,,_, u;,,} if jEI and m = IN[/]l; and & =u,,,, if j ZI. The
i-deviation of f is defined to be:
1
dev, f= Max —— 2, e, (g ugy)
' n UypttHpy
where I ranges over all subsets of [k] of size i. For a k-tuple u = (u,, ..., u,), we
define u, to be an i-tuple (u,,...,u,) where a,<---<a, and ¢, € I. Let ¥,

derllote a family of i-functions where i < k and the members of %, are indexed by
< i) denoted by £,. The number e( f, #,) is defined as follows:

e(f, )= {x € V*: forevery I C [k] with |I| = i,and h, € %, h(u,)
=—land f(x)= -1}
For fixed i, the properties for a k-function f can be stated as follows:

P;: dev,(f)=o(1);
R;: Fori=2, forevery family #,_, of (i — 1)-functions

e(f, #,_,)— e(f, #,_;) = o(n").
For i =0 and 1, we define

Ry e(f) — e(=f)) = o(n*)
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where e(f)=l{xeV*: flx)=-1}.
ﬁlz f is almost regular, i.e.,
Max > ) = d ) = o)
where for 1=i=<k—1,

Ay, ue )= EVE fUy, o U U U Uy y) = =1}
and
dl:(ul’ Tt uk—l): l{vev: f(u1> s U, U)= —l}l ’

d; is defined similarly for the f-value 1.

i

Theorem 3. Property I;l. is equivalent to Property R for 0=i<k. In particular,
for i=2, we have

le( f, #,_.)—e(—f, gfi—l)'

disc,(f)= J;Zax 1%k
< (dev,(f)'"”
and
dev,( f) <4'(disc, ()"

Theorem 4. Let ‘9’3,. denote the equivalence class for functions on {1, —1} that
satisfy Q,. Then

Ay D, Dsl, DD d,

Although the definitions for k-functions seem to be more complicated than for
hypergraphs, the proofs are very similar and, in fact, simpler in most cases. We
will omit the proofs for k-functions since they are already well-suggested by the
proofs in Sections 6-8.

In {5], Babai, Nisan, and Szegedy considered the communication complexity
for a k-party communication protocol f. The communication complexity for f is
bounded below by log, 1/I'(f) where I'(f) is as follows (see [5]):

Irify= max Prob(x € § and f(x) = —1) — Prob(x € § and f(x) =1))

= max e(f, #._1) —e(=f, #._,)

Hy—1 n

where § ranges over so-called “cylinder intersections” which correspond to 7, _,.
Therefore property R, is equivalent to the property that G has small I'( ) and
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thus large communication complexity. Theorem 3 can then be used to show that
numerous classes of functions have large communication complexity.

Communication complexity is used to derive lower bounds for time-space
trade-off and generating pseudo-random numbers among numerous other applica-
tions in complexity theory and distributed computing [1, 4, 7, 31, 35]. The reader
is referred to [23] for an extensive survey on this topic.

5. QUANTITATIVE QUASI-RANDOM CLASSES

Suppose a is a real number between 0 and 1. For a function f from V* to {1, =1},
we define f,(x) =1 — «aif f(x) = —1 and f, (x) = —a if f(x) = 1. Although we could
choose a =|{x€V*: flx)=—1}|/|V|*, in general a is independent of f. We
define dev; f, in an analogous way as dev, f (by replacing each occurrence of f by
f, in the product sum) and we have the following:

Theorem 5. The following two properties P, |,
f:V¥— {1, =1} are equivalent:

P, dev(f,)=o(1).
R, .. For i=2, and for every family %, _, of (i — 1)-functions,

and R,, for a function

(1-a)e(f, #,_,) — ae(~f, %#_,) = o(n")

Ry,: (1 - a)e(f, %#_,)— ae(—f, ¥,_) = o(n*)
R, : max > (T—a)d Uy, up_ ) —ad; (uy, ... u )

In particular we have, for i =0

|1 = a)e(f,, %) — ae(—f,, % )|
v*

(i) disc,(f,) = Max

<(dev(f, )"

and
(ii) dev,(f,)<4'disc(f,)"*

Theorem 6. Ler o,  denote the equivalence class for functions for k-tuples of V to
{1, =1} that satisfy Q, , where a =|{vE€V*: f(x) = —1}|/|V|*. Then

Ap 2541,0( 2 T gﬂk,a

The proof of Theorem 5 is very similar to that of Theorem 1 in Section 6-8 (by
replacing each occurrence of f by f,) and will be omitted.
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We note that the 2-discrepancy disc, can be modified as follows:
For a subset X of V (which can be viewed as the edge set of a 1-graph),

e(f’ X)_ a|X[k

diSCz(f) = 1}\,45"} lek

where

() =1

Suppose we choose a to be ’{xE(Z): flx)= —1} /lV}k (which can be

viewed as the density of “ordered” hyper-edges). Therefore disc,( f) associates
with the maximum quantity that the number of ordered-edges in a subset X can
differ from the average. If we can use dev,( f) to (upper) bound disc,( f), we can
then (lower) bound the number of edges leaving X from every X CV and
therefore assert the expanding property of the hypergraphs.

Expanding properties often arise in various problems ranging from nonblock-
ing networks [24], sorting [2], amplification of weak random sources [28], and
various problems in computational complexity. The proof for Theorem 6 consists

of constructions which are obtained by using character sums, included in Section
9.

e(f, X)=

6. P>R,

Suppose dev(G)< e and H is an (i — 1)-graph. Recall that, for each j<i, we
define

HG(ul,...,uzl.;vjﬂ,...,vk)zn-“l—[,u(sl,...,s/.;vjﬂ,...,vk)
£ g

where €, € {u,,_,, u,;} for 1=j'=<j and Il is a product of 2’ terms.
We consider

n*"idev(G) = > Mgy, .o Uy Uiy o5 Uy)

Eventually, we want to show the above sum can be bounded below by a
subsum ranging over u,,, ..., Uy;, U;.y, - .., U, satisfying the property that all
(i—1)-sets §,,...,8, ; are in E(H) where

6,,= v,]_if t;>iand 8,/= U, 1 OF uz,l_if L=i. )]

This property will be denoted by u,,...,uy, V,yy,..., 0, E P where K=
{1,...,k}. Let T be a subset of K. We write u, ..., Uy, U,,q,...,0, € PY if
for every (i —1)-set, t;,...,#,_; of T we have {5,,...,8, _,} in E(H) where 8,/_
is defined as in (1). Since
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i
n*dev (G) = > D% § X 7R R
L YT TP TN vy
= 2 2 E oy, oo sty g5 U5y Uiy e o2, U))
Hioeos H2i-2 Vi1 Uk Mgi—ys Mo
XUy ooy Uy o5 Uiy Upigs oo 1)
2
= 2 2 (2 Hgup, ..o uy s, U,-+1,~~~,Uk)>
Upe ooy Ugi—2 Viwtr - s Ve eV

In the sum above we can then choose a subsum which then is smaller than
n*"'dev,(G). Namely, we restrict ourselves to those u’s and v’s in PY_.. In other
words, we only select those u,,...,uy 5,0,,y,...,0, such that all (i—1)-
subsets &, ,...,8, _, for 6,]_€{u2,],1,u2,j}, if ,<\i, and 5,l_=v,] if 1;,>1, are
contained in E(H). By expanding the squared terms, the above quantity can be
rewritten as follows:

k+i .
n""'dev,(G)> > I (e, s € iy €5 U415 -5 Ug)
Uiy oo Ui Uigga e e e s vkEP’Ig i

It is not difficult to check that if u,,..., u,,v,,,,..., v, satisfies ngj for every

1=j=i thenu,,...,u,,v,,,...,Uv, satisfies P’,f since every (i — 1)-set of K is
in K—j for some j in {1,...,i}. We will show the above quantity is lower
bounded by a subsum of those u,, . .., U, U,,,, . - . , U, satisfying P%_, and P%_.
(denoted by u,, ..., Uy, Vyryy ..., 0, € PY N PY ). We have
nk+idevi(G)Z 2 H[.L(sl,...,Si,viH,...,Uk)
Ups ooy Uiy Ujgge - - o s vkEPﬁ,i
= > > Il e, ooy €Uy esUy)
Uz, ..., Ugis Upgqs - oo s Up ”1'“2€DK71'

where Dy_. = {v:{v,8,,...,8,_,} is in E(H) for every choice of (i —2)-set
{ty,...,t,_,} of K- i and §’s are defined as in (1)}.
The above quantity can be rewritten as follows:

2
k+i
n 'dev(G)= > ( > H/L(v,ez,...,s,.,v,.H,...,vk))
Uz, o, Upir Uigls - o Vp “weEDg_;
We can then choose a subsum of those u,, ..., u,,,v,,,,...,v, which satisfy
H
Pr_s.
Therefore we have proved
k+i
n"dev{(G)= > IMpley, o ooy €5 U00s -+ -5 Ug)
Uls v s Ui Uigls o - v s vkEP[Ig_lﬂP;’_i

In a similar way, we can choose subsums which satisfy P% _ ; for other j’s. The
proof is straightforward and will not be repeated here. So we have

k+i
n**idev (G) = > 1
Uy, ooy Upis Uig1r - - - s vkeP’}AlﬁP’éfzﬂ'“”PIz?—:
X}L(el,. e & Uiy e ’vk)
= 2 H,u,(el,...,6,-,0,-+1,---’vk)



372 CHUNG

We now apply the Cauchy Schwarz inequality:

2
k+i
n'dev(G) = > < > Hp,(e],...,sl._,,v,viﬂ,...,vk))
3 DI U2i—2> Vitgs - v - s Ve “wvEFg_,
1 2
Z;;m( 2 H,U,(el,...,e,._l,v,-,...,vk)>
Ups ooy Ugi-2:02: Vit gy - - - v EPE
. H
Note that we rename v by v, and u;,.. .., uy_,, v, v, ,. .., v, € P¥ means all
{6;,...,8,_,} are in E(H) where 8, =uv, or (6,j= Uz, —y OF uZ’;)‘ Also Fp_, =
. H
{viug, .Uy 50,0, ..., U, € PYYL

After we repeat the process i — 1 times, we will arrive at the following:

1
n*'dev(G) = peTirmr ( > w(vg, ..., vk))
n V1

where all (i—1)-subsets of {v,,...,v,} are in E(H) and therefore
X o, #(U15 ..., U,) is exactly the difference of two numbers, one of which is

ST
the number of ordered k-sets x in E(G) with (zf ) C E(H), while the other is
y

i—1

1

the number of ordered k-sets y not in E(G) with ( )C E(H). Therefore

n**dev,(G)= (k'(e(G, H) — (G, H)))* .

k2P —k—i
n

Since dev,(G) < e by Q,, we have
|e(G, H) — e(G, H)| = (k!)""'*n*(dev(G))""*
k_1/2

=ne .

This completes the proof of P,=> R,. L]

7. R>P,

Suppose that for every (i — 1)-graph H, we have

le(G, H) — e(G, H)| = [2¢(G, H) ~ e(( Z) H)’ <2¢’n*

We want to show dev,(G) < 4% We will proceed by induction on both k and i.

For k =2, it is mainly proved in [12] with the following clarification: It obviously
holds if 16" =1. Suppose 16¢''* < 1. Fact 9 in [12] states that if |e(G, X) —
e(G, X)| <2¢&’n’® for all subsets X of vertices, then
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>

u,v

s(u, v) — gl <20V3n® where s(u, v) = [{w: u(u, w)= u(v, w)}|.

4 2
Since dev,(G)= — > s(u, v) - g , we have
n u,v
2 n
dev,(G) < — > s(u, v) — —’
n uuv 2
=40V3e=<16¢"*.

We may assume 2<i<k and k=3.
There are two cases:

Case 1. i <k.
It is straightforward to verify that

1
dev,(G) = p %v dev,(G,)

where G, denotes the neighborhood graph of v.
Let S denote {v: dev,(G,) > (4' —2)&''*}. If | S| =2&n, we have

dev,(G) = - (% der(G)+ 3 dev,(G,))

||

= 7 + (4i _ 2)81/2i<4i81/2i

We may assume |S|>2en. For each G,, v € S, by the inductive hypothesis, there
is a (i—1)-graph H(v) so that [2e(G,, H(v)) — e((k . 1), H(v))| =28°n*""

where 82>3¢ (since 4'-8'/* <(4' —2)&"'?). There is a subset §' of S with
|S’| = en so* that either

(a): e(G,, Hv)) = % e((k ‘_/ 1 ), H(v)> +28%n !
forall ve §’,
or (b):

oG, Ho) =5 (V) Hw) —257*

We will only treat case (a) while the other case can be proved similarly and the
proof will not be included here. Now we define an (i — 1)-graph H with V(H) =V

and E(H)= {xE(ii/l): x € E(H(v)) for some v in $'}U

-1

* Strictly speaking, we should use |en] instead of en. However, we will usually not bother with this
type of detail since it has no significant effect on the arguments or results.
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We consider

2 e(G,, H(v)

v

= > Huexns':x- u€ E(G,, Hu))}|

xe( )
| %4 . . .
For each set x € k with x N S’ # @, one of the two situations occurs:
(i) [xnS'|=2.
There are at most £°n* such x.

(iiy x=uUyforueSand yNnS' =0. xis in E(G, H) if and only if x — u is in
E(G,, Hu)).
Therefore, we have

3 (G, Hw) = (G, H) - e(G, (Y:f )) N

e pensi=2]

v-s'
< ¢(G, H)—e(c,< i )>+82nk

AN A AL N @

On the other hand, (a) implies

> eG, H)= 2, % e<<ktl)’H(0)) +]8'[28%n< !

v veES’
() )= el () (1)) -em w2t
Zze k’H e )\ i 3en” +2e8°n
Together with (2) it implies:
5% <3¢

which is impossible. This completes the proof for Case 1. u

Case 2. i=k.
Recall that for two vertices u and v, we define the (k — 1)-graph G, , with the

same vertex set and E(G, ,) = {y € <k ‘_/ 1 ): we(u, ¥) = ps(v, y)}.
1
dev(G) = e > I (€, oy 8)

1
=% D Hp, (85 s &)
n

Up Up Uzt rlpg

1
== 2 dev(G, )

N uyu,
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For each u) €V, we define S, = {u,: dev Gy, = (4" - 2)81/2k}.
S={u,€V:|S,|>2¢en}

If [S| =2én, then we have
1
dev(G) = — (|S|n + (4 - 2)81/2",12) = 4k 117
n

We may assume |S|>2en. For a fixed u, € S, the induction assumption implies
that there exists a (k —2)-graph H(u,, u,) for each u, in S, satisfying

1 Vv
e(Gul,uz’ H(ul’ uZ)) - 5 e<<k — 1)’ H(”], uz))’ >662nk¥1

where &° = 4¢.
We can choose a subset S, of S, with lS;II = gn so that either

(a): e(G, ., H(u,, u,)) = % e<(k Y 1)’ H(u,, ”z)) 435255

for all u, in S, ,

1%
or (b): e(G, ., H(u,, uy)) = % e<<k _ 1>, H(u,, uz)) —38°n""!

for all u, in S, .
We will just treat (a) and omit the similar proof for (b).
We consider the following (k — 1)-graphs H', with V(H') = V(G) and

E(H')={u,Uy: y € E(H(u,, u,)) foru, € S, } N (E(Gul) U ( ‘;ii)) .

For each set x € E(G, H'), one of the three situations occurs:
(i) [xns; =2
There are at most £°n” such x.

(i) x=u,Uy foru, €S, , yNS' =0, and so, yE (G, , , H(u,, u,)).

Uy,uy

!

V-5
(iii) |x U S, |=0. Thus x € E(H, H'(u)) where E(G'(u,)) = E(G,)N < - 1'” >

1
L3t

Similarly, we define a (k —1)-graph G"(u,) with edge set E(G(u,))N ( i—

and a (k—1)-graph H" with edge set E(H")={u,Uy: y€ E(H(u,, u,)) for
uy € 5.} U E(G"(u,)).
Therefore

2 G, .. H(u,, u,))

uZESu1

= 2 {vUyy€EG, ,,, H(u, u,))}]

uzeS,;l

=

{xE(Z): xNsS,|=1,x=u,Uy,xEEH), y€ E(G, ., H(u,, uz))}]
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+

{xE(Z): xNS,|=1,x=u,Uy,x€ E(H), y€ E(G,_, , H(u,, uz))}l
+ ’{ZG(Z):IZQS'IZZH
<e(G, H') - (G, G'(u,)) + e(G, H") — e(G, G"(u,))

+ ZE(‘k/):lzﬁS’]ZZH

We now apply the induction assumption to H' and G'(u,), (and H"” and G"(u,),
respectively). We have

e(G,H) = % e(( Z) H') +&°n, e(G, G(u,)) = = e(( ) G’(u1)> +&’n*,
1
2°¢

e(G, H" = % e(( ‘k/> H") + ¢'n* and e(G, G"(u,)) = (( Z), G”(u1)> + &’n* .

Therefore

Z e(Gul,uz’ H(u,, u,))

=3 () el o) () ar) - (i) ow)) + s

and, on the other hand, (a) implies

2 oG, .. H(u,,u,))

“ZES;«I

2,2, Al ) ) 357,
>2u2§g;‘ € k_1 9H(u19u2) +36 !Sulln

=3 (7)) =l (}) cwp) + () ) - el () 7))

— 52" +38%n* !

Together with (3) this implies 8° <4& which is a contradiction. Therefore we
have completed the proof of R, = P, [

8. PROOF OF THEOREM 2

It is easy to see that P,= P,_, for any i. Therefore we have &, D o, ,. To show
A, D.szf, 4 fori=0,..., k-1, we will construct k-graphs G, with the property
that G Ed and G, & sdi +1- The basic building blocks are quasi-random graphs in
A, .

In [9], two families of quasi-random k-graphs are given. One example is the
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Paley k-graph P, with V(P,)={1,2,...,p} and pp(u;,...,u)=1 if
u, +---+u, is a quadratic residue modulo p.

For each i, we choose a quasi-random i-graph H, on n vertices, say H,, to be
the Paley graph P,. We define the k-graph G, as follows:

V(G)=V(H)=V

E(G)= {x € ( ‘k/) (’l‘) n E(H,.)i = 0(mod 2)}

It suffices to show G, € o, — o4, _,.
Claim 1. G, € .

Proof. The proof is a straightforward application of the following character sum
inequality of Burgess [6] (see also Weil [32]). Let y denote the nonprincipal
character modulo p given by

(a) = { 1 if a is a quadratic residue modulo p
X —1 otherwise ’

Then for distinct a,,...,a,in Z,,

2 x(c+a)x(+a)|=(s=1)Vp
xEEXP
Now we consider
1
dev(G;) = 'n_k'+_1 2 I MGi(51’ cee s €y Upgs 5 Uy)
Let [k] denote {1, ..., k}. We note that for z,, ..., z, all distinct

Be(Zis oo 2)) = I1 X(Z zj)

se(t) s

Therefore
dev(G)= % X [--I1 I x(sz)JrO(n”)

Vjg Vg Ups oo Uy se([k]> jES
i

where z; = ¢ if j=iand z;=v; if j> i
We have

devi(Gi)S—lri > o@FVH)+ oY

k
n Vit1 Uk

— O(n—uz)

Therefore G, satisfies Property P, and hence is in &;. Claim 1 is proved. L]
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Claim 2. G, is notin oA, .

Proof. We consider the set E(G,, H;) of edges of G, induced by the Paley graph
H,. An edge x is in E(G,, H;) means every i-subset of x has a sum which is a
quadratic nonresidue. By definition, x contains an even number of i-sets each of
which has a sum which is quadratic nonresidue. This can only happen when

k -
l.)EO(mod 2). Therefore either E(G,, H;) is empty or E(G,, H;) is empty.
Since k and i are all fixed integers,

G, 1) - G, 1)l = £((). 1)
'

NG

# o(n*) n

=(1+0(1))

9. PROOF FOR THEOREM 6

In order to construct functions (or “ordered” hypergraphs) with density a <1/2,
we need the following wariation of the characters and character sum inequalities.
Let p denote a prime number. Suppose H is a subgroup of GF( p)* with index
a”' (i.e., a=|H|/(p —1)). Let ®, denote the set of all nontrivial characters y
from GF(p)* to C* such that y/H =1 and x(0)=0.
We define
d=a- X x

xXEPy

It is not difficult to see that

-« ifx€EH
d’("):{ —a ifx&H

and |®,| =index of H=a "' -1 (also see [22] and [26]).

Therefore
z d(x +a)=« 2 2 x{x +a)
xEGF(p) xE€EPy xEGF(p)
=a E E x{x+a)
X€EP, ' xEGF(p)
= alq)H[\/?
=(1-a)vp
For a distinct a, ..., a, € GF(p), we have

2 dxta)-dxta)=a X X xxta) - x(xta)

x€GF(p) X, EQy xEGF(p)

=a’(e” = 1Y(Os—DVvP=(1—a)(s—1Vvp
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since the nontrivial characters y,, ..., x,, we have (see [32]

2 xxta) o x(xta)=@-1)vp.

xEGF(p)

Now, if we define f:(GF(p)—={(1-a),—a} by f(u,...,u,)=
¢(u, +---+u,). Then

1
devia=F 2 Z HH H¢(8]+82 g tu oot

Upo oo o Ui Vie1 Uk £ &2

2 2 EHH H¢(81+82 g tu Lt Tty

U iUy ViU T Uy 8 8

(1-ay@ ~1vp=0(p ")

|r—k"B

P

Therefore f, is in &, .
To distinguish &, , from &, , , we consider

foilby, oo u )=+ -+ uy)

1
dev,f,;, = Max —= E H 1(“1’ cees Ugy)
IE<[k]> n Uyt Ug
i

1

= Tkwi z Hfai,l()(uh ces Ugy)
n Uy lgyg )
where I, ={1,...,i}. Since II, , (u;,..., u,,;)=min{a” (1 - a)“}, we have

dev.f, ;# o(1). Thereforef E A, .
On the other hand,

1
dev,_\f,.= M‘f;f] W E Hf Sy, uy)
1€<l 1) U Upgi-g
< 0(p*l/2)
Therefore we have f, ;€ o, ;. This completes the proof for Theorem 6. n

We remark that we can use variations of character sum inequalities, for
example, those in [8] and [21], to get better bounds for dev, which can be useful
for proving expanding properties for functions of hypergraphs with small density
a.

10. FUTURE DIRECTIONS

Numerous questions can be asked for the whole spectrum of quasi-random
classes. For example, given a graph property, how is it placed in the quasi-random
hierarchy? A property of special interest is the Ramsey property (G(r) does not
contain a clique or an independent set of size ¢ log n). In [11] we further examine
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the subgraph property (for fixed ¢, G(n) contains all graphs on r vertices almost
equally often) and answer the questions raised in [9].

Another direction is to search for finer classifications of quasi-random graphs.
For example, between &, and &;, many more classes can be specified, such as:
Ay=RB OB, D - 2B,_, =4, where B, for i=1, is the equivalence class
which includes the property:

%V |d"(x) — d~(x)] = o(n*) where d*(x) = Hye <k‘: l.): xUy€E E(G)}l

and
d (x)= Hye(k‘:i):nygE(G)H .

In Section 6, we showed that for a k-graph G and any (i — 1)-graph H, we
have

|e(G, H) — «(G, H)| = n*(dev,(G))""*

Can the power 1/2° of dev (G) in the above inequality be replaced by, say, the
reciprocal of a polynomial in i? If the answer is affirmative, this can be used to
improve the result on pseudo-random number generation as described in [5].

For a random k-graph G, it is not hard to verify that with probability
approaching 1, we have |e(G, H) — e(G, H)| = O(n%*""?) for every i-graph H
and this is best possible. Also it can be shown dev,(G) = O(n"'), which can be
proved by similar methods as in [15].

Finally, a general direction is to extend the concept of quasi-randomness to
other combinatiorial structures. Much more remains to be explored.
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